On admet le résultat suivant : $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

On appelle intégrales de Fresnel, les intégrales : $\int_0^{+\infty} \cos(t^2) dt$ et $\int_0^{+\infty} \sin(t^2) dt$ et celles qui en découlent.

Partie I: Existence d'intégrales

1. Les fonctions $t \mapsto \frac{\cos(t)}{\sqrt{t}}$ et $t \mapsto \frac{\sin(t)}{\sqrt{t}}$ sont continues sur]0,1] par quotient de fonctions continues dont le dénominateur ne s'annule pas sur]0,1]. De plus :

$$\forall t \in (0, 1], \quad \left| \frac{\cos(t)}{\sqrt{t}} \right| \leq \frac{1}{\sqrt{t}} \qquad \left| \frac{\sin(t)}{\sqrt{t}} \right| \leq \frac{1}{\sqrt{t}}$$

D'après les intégrales de Riemann $\int_0^1 \frac{1}{t^{\alpha}} dt$, on sait que la fonction $t \mapsto \frac{1}{\sqrt{t}}$ est intégrable sur]0,1] $(\alpha = \frac{1}{2} < 1)$.

Par comparaison, les fonctions $t\mapsto \frac{\cos(t)}{\sqrt{t}}$ et $t\mapsto \frac{\sin(t)}{\sqrt{t}}$ sont intégrables sur]0,1].

On pouvait aussi utiliser un équivalent en 0 de chacune des fonctions.

2. Notons $I = \int_1^{+\infty} \frac{\cos(t)}{\sqrt{t}} dt$ et $J = \int_1^{+\infty} \frac{\sin(t)}{\sqrt{t}} dt$.

Les fonctions $u: t \mapsto \frac{1}{\sqrt{t}}$, $v_1: t \mapsto \sin(t)$ et $v_2: t \mapsto -\cos(t)$ sont de classe C^1 sur $[1, +\infty[$. Par produit dune fonction bornée par une fonction de mlimite nulle, on sait que $\lim_{t\to +\infty} u(t)v_1(t) = 0 = \lim_{t\to +\infty} u(t)v_2(t)$.

On en déduit par intégration par parties que les intégrales $I=\int_1^{+\infty}u(t)v_1'(t)\mathrm{d}t$ et $J=\int_1^{+\infty}u(t)v_2'(t)\mathrm{d}t \text{ convergent si, et seulement si les intégrales }I_1=\int_1^{+\infty}u'(t)v_1(t)\mathrm{d}t \text{ et } I_1=\int_1^{+\infty}u'(t)v_2(t)\mathrm{d}t \text{ convergent. Or }I_1=\int_1^{+\infty}u'(t)v_2(t)\mathrm{d}t \text{ convergent. Or }I_2=\int_1^{+\infty}u'(t)v_2(t)\mathrm{d}t \text{ convergent. Or }I_2=\int_1^{+\infty}u'$

$$\forall t \in [1, +\infty[\quad |u'(t)v_1(t)| = \left| \frac{-\sin(t)}{2t\sqrt{t}} \right| \leqslant \frac{1}{2t^{3/2}} \qquad |u'(t)v_1(t)| \leqslant \frac{1}{2t^{3/2}}$$

On sait que la fonction $t \mapsto \frac{1}{t^{3/2}}$ est intégrable en $+\infty$, alors les intégrales I_1 et J_1 convergent

et finalement les intégrales $I = \int_1^{+\infty} \frac{\cos(t)}{\sqrt{t}} dt$ et $J = \int_1^{+\infty} \frac{\sin(t)}{\sqrt{t}} dt$ convergent.

3. $\forall t \in]0, +\infty[$ $e^{-it^2} = \cos(t^2) - i\sin(t^2)$, donc la fonction $t \mapsto e^{-it^2}$ est continue sur $]0, +\infty[$ et l'intégrale $\int_0^{+\infty} e^{-it^2} dt$ converge si, et seulement si, les intégrales $I_2 = \int_0^{+\infty} \cos(t^2) dt$ et $J_2 = \int_0^{+\infty} \sin(t^2) dt$ convergent.

On pose $t = \sqrt{u} = \varphi(u)$, avec $\varphi : u \mapsto \sqrt{u}$ qui est de classe C^1 sur $]0, +\infty[$ et réalise une bijection croissante de $]0, +\infty[$ sur $]0, +\infty[$.

Par ce changement de variable on sait que les intégrales I_2 et J_2 convergent si, et seulement si les intégrales $I_3 = \int_0^{+\infty} \varphi'(u) \cos(\varphi^2(u)) du$ et $J_3 = \int_0^{+\infty} \varphi'(u) \sin(\varphi^2(u)) du$ convergent.

Or $I_3 = \frac{1}{2} \int_0^{+\infty} \frac{\cos(u)}{\sqrt{u}} du$ et $J_3 = \frac{1}{2} \int_0^{+\infty} \frac{\sin(u)}{\sqrt{u}} du$ convergent d'après les questions 1 et 2.

L'intégrale de Fresnel $\int_0^{+\infty} e^{-it^2} dt$ est donc convergente.

Partie II: Une fonction définie comme intégrale à paramètre

Soit $h: x \mapsto \int_0^{+\infty} \frac{e^{-(i+t^2)x^2}}{i+t^2} dt$.

4. Posons $f: \mathbf{R} \times]0, +\infty[\rightarrow \mathbf{C} \atop t \mapsto \frac{e^{-(i+t^2)x^2}}{i+t^2}.$

- Pour tout $t \in]0, +\infty[$, la fonction $x \mapsto f(x,t)$ est continue sur **R** puisque la fonction $x \mapsto e^{\alpha x^2}$ l'est avec $\alpha \in \mathbf{C}$.
- Pour $x \in \mathbf{R}$, la fonction $t \mapsto f(x,t)$ est continue sur $[0,+\infty[$ par quotient de fonctions usuelles continues dont le dénominateur ne s'annule pas sur $[0,+\infty[$.
- $\forall (x,t) \in \mathbf{R} \times [0,+\infty[\quad |e^{-(i+t^2)x^2}| = |e^{-ix^2}|.|e^{-t^2x^2}| = e^{-t^2x^2} \leqslant 1$, de plus $|i+t^2| = \sqrt{t^4+1}$, on en déduit que :

$$\forall (x,t) \in \mathbf{R} \times [0,+\infty[|f(x,t)| \leqslant \varphi(t) \text{ avec } \varphi(t) = \frac{1}{\sqrt{1+t^4}}$$

La fonction φ est continue sur $[0,+\infty[$ et $\varphi(t)$ $\underset{t\to+\infty}{\sim}$ $\frac{1}{t^2}$ avec $t\mapsto\frac{1}{t^2}$ qui est intégrable en $+\infty$ (2>1), alors φ est intégrable sur $[0,+\infty[$.

Par théorème de continuité sous le signe \int , on sait que la fonction h est définie et continue sur \mathbf{R} .

5. On a vu $\forall (x,t) \in \mathbf{R} \times]0, +\infty[\quad |e^{-(i+t^2)x^2}| = e^{-t^2x^2}, \text{ alors } \forall t \in]0, +\infty[\quad \lim_{x \to +\infty} |f(x,t)| = 0,$ donc $\forall t \in]0, +\infty[\quad \lim_{x \to +\infty} f(x,t) = 0.$

 $\forall x \in \mathbf{R}, \quad t \mapsto f(x,t) \text{ et } t \mapsto 0 \text{ sont continues sur } [0,+\infty[$.

On a aussi vu : $\forall (x,t) \in \mathbf{R} \times [0,+\infty[$ $|f(x,t)| \leq \varphi(t)$ avec $\varphi(t) = \frac{1}{\sqrt{1+t^4}}$ et la fonction φ est intégrable sur $[0,+\infty[$, alors par théorème de convergence dominée à paramètre continu,

on sait que
$$\lim_{x \to +\infty} h(x) = \int_0^{+\infty} \lim_{x \to +\infty} f(x, t) dt = 0.$$

- 6. Pour $x \in]0, +\infty[$ $t \mapsto f(x,t)$ est intégrable sur $[0, +\infty[$ d'après la domination précédente : $|f(x,t)| \leqslant \varphi(t)$ avec $\varphi(t) = \frac{1}{\sqrt{1+t^4}}$.
 - $\forall t \in [0, +\infty[\quad x \mapsto f(x, t) \text{ est de classe } C^1 \text{ sur } \mathbf{R} \text{ avec } \frac{\partial f}{\partial x}(x, t) = -2xe^{-(i+t^2)x^2}.$
 - On en déduit que pour $x \in]0, +\infty[, t \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue sur $[0, +\infty[.$
 - Soit $[a, b] \subset]0, +\infty[$, on a :

PSI

$$\forall (x,t) \in [a,b] \times]0, +\infty[\quad 0 < 2x \le 2b \text{ et } 0 < e^{-x^2t^2} \le e^{-a^2t^2}$$

 $\text{alors par produit } \forall (x,t) \in [a,b] \times]0, +\infty [\quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant 2be^{-a^2t^2}.$

La fonction $\psi: t \mapsto 2be^{-a^2t^2}$ est continue sur $[0, +\infty[$, avec par croissances comparées puisque a > 0, $\psi(t) = o\left(\frac{1}{t^2}\right)$. ψ est donc intégrable sur $[0, +\infty[$.

Par théorème de dérivation sous le signe \int avec hypothèse de domination sur tout segment, on sait que la fonction h est de classe C^1 sur $]0, +\infty[$.

7. Le théorème de dérivation sous le signe \int donne aussi la formule de Leibniz :

$$\forall x > 0 \quad h'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x, t) dt = \int_0^{+\infty} -2xe^{(i+t^2)x^2} dt = -2xe^{-ix^2} \int_0^{+\infty} e^{-(xt)^2} dt$$

La changement de variable affine $t = \frac{u}{x}$ permet d'obtenir :

$$\forall x > 0 \quad h'(x) = -2xe^{-ix^2} \int_0^{+\infty} \frac{e^{-u^2}}{x} du$$

Avec la valeur de l'intégrale de Gauss admise en début d'énoncé, on obtient :

$$\forall x > 0 \quad h'(x) = -\sqrt{\pi}.e^{-ix^2}.$$

8. On remarque que $\int_0^{+\infty} e^{-ix^2} dx = -\frac{1}{\sqrt{\pi}} \int_0^{+\infty} h'(x) dx$ et on sait (question 3) que l'intégrale converge.

Puisque h est de classe C^1 sur $]0, +\infty[$ et continue sur $[0, +\infty[$ avec une limite nulle en $+\infty$, on obtient :

$$\int_0^{+\infty} e^{-ix^2} dx = -\frac{1}{\sqrt{\pi}} \int_{[0,+\infty[} h'(x) dx = -\frac{1}{\sqrt{\pi}} [h(x)]_{x\to 0}^{x\to +\infty} = \frac{h(0)}{\sqrt{\pi}} = \frac{1}{\sqrt{\pi}} \int_0^{+\infty} \frac{1}{t^2 + i} dt$$

Partie III: Calculs d'intégrales

9. • La fonction $t \mapsto \frac{1}{1+t^4}$ est continue sur $[0, +\infty[$ en tant qu'inverse d'une fonction polynômiale qui ne s'annule pas sur $[0, +\infty[$. De plus $\frac{1}{1+t^4} \underset{t \to +\infty}{\sim} \frac{1}{t^4}$ et on sait que la fonction $t \mapsto \frac{1}{t^4}$ est intégrable en $+\infty$ puisque 4 > 1.

Par comparaison la fonction $t \mapsto \frac{1}{1+t^4}$ est intégrable sur $[0, n+\infty[$, donc $\int_0^{+\infty} \frac{1}{1+t^4} dt$ converge.

• Sur l'intégrale précédente on effectue le changement de variable $t = \frac{1}{u} = \varphi(u)$. Puisque $\varphi: u \mapsto \frac{1}{u}$ est de classe C^1 sur $]0, +\infty[$ et est une bijection décroissante de $]0, +\infty[$ sur $]0, +\infty[$, on sait que l'intégrale $\int_0^{+\infty} \varphi'(u) \frac{1}{1 + \varphi^4(u)} du$ converge et

$$\int_0^{+\infty} \frac{1}{t^4 + 1} dt = -\int_0^{+\infty} \varphi'(u) \frac{1}{1 + \varphi^4(u)} du = \int_0^{+\infty} \frac{u^2}{1 + u^4} du$$

10. On a vu

$$\int_0^{+\infty} e^{-ix^2} dx = \frac{1}{\sqrt{\pi}} \int_0^{+\infty} \frac{1}{t^2 + i} dt = \frac{1}{\sqrt{\pi}} \int_0^{+\infty} \frac{t^2 - i}{1 + t^4} dt$$

Et par les résultats précédents, $\int_0^{+\infty} \frac{t^2}{1+t^4} dt$ et $\int_0^{+\infty} \frac{1}{t^4+1} dt$ convergent alors par linéarité :

$$\int_0^{+\infty} e^{-ix^2} dx = \frac{1}{\sqrt{\pi}} \left(\int_0^{+\infty} \frac{t^2}{1+t^4} dt - i \int_0^{+\infty} \frac{1}{1+t^4} dt \right)$$

$$= \frac{1}{\sqrt{\pi}} \left(\int_0^{+\infty} \frac{1}{1+t^4} dt - i \int_0^{+\infty} \frac{1}{1+t^4} dt \right)$$

$$\int_0^{+\infty} e^{-ix^2} dx = \frac{1-i}{\sqrt{\pi}} \int_0^{+\infty} \frac{1}{1+t^4} dt$$

On a aussi $\int_0^{+\infty} \frac{1+t^2}{1+t^4} dt = \int_0^{+\infty} \frac{t^2}{1+t^4} dt + \int_0^{+\infty} \frac{1}{1+t^4} dt = 2 \int_0^{+\infty} \frac{1}{1+t^4} dt, \text{ donc}$

$$\int_0^{+\infty} e^{-ix^2} dx = \frac{1-i}{2\sqrt{\pi}} \int_0^{+\infty} \frac{t^2+1}{t^4+1} dt.$$

11. Par réduction au même dénominateur, on a :

$$\forall t \in [0, +\infty[\quad \frac{a}{t^2 + t\sqrt{2} + 1} + \frac{b}{t^2 - t\sqrt{2} + 1} = \frac{(a+b)t^2 + (b-a)\sqrt{2}t + (a+b)}{1 + t^4}$$

En prenant
$$a = b = \frac{1}{2}$$
 on obtient :
$$\frac{t^2 + 1}{t^4 + 1} = \frac{1/2}{t^2 + t\sqrt{2} + 1} + \frac{1/2}{t^2 - t\sqrt{2} + 1}.$$

Autre rédaction :

Par réduction au même dénominateur, on a :

$$\forall t \in [0, +\infty[\quad \frac{a}{t^2 + t\sqrt{2} + 1} + \frac{b}{t^2 - t\sqrt{2} + 1} = \frac{(a+b)t^2 + (b-a)\sqrt{2}t + (a+b)}{1 + t^4}$$

On en déduit que

$$\frac{a}{t^2 + t\sqrt{2} + 1} + \frac{b}{t^2 - t\sqrt{2} + 1} = \frac{t^2 + 1}{1 + t^4} \iff (a + b)t^2 + (b - a)\sqrt{2}t + (a + b) = t^2 + 1$$

Par unicité de la fonction polynômiale associée à un polynôme et par unicité des coefficients d'un polynôme, on a :

$$\forall t \in [0, +\infty[\quad (a+b)t^2 + (b-a)\sqrt{2}t + (a+b) = t^2 + 1 \iff \left\{ \begin{array}{l} a+b=1 \\ b-a=0 \end{array} \right. \iff a=b=\frac{1}{2}$$

12. On peut encore écrire pour $t \in [0, +\infty[$:

$$\frac{t^2 + 1}{t^4 + 1} = \frac{1/2}{\left(t + \frac{1}{\sqrt{2}}\right)^2 + \frac{1}{2}} + \frac{1/2}{\left(t - \frac{1}{\sqrt{2}}\right)^2 + \frac{1}{2}}$$

$$= \frac{1}{1 + \left(1 + \sqrt{2}t\right)^2} + \frac{1}{1 + \left(\sqrt{2}t - 1\right)^2}$$

$$\frac{t^2 + 1}{t^4 + 1} = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}}{1 + \left(1 + \sqrt{2}t\right)^2} + \frac{\sqrt{2}}{1 + \left(\sqrt{2}t - 1\right)^2}\right)$$

Par conséquent :

$$\int_0^{+\infty} e^{-ix^2} dx = \frac{1-i}{2\sqrt{\pi}} \int_0^{+\infty} \frac{t^2+1}{t^4+1} dt$$

$$= \frac{1-i}{2\sqrt{2\pi}} \left[\arctan\left(1+\sqrt{2}t\right) + \arctan\left(\sqrt{2}t-1\right) \right]_0^{+\infty}$$

$$= \frac{1-i}{2\sqrt{2\pi}} \left(\frac{\pi}{2} + \frac{\pi}{2} - \arctan(1) - \arctan(-1)\right)$$

$$= \frac{1-i}{2\sqrt{2\pi}} . \pi$$

On a donc obtenu :
$$\int_0^{+\infty} e^{-ix^2} dx = \frac{(1-i)\sqrt{\pi}}{2\sqrt{2}}.$$

PSI

Par le changement de variable vu en question $3: \int_0^{+\infty} \cos(t^2) dt = \frac{1}{2} \int_0^{+\infty} \frac{\cos(t)}{\sqrt{t}} dt$ et $\int_0^{+\infty} \sin(t^2) dt = \frac{1}{2} \int_0^{+\infty} \frac{\sin(t)}{\sqrt{t}} dt.$

Et puisque $\int_0^{+\infty} \cos(t^2) dt = \operatorname{Re}\left(\int_0^{+\infty} e^{-it^2} dt\right) \operatorname{et} \int_0^{+\infty} \sin(t^2) dt = \operatorname{Im}\left(\int_0^{+\infty} e^{-it^2} dt\right)$, on obtient:

$$\int_0^{+\infty} \frac{\cos(t)}{\sqrt{t}} dt = \sqrt{\frac{\pi}{2}} = \int_0^{+\infty} \frac{\sin(t)}{\sqrt{t}} dt.$$