Pour tout entier naturel k, \mathcal{P}_k désigne l'espace vectoriel des polynômes à coefficients réels et de degré inférieur ou égal à k.

Dans ce problème n désigne un entier naturel non nul et x_0, x_1, \ldots, x_n des réels **deux à deux distincts**; on note Π le polynôme $\Pi = (X - x_0)(X - x_1) \cdots (X - x_n)$.

Pour tout entier naturel m, on définit l'application :

$$f_m: \begin{array}{ccc} \mathcal{P}_m & \to & \mathbf{R}^{n+1} \\ P & \mapsto & (P(x_0), \dots, P(x_n) \end{array}$$

Partie I : Étude de l'application f_m

Soit m un entier naturel.

- 1. Que peut-on dire de $R \in \mathcal{P}_n$ qui vérifie : $\forall i \in [0, n] \quad R(x_i) = 0$?
- 2. Vérifier que f_m est une application linéaire.
- 3. Dans cette question, on suppose que $m \ge n+1$.
 - 3.1. Montrer que $Ker(f_m) = \{Q.\Pi, Q \in \mathcal{P}_{m-n-1}\}.$
 - 3.2. Montrer que les sous-espaces vectoriels $Ker(f_m)$ et \mathcal{P}_n sont supplémentaires dans \mathcal{P}_m .
 - 3.3. En déduire la dimension de $Ker(f_m)$ puis en donner une base.
 - 3.4. Déterminer le rang de f_m ; l'application f_m est-elle surjective?
- 4. Dans cette question, on suppose $m \leq n$.
 - 4.1. Quel est le noyau de f_m ? Quel est son rang?
 - 4.2. A quelle condition sur les entiers n et m l'application f_m est-elle surjective?

Partie II : Approximation polynômiale au sens des moindres carrés

On considère des réels y_0, y_1, \ldots, y_n qui sont respectivement les images des réels x_0, x_1, \ldots, x_n par une fonction φ , et on cherche à déterminer les polynômes $P \in \mathcal{P}_m$ tels que la quantité

$$\Phi_m(P) = \sum_{i=0}^{n} (y_i - P(x_i))^2$$

soit minimale, et à préciser la valeur minimale λ_m de ladite quantité.

On parle alors d'approximation polynômiale au sens des moindres carrés de la fonction φ aux points x_0, x_1, \ldots, x_n ; ce type d'approximation est particulièrement utilisé dans les problèmes d'optimisation et de contrôle qualité.

0.1 Étude dans le cas $m \ge n + 1$

- 5. 5.1. Donner un polynôme $Q_0 \in \mathcal{P}_m$ tel que $f_m(Q_0) = (y_0, y_1, \dots, y_n)$. Que vaut $\Phi_m(Q_0)$?
 - 5.2. En déduire la valeur minimale λ_m de $\Phi_m(P)$ lorsque P décrit \mathcal{P}_m , et préciser à l'aide de Q_0 et $Ker(f_m)$ l'ensemble des polynômes en lesquels cette valeur minimale est atteinte.

Partie B : Étude dans le cas $m \leq n$

Dans cette section, on pose:

PSI

$$A = \begin{pmatrix} 1 & x_0 & \cdots & x_0^m \\ 1 & x_1 & \cdots & x_1^m \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^m \end{pmatrix} \in \mathcal{M}_{n+1,m+1}(\mathbf{R}), \quad b = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbf{R})$$

- 6. Montrer que si M et N sont dans $\mathcal{M}_{p,q}(\mathbf{R})$ alors $(M+N)^T=M^T+N^T$ et que, si $M_1 \in \mathcal{M}_{p,q}(\mathbf{R})$ et $N_1 \in \mathcal{M}_{q,r}(\mathbf{R})$, alors $(M_1N_1)^T=N_1^T.M_1^T$; p,q,r étant des entiers naturels non nuls.
- 7. Soit $v = \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_m \end{pmatrix} \in \mathcal{M}_{m+1,1}(\mathbf{R})$; on lui associe le polynôme $P_v \in \mathcal{P}_m$ défini par $P_v = \sum_{k=0}^n v_k X^k.$
 - 7.1. Calculer le produit Av et l'exprimer à l'aide des valeurs prises par P_v aux points x_0, x_1, \ldots, x_n .
 - 7.2. Montrer alors que si Av = 0 alors v = 0.
- 8. Soit $u = \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_m \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbf{R})$; calculer le produit $u^T.u$ en fonction de u_0, u_1, \dots, u_n puis en déduire $u^T.u \geqslant 0$ et que $u^T.u = 0$ si et seulement si u = 0.

9.

- 9.1. Soit $v = \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_m \end{pmatrix} \in \mathcal{M}_{m+1,1}(\mathbf{R})$ tel que $A^T.A.v = 0$; on pose u = Av. Calculer $u^T.u$, en déduire que Av = 0 entraine v = 0.
- 9.2. Justifier que la matrice $A^T.A$ est inversible.
- 9.3. Expliciter les coefficients de la matrice $A^T.A$ en fonction de x_0, x_1, \ldots, x_n .

10. On pose $M=A^T.A$ et $c=A^T.b$; justifier que la système linéaire MZ=c, d'inconnue Z, admet une unique solution qu'on exprimera en fonction de M^{-1} et c.

Dans la suite, cette solution se notera ω , on lui associe le polynôme P_{ω} défini comme à la question 7. précédente.

- 11. Pour tout $v \in \mathcal{M}_{m+1,1}(\mathbf{R})$, on pose $g(v) = (b Av)^T \cdot (b Av)$.
 - 11.1. Montrer que pour tout $v \in \mathcal{M}_{m+1,1}(\mathbf{R})$, $g(v) = b^T.b b^TAv v^T.A^T.b + v^T.A^T.A.v$ et que $g(\omega) = b^T.b b^T.A.\omega$; on rappelle que $A^T.A.\omega = a^T.b$.
 - 11.2. Montrer que pour tout $v \in \mathcal{M}_{m+1,1}(\mathbf{R}), \quad g(v) g(\omega) = (w-v)^T A^T A (\omega v).$
 - 11.3. En déduire que pour tout $v \in \mathcal{M}_{m+1,1}(\mathbf{R})$, $g(v) \ge g(\omega)$ et que $g(v) = g(\omega)$ si et seulement si $v = \omega$.
- 12. Soit $P = \sum_{k=0}^{m} a_k X^k \in \mathcal{P}_m$, on pose $V_P = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix}$. Calculer les composantes du vecteur $b A.V_P$ et en déduire que $\Phi_m(P) = g(V_P)$.

13.

- 13.1 Déduire de ce qui précède que pour tout $P \in \mathcal{P}_m$, $\Phi_m(P) \geqslant \Phi_m(P_\omega)$ avec égalité si et seulement si $P = P_\omega$.
- 13.2. Que vaut λ_m ?
- 14. **Application**:

On prend
$$n = 3$$
, $m = 3$, $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$, $y_0 = 1$, $y_1 = 2$, $y_2 = 1$ et $y_3 = 0$.

- 14.1 Calculer les matrices A et $A^T.A$.
- 14.2. Calculer le vecteur $A^T.b$.
- 14.3. R
soudre le système linéaire $A^T.A.Z=A^T.b,$ d'inconnu
eZ, par la méthode du pivot de Gauss.
- 14.4. Quel est le polynôme P_0 de degré inférieur ou égal à 3 qui minimise Φ_3 sur \mathcal{P}_3 ? Que vaut λ_3 ?

Fin de l'énoncé