Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Problème : Approximation polynômiale uniforme de la valeur absolue sur [-1,1]

Résultats admis :
$$\lim_{b \to +\infty} \int_0^b e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \text{ et on note alors } \int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

A - Quelques résultats préliminaires

A-1 Pour
$$b \in \mathbf{R}^+$$
, calculer $\int_0^b t^2 e^{-t^2} dt$. En déduire que $\lim_{b \to +\infty} \int_0^b t^2 e^{-t^2} dt = \frac{\sqrt{\pi}}{4}$.

A-2 Montrer que la fonction $t \mapsto \frac{1 - e^{-t^2}}{t^2}$ est continue sur $]0, +\infty[$ et se prolonge par continuité en 0.

A l'aide d'une intégration par parties, montrer que $\lim_{b\to +\infty} \left(\lim_{a\to 0} \int_a^b \frac{1-e^{-t^2}}{t^2} dt \right) = \sqrt{\pi}$.

On note alors
$$\int_0^{+\infty} \frac{1 - e^{-t^2}}{t^2} dt = \sqrt{\pi}.$$

A-3 (a) Justifier que pour tout réel x > 0, $\ln(x) \leq x - 1$.

(b) En déduire que pour tout entier $n \ge 1$ et tout $u \in [0, n], e^{-u} - \left(1 - \frac{u}{n}\right)^n \ge 0$.

A-4 (a) Justifier que pour tout réel x, $e^x \ge x + 1$.

- (b) En déduire que pour tout entier $n \ge 1$ et tout réel $t \in [0,1]$ $(1-t)^n e^{nt} \ge (1-t^2)^n$.
- (c) Montrer que tout entier $n \ge 1$ et tout réel $t \in [0,1]$ $(1-t^2)^n \ge 1-nt^2$.
- (d) En déduire que pour tout entier $n \ge 1$ et tout $u \in [0, n]$ $e^{-u} \left(1 \frac{u}{n}\right)^n \le \frac{u^2 e^{-u}}{n}$.

B-Intégrales de Wallis

Pour tout entier naturel n et tout réel α , on pose

$$I_n = \int_0^{\frac{\pi}{2}} \cos^n t dt; \quad \begin{pmatrix} \alpha \\ n \end{pmatrix} = \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!} \text{ si } n \geqslant 1 \text{ et } \begin{pmatrix} \alpha \\ 0 \end{pmatrix} = 1$$

B-1 (a) Calculer I_0 et I_1 et justifier que $I_n > 0$ pour tout n de \mathbf{N} .

- (b) A l'aide d'une intégration par parties, montrer que $\forall n \geqslant 2 \quad nI_n = (n-1)I_{n-2}$.
- (c) En déduire que la suite $(nI_nI_{n-1})_{n\geqslant 1}$ est constante de valeur $\frac{\pi}{2}$.

- B-2 (a) Montrer que la suite $(I_n)_{n \in \mathbb{N}}$ est décroissante.
 - (b) Déduire de ce qui précède l'encadrement $\sqrt{\frac{\pi}{2(n+1)}} \leqslant I_n \leqslant \sqrt{\frac{\pi}{2n}}$, valable pour $n \geqslant 1$.
- B-3 (a) En utilisant la question B-1(b), montrer que pour tout $n \in \mathbf{N}$ $I_{2n} = \frac{\pi}{2} \cdot \frac{\binom{2n}{n}}{2^{2n}}$.
 - (b) Dans la suite on pose $\lambda_n = \frac{\binom{2n}{n}}{2^{2n}}$, $n \in \mathbf{N}^*$. Montrer que pour tout entier $n \geqslant 1$, $0 \leqslant 1 \lambda_n \sqrt{n\pi} \leqslant \frac{1}{4n}$.
 - (c) En déduire un équivalent de λ_n lorsque n tend vers $+\infty$.

C- Une suite de polynômes approchant uniformément la fonction valeur absolue sur [-1,1]

Pour tout $n \in \mathbf{N}^*$, on pose $P_n = \lambda_n \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \frac{1}{2k-1} X^{2k}$.

- C-1 (a) Montrer que pour tout entier $n \ge 1$, la fonction $t \mapsto \frac{1 (1 t^2)^n}{t^2}$ est continue sur]0,1] et prolongeable par continuité en 0.

 On s'autorise alors à noter $\int_0^x \frac{1 (1 t^2)^n}{t^2} dt$ pour tout $x \in]0,1]$.
 - (b) Montrer que pour tout $(n,x) \in \mathbf{N}^* \times]0,1]$ $P_n(x) = \lambda_n x \int_0^x \frac{1 (1-t^2)^n}{t^2} dt.$
 - (c) En déduire que pour tout $(n, x) \in \mathbf{N}^* \times]0, 1]$ $P_n(x) = \lambda_n \sqrt{n} \int_0^{\sqrt{n}} \left(\frac{1 \left(1 \frac{u^2 x^2}{n}\right)^n}{u^2} \right) du.$
- C-2 Soit x un réel non nul, montrer que :

$$\int_0^{+\infty} \frac{1 - e^{-u^2 x^2}}{u^2} \mathrm{d}u = \lim_{b \to +\infty} \left(\lim_{a \to 0} \int_a^b \frac{1 - e^{-u^2 x^2}}{u^2} \mathrm{d}u \right) = |x| \sqrt{\pi}$$

C-3 Soient un entier $n \ge 1$ et $x \in]0,1]$; on pose

$$\Delta_n(x) = \int_0^{\sqrt{n}} \left(\frac{1 - \left(1 - \frac{u^2 x^2}{n}\right)^n}{u^2} \right) du \quad \text{et} \quad \Delta(x) = \int_0^{+\infty} \frac{1 - e^{-u^2 x^2}}{u^2} du$$

(a) Vérifier que $P_n(x) - x = \frac{1}{\sqrt{\pi}} (\lambda_n \sqrt{n\pi} \Delta_n(x) - \Delta(x))$ et montrer que

$$|P_n(x) - x| \le \frac{1}{\sqrt{\pi}} \left(\left(\frac{1}{4n} + 1 \right) |\Delta_n(x) - \Delta(x)| + \frac{1}{4n} \Delta(x) \right)$$

(b) Montrer que

$$|\Delta_n(x) - \Delta(x)| \leqslant \int_0^{\sqrt{n}} \left(\frac{e^{-u^2 x^2} - \left(1 - \frac{u^2 x^2}{n}\right)^n}{u^2} \right) du + \int_{\sqrt{n}}^{+\infty} \left(\frac{1 - e^{-u^2 x^2}}{u^2} \right) du \leqslant \frac{\sqrt{\pi}}{4n} + \frac{1}{\sqrt{n}}$$

- (c) Montrer alors que $\sup_{-1 \le t \le 1} |P_n(t) t| \le \left(\frac{1}{4n} + 1\right) \left(\frac{1}{4n} + \frac{1}{\sqrt{n\pi}}\right) + \frac{1}{4n}$.
- (d) Conclure que la suite de fonctions $(P_n)_{n\geqslant 1}$ converge uniformément sur le segment [-1,1] vers la fonction $h:t\mapsto |t|$ et que $\|P_n-h\|_{\infty}=O\left(\frac{1}{\sqrt{n}}\right)$ où $\|P_n-h\|_{\infty}=\sup_{-1\leqslant t\leqslant 1}|P_n(t)-|t||$.

Exercice: Etude des séries oscillantes

Soit d un entier, $d \ge 2$. Soit $\omega = (\omega_n)_{n \ge 1}$ une suite de complexes, périodique de pédiode d, c'est-à-dire telle que

$$\forall n \in \mathbf{N}^* \quad \omega_{n+d} = \omega_n$$

Dans cet exercice, on s'intéresse à la nature (convergente ou divergente) de la série $\sum u_n(\lambda)$ de terme général

$$\forall n \geqslant 1 \quad u_n(\lambda) = \frac{\omega_n + \lambda}{n}$$

où λ est un complexe. On note plus simplement $u_n = u_n(0)$ pour tout $n \ge 1$.

- 1. Supposons, dans cette question uniquement, qu'il existe un complexe λ tel que $\sum u_n(\lambda)$ converge. Montrer que, pour toute valeur $\mu \neq \lambda$, la série $\sum u_n(\mu)$ diverge.
- 2. Dans cette question, on choisit $\lambda = 0$. Pour tout entier naturel n non nul, on note S_n la somme partielle associée à la série $\sum u_n$, c'est-à-dire $S_n = \sum_{k=1}^n \frac{\omega_k}{k}$.
 - (a) Pour tout entier naturel m, exprimer $\frac{1}{md+1} \sum_{k=1}^{d} \omega_{md+k}$ en fonction de $\Omega = \sum_{k=1}^{d} \omega_k$.
 - (b) Déterminer un réel α tel que

$$S_{(m+1)d} - S_{md} = \frac{1}{md+1} \sum_{k=1}^{d} \omega_{md+k} + \frac{\alpha}{m^2} + \mathop{o}_{m \to \infty} \left(\frac{1}{m^2}\right)$$

- (c) En déduire une condition nécessaire et suffisante sur Ω pour que la série $\sum (S_{(m+1)d} S_{md})$ converge.
- (d) Montrer très soigneusement que la condition obtenue à la question précédente est une condition nécessaire et suffisante pour que la série $\sum u_n$ converge.
- (e) Montrer qu'il existe une unique valeur $\lambda \in \mathbf{C}$ telle que la série $\sum u_n(\lambda)$ converge.
- 3. Une généralisation Dans cette question, on se donne une suite croissante $(a_n)_{n\geqslant 1}$ de réels, telle que $a_1>0$ et $\lim_{n\to +\infty}a_n=+\infty$. On suppose que $\Omega=0$. On pose, pour tout $n\geqslant 1$,

$$u_n = \frac{\omega_n}{a_n}$$
 et $T_n = \sum_{k=1}^n \omega_k$

Par soucis de commodité, on note également $T_0 = 0$.

- (a) Montrer que la suite $(T_n)_{n\geqslant 1}$ est bornée.
- (b) Montrer que pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) + \frac{T_n}{a_{n+1}}$$

- (c) Montrer que la série $\sum T_k \left(\frac{1}{a_k} \frac{1}{a_{k+1}} \right)$ converge.
- (d) Montrer que la série $\sum u_k$ converge.

Fin de l'énoncé