Je vous demande de traiter les questions dans l'ordre donné ci-dessous (et non par numéro des questions).

On note E l'ensemble des fonctions f continues de \mathbf{R}_+^* sur \mathbf{R} telles que l'intégrale $\int_0^{+\infty} f^2(t) \frac{e^{-t}}{t} dt$ converge.

Pour $\alpha \in \mathbf{R}_{+}^{*}$, on note p_{α} la fonction $\begin{vmatrix} \mathbf{R}_{+}^{*} & \to & \mathbf{R} \\ t & \mapsto & t^{\alpha} \end{vmatrix}$

I-A - Des fonctions de E utiles pour la suite

- Q 1. Montrer que pour tout $\alpha \in \mathbf{R}_{+}^{*}$, p_{α} appartient à E.
- Q 2. Soit P une fonction polynomiale non identiquement nulle à coefficients réels. Montrer que la restriction de P à \mathbf{R}_{+}^{*} appartient à E si et seulement si P(0) = 0.
- Q 3. Soient a et b deux nombres réels. Montrer que la fonction $\begin{vmatrix} \mathbf{R}_{+}^{*} & \rightarrow & \mathbf{R} \\ t & \mapsto & ae^{t} + b \end{vmatrix}$ appartient à E si et seulement si a = b = 0.
- Q 4. Montrer que, pour tout $x \in \mathbf{R}_+^*$, la fonction $\begin{vmatrix} \mathbf{R}_+^* & \to & \mathbf{R} \\ t & \mapsto & (e^t 1)^2 \frac{e^{-t}}{t} \end{vmatrix}$ est intégrable sur]0, x].
- Q 5. Pour tout $x \in \mathbb{R}_+^*$ et tout $t \in \mathbb{R}_+^*$, on note $k_x(t) = e^{\min(x,t)} 1$ où $\min(x,t)$ désigne le plus petit des réels x et t. Représenter graphiquement la fonction k_x . Montrer que k_x appartient à E.

II - Structure préhilbertienne de E

- Q 9. Montrer que si f et g sont deux fonctions de E, alors l'intégrale $\int_0^{+\infty} f(t)g(t)\frac{e^{-t}}{t}dt$ est absolument convergente.
- Q 10. En déduire que E est un sous-espace vectoriel de l'espace vectoriel $C(\mathbf{R}_+^*, \mathbf{R})$ des fonctions continues sur \mathbf{R}_+^* à valeurs dans \mathbf{R} .

Pour toutes fonctions $f \in E$ et $g \in E$, on pose $\langle f|g \rangle = \int_0^{+\infty} f(t)g(t) \frac{e^{-t}}{t} dt$.

Q 11. Montrer que l'on définit ainsi un produit scalaire sur E.

La norme $\|.\|$ associée à ce produit scalaire est donc définie pour toute fonction $f \in E$ par

$$||f|| = \left(\int_0^{+\infty} f^2(t) \frac{e^{-t}}{t} dt\right)^{\frac{1}{2}}$$

Q 12. Montrer que $\lim_{x\to 0} ||k_x|| = 0$. On rapelle que, pour tout x>0, $k_x(t)=e^{\min(x,t)}-1$.

- Q 13. Montrer que, pour tout $k \in \mathbf{N}$, $\int_0^{+\infty} t^k e^{-t} dt = k!$.
- Q 14. On rappelle que les fonctions p_{α} ont été définies dans les notations en tête du sujet. La famille $(p_n)_{n \in \mathbb{N}^*}$ est-elle une famille orthogonale de E?

I-B $Une\ condition\ suffisante\ d'appartenance\ \grave{a}\ E$

Dans cette sous-partie, on suppose que f est une fonction de ${\bf R}_+^*$ dans ${\bf R}$ de classe C^1 vérifiant :

$$\begin{cases} \lim_{x \to 0} f(x) = 0 \\ \exists C > 0, \quad \forall x > 0 \quad |f'(x)| \leqslant C \frac{e^{x/2}}{\sqrt{x}} \end{cases}$$

- Q 6. Pour $x \in \mathbf{R}_+^*$, on pose $\Phi(x) = \frac{4\sqrt{x}e^{x/2}}{1+x} \int_0^x \frac{e^{t/2}}{\sqrt{t}} \mathrm{d}t$. Montrer que Φ est de classe C^1 sur \mathbf{R}_+^* , que $\lim_{x \to 0} \Phi(x) = 0$, et que, pour tout x > 0, $\Phi'(x) \geqslant 0$. En déduire que $\Phi(x) \geqslant 0$ pour tout x > 0.
- Q 7. Montrer que, pour tout x > 0, $|f(x)| \le 4C \frac{\sqrt{x}e^{x/2}}{1+x}$.
- Q 8. En déduire que $f \in E$.

III - Un opérateur sur E

Á chaque fonction $f \in E$, on associe la fonction U(f) définie pour tout x > 0 par

$$U(f)(x) = \langle k_x | f \rangle = \int_0^{+\infty} (e^{\min(x,t)} - 1) f(t) \frac{e^{-t}}{t} dt$$

Q 15. Á l'aide de l'inégalité de Cauchy-Schwarz, montrer que pour toute fonction $f \in E$,

$$\lim_{x \to 0 \atop x > 0} U(f)(x) = 0$$

Q 16. Montrer que pour toute fonction $f \in E$ et pour tout x > 0

$$U(f)(x) = \int_0^x (1 - e^{-t}) \frac{f(t)}{t} dt + (e^x - 1) \int_x^{+\infty} f(t) \frac{e^{-t}}{t} dt$$

Q 17. Soit $f \in E$. Montrer que U(f) est de classe C^1 sur \mathbf{R}_+^* et vérifie, pour tout x > 0

$$(U(f))'(x) = e^x \int_x^{+\infty} f(t) \frac{e^{-t}}{t} dt$$

Dans la suite, pour alléger les notations, la dérivée de U(f) est notée U(f)'.

Q 18. Soit $f \in E$. Montrer que U(f) est de classe C^2 sur \mathbf{R}_+^* et que la fonction U(f) est solution sur \mathbf{R}_+^* de l'équation différentielle

$$y'' - y' = -\frac{f(x)}{x}$$

Q 19. Montrer que pour tout $f \in E$ et pour tout x > 0,

$$|U(f)'(x)| \le e^x ||f|| \left(\int_x^{+\infty} \frac{e^{-t}}{t} dt \right)^{1/2} \le ||f|| \frac{e^{x/2}}{\sqrt{x}}$$

Q 20. Déduire de ce qui précède que U est un endomorphisme de E et que, pour tout $f \in E$ et tout x>0

$$|U(f)(x)| \le 4||f|| \frac{\sqrt{x}e^{x/2}}{1+x}$$

- Q 21. En déduire que pour tout $f \in E$, $||U(f)|| \le 4||f||$.
- Q 22. Montrer que U est injectif.
- Q 23. L'endomorphisme U est-il surjectif?