Dans tout le problème, α désigne un nombre réel. On note \mathbb{D}_{α} l'ensemble des réels x pour lesquels la série entière $\sum_{n\geq 1}\frac{x^n}{n^{\alpha}}$ est convergente et on pose, pour tout $x\in\mathbb{D}_{\alpha}$:

$$f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}$$

Partie I – Quelques propriétés des fonctions f_{α}

1) Pour $n \neq 0$, on pose $a_n = \frac{1}{n^{\alpha}}$, alors $a_n \neq 0$ et

$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{-\alpha} = 1 = L$$

Par la règle de d'Alembert pour les séries entières, on sait que le rayon de convergence R de

$$\sum a_n x^n$$
 est égal à $\frac{1}{L}$: R=1

PSI

2) On note \mathbb{D}_{α} le domaine de définition de la fonction f_{α} . Cours : Pour une série entière $\sum a_n x^n$ de rayon de convergence R, si |x| > R alors $\sum a_n x^n$ diverge grossièrement, si |x| < R alors $\sum a_n x^n$ converge absolument. D'après le rayon de convergence R trouvé précédemment on sait que $|-1,1| \subset \mathbb{D}_{\alpha} \subset [-1,1]$.

- Si $\alpha \leq 0$ alors $\lim_{n \to +\infty} a_n \neq 0$ et donc les séries $\sum a_n$ et $\sum (-1)^n a_n$ divergent grossièrement, par conséquent $]-1,1[=\mathbb{D}_{\alpha}.$
- Si $\alpha \in]0,1]$ alors la suite (a_n) est décroissante et converge vers 0 donc la série alternée $\sum (-1)^n a_n$ converge, mais par les séries de Riemann la série $\sum a_n$ diverge. On en déduit que $\mathbb{D}_{\alpha} = [-1,1[$.
- Si $\alpha > 1$, alors par les séries de Riemann les séries $\sum (-1)^n a_n$ et $\sum a_n$ convergent absolument et donc $\mathbb{D}_{\alpha} = [-1, 1]$.

$$\begin{cases} \mathbb{D}_{\alpha} =]-1, 1[& \text{si } \alpha \leq 0 \\ \mathbb{D}_{\alpha} = [-1, 1[& \text{si } \alpha \in]0, 1] \\ \mathbb{D}_{\alpha} = [-1, 1] & \text{si } \alpha > 1 \end{cases}$$

3) On suppose dans cette question $\alpha > 0$.

On a donc
$$[-1,1[\subset \mathbb{D}_{\alpha} \subset [-1,1]]$$
.
On note $a_n = \frac{1}{n^{\alpha}}$.

- Si $x \in \mathbb{D}_{\alpha} \cap \mathbb{R}^+$ alors $\forall n \in \mathbb{N}^*$ $a_n x^{\alpha} \geqslant 0$ et donc $f_{\alpha}(x) = \sum_{n=1}^{+\infty} a_n x^n \geqslant 0$.
- Si $x \in \mathbb{D}_{\alpha} \cap]-\infty,0[$, alors on peut écrire x=-|x| et la série $\sum a_n x^n$ est la série alternée $\sum (-1)^n a_n |x|^n$. Puisque la suite positive $(a_n |x|^n)_{n \in \mathbb{N}^*}$ est décroissante de limite nulle, par le critère spécial des séries alternées, on sait que $f_{\alpha}(x) = \sum_{n=1}^{+\infty} a_n x_n$ est du signe de son premier terme $a_1 x = x < 0$.

(Par le critère spécial des séries alternées, on $a-a_1|x|\leqslant f(x)\leqslant a_2x^2-a_1|x|\leqslant 0$)

Pour tout
$$x \in \mathbb{D}_{\alpha}$$
,
$$x \geqslant 0 \Longrightarrow f_{\alpha}(x) \geqslant 0$$
$$x < 0 \Longrightarrow f_{\alpha}(x) \leqslant 0$$

4) D'après les séries entières usuelles, on sait que

$$f_0(x) = \sum_{n=1}^{+\infty} x^n = \frac{x}{1-x} \qquad \text{pour } x \in]-1,1[$$

$$f_{-1}(x) = x \sum_{n=1}^{+\infty} nx^{n-1} = \frac{x}{(1-x)^2} \quad \text{pour } x \in]-1,1[$$

$$f_1(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x) \qquad \text{pour } x \in [-1,1[$$

5) Soit $\alpha > 1$.

PSI

- Pour $n \in \mathbb{N}^*$, $f_n : x \mapsto \frac{x^n}{n^{\alpha}}$ est continue sur $\mathbb{D}_{\alpha} = [-1, 1]$.
- $||f_n||_{\infty} = \sup_{x \in [-1,1]} |f_n(x)| = \frac{1}{n^{\alpha}}$, alors par les séries de Riemann la série $\sum ||f_n||_{\infty}$ converge et donc la série de fonctions $\sum f_n$ converge normalement sur le segment $\mathbb{D}_{\alpha} = [-1,1]$ et donc aussi uniformément.

Par théorème de continuité la fonction $f_{\alpha} = \sum_{n=1}^{+\infty} f_n$ est continue sur \mathbb{D}_{α} .

6) Soit $\alpha \leq 1$. Pour $n \in \mathbb{N}^*$ $0 < n^{\alpha} \leq n$ donc

$$\forall x \in]0,1[\quad \frac{x^n}{n} \leqslant \frac{x^n}{n^\alpha}$$

et par somme pour $n \in [1, N]$ et limite quand $N \to +\infty$ on obtient :

$$\forall x \in]0,1[f_1(x) \geqslant f_{\alpha}(x)$$

ce qui donne
$$\forall x \in]0,1[$$
 $f_{\alpha}(x) \geqslant -\ln(1-x), \text{ or } \lim_{x\to 1^{-}} -\ln(1-x) = +\infty \text{ alors } \left| \lim_{x\to 1^{-}} f_{\alpha}(x) = +\infty. \right|$

On suppose dans les deux prochaines questions qu'il existe un réel $\lambda \geq 0$ et une variable aléatoire X_{α} , définie sur un espace probabilisé (Ω, \mathcal{A}, P) et à valeurs dans \mathbb{N}^* , tels que la fonction génératrice G_{α} de X_{α} soit :

$$G_{\alpha} = \lambda f_{\alpha}$$

7) On sait que la fonction génératrice de X_{α} , $G_{\alpha} = \lambda f_{\alpha}$, est définie au moins sur [-1,1] et vaut 1 en 1.

On doit donc avoir $\lambda \neq 0$ et f_{α} définie au moins sur [-1,1] avec $1 = \lambda f_{\alpha}(1)$. En utilisant la

question 2, on a :
$$\alpha > 1$$
 et $\lambda = \frac{1}{f_{\alpha}(1)}$.

8) 1^{ière} méthode : avec la définition de l'espérance

 X_{α} est à valeurs dans \mathbb{N}^* , donc X_{α} est d'espérance finie **SSI** la famille $(nP(X_{\alpha}=n))_{n\in\mathbb{N}^*}$ est sommable, ce qui revient à la convergence absolue de $\sum nP(X_{\alpha}=n)$.

On a par définition
$$\forall x \in [-1,1]$$
 $G_{\alpha}(x) = \sum_{n=1}^{+\infty} P(X_{\alpha} = n) x^n = \lambda. f_{\alpha}(x) = \lambda \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}$

Par unicité du développement en série entière de G_{α} , on obtient $\forall n \in \mathbb{N}^*$ $P(X_{\alpha} = n) = \frac{\lambda}{n^{\alpha}}$ et donc $nP(X_{\alpha} = n) = \frac{\lambda}{n^{\alpha-1}}$.

Par les séries de Riemann, on sait que $\sum nP(X_{\alpha}=n)$ converge absolument **SSI** $\alpha-1>1$.

On a donc X_{α} est d'espérance finie **SSI** $\alpha > 2$.

Et dans ce cas
$$E(X_{\alpha}) = \sum_{n=1}^{+\infty} nP(X_{\alpha} = n) = \sum_{n=1}^{+\infty} \frac{\lambda}{n^{\alpha-1}} = \lambda f_{\alpha-1}(1)$$
, donc $E(X_{\alpha}) = \frac{f_{\alpha-1}(1)}{f_{\alpha}(1)}$.

2^{ième} méthode : avec le lien entre fonction génératrice et espérance

On sait que la variable aléatoire X_{α} est d'espérance finie si et seulement si sa fonction génératrice G_{α} est dérivable en 1 et alors $\mathbb{E}(X_{\alpha}) = G'_{\alpha}(1)$.

Pour $n \in \mathbb{N}^*$, $f_n : x \mapsto \frac{x^n}{n^{\alpha}}$ est de classe C^1 sur [-1,1] avec $f'_n(x) = \frac{x^{n-1}}{n^{\alpha-1}}$. La série de fonctions $\sum f_n$ converge simplement sur [-1,1] et est de somme f_{α} .

• $||f'_n||_{\infty}^{[-1,1]} = \frac{1}{n^{\alpha-1}}$. On en déduit que si $\alpha > 2$ alors la série de fonctions $\sum f'_n$ converge normalement sur [-1,1] et donc uniformément. On sait alors que f_{α} est de classe C^1 sur [-1,1] avec $\forall x \in [-1,1]$

$$f'_{\alpha}(1) = \sum_{n=1}^{+\infty} f'_{n}(x) = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{n^{\alpha-1}}.$$

PSI

• Pour $1 < \alpha \le 2$, la série $\sum f_n'$ converge uniformément sur tout segment $[a,b] \subset [0,1[$ par convergence normale puisque $\left(\sup_{x \in [a,b]} |f_n'(x)| = \frac{b^{n-1}}{n^{\alpha-1}} \right)$, donc $G_{\alpha} = \lambda.f_{\alpha}$ est continue sur [-1,1], de classe C^1 sur [0,1[avec $\forall x \in]0,1[$ $G_{\alpha}'(x) = \frac{\lambda}{x} \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha-1}} = \frac{\lambda}{x}.f_{\alpha-1}(x)$. Puisque $\lim_{x \to 1^-} f_{\alpha-1}(x) = +\infty$ (question 6), G_{α} n'est pas dérivable en 1.

On en déduit que X_{α} est d'espérance finie **SSI** $\alpha > 2$ et dans ce cas

$$\mathbb{E}(X_{\alpha}) = G'_{\alpha}(1) = \lambda \cdot f_{\alpha-1}(1). \quad \mathbb{E}(X_{\alpha}) = \frac{f_{\alpha-1}(1)}{f_{\alpha}(1)}.$$

Partie II – Un logarithme complexe

9) On sait que
$$\forall x \in]-1,1[\ln(1+x)=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{n}x^n.$$

Pour tout nombre complexe z, tel que la série $\sum_{n\geq 1} \frac{(-z)^n}{n}$ est convergente, on note :

$$S(z) = -\sum_{n=1}^{+\infty} \frac{(-z)^n}{n}$$

10) On pose $b_n = \frac{(-1)^{n-1}}{n}$. On sait que le rayon de convergence de la série entière $\sum z^n$ est égal à 1. On sait aussi que le rayon de convergence R de la série entière définissant S est le même que celui de la série entière $\sum_{n\geqslant 1} nb_n z^n$ alors R=1. On pouvait aussi utiliser le critère de d'Alembert

Pour tout x réel élément de $]-1,1[,S(x)=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{n}x^n=\ln(1+x),$ donc $\exp(S(x))=1+x.$

Soit $z_0 \in \mathbb{C}$ tel que $|z_0| < R$. On considère la série entière de la variable réelle t suivante :

$$\sum_{n\geq 1} (-1)^{n-1} \frac{z_0^n}{n} t^n.$$

En cas de convergence, on note g(t) sa somme. On a donc, pour $t \in \mathbb{R}$ tel que la série est convergente, $g(t) = S(tz_0)$.

- 11) Si $z_0 = 0$ alors la série définissant g est de rayon égal à $+\infty$ et g(t) = 0 pour tout réel t.
 - Si $z_0 \neq 0$, d'après le rayon de convergence R=1 de la série entière définissant S, on sait que si $|t| < \frac{1}{|z_0|}$ alors $|tz_0| < R$ et la série définissant g converge absolument et pour $|t| > \frac{1}{|z_0|}$ alors $|tz_0| > R$ et la série définissant g diverge grossièrement. On en déduit que le rayon de

convergence de la série entière définissant g est $R' = \frac{1}{|z_0|}$.

Là aussi on peut utiliser la règle de d'Alembert lorsque $z_0 \neq 0$ en posant $c_n = (-1)^{n-1} \frac{z_0^n}{n}$ Pour plus de facilité, on va écrire $R' = \frac{1}{|z_0|}$ même lorsque $z_0 = 0$.

12) Puisque $|z_0| < 1$, on a $R' = \frac{1}{|z_0|} > 1$ et donc $[0,1] \subset]-R', R'[.$ g étant définie et de classe C^{∞} au moins sur]-R', R'[, on a : g est définie et de classe C^{∞} sur [0,1].

On sait aussi que

PSI

$$\forall t \in [0,1] \quad g'(t) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{z_0^n}{n} n t^{n-1}$$

$$= z_0 \sum_{n=1}^{+\infty} (-z_0 t)^{n-1}$$

$$= z_0 \sum_{k=0}^{+\infty} (-z_0 t)^k$$

$$= \frac{z_0}{1 + z_0 t}$$

On a donc $\forall t \in [0,1] \quad g'(t) = \frac{z_0}{1 + z_0 t}$

13) On pose $h = \exp \circ g$. h est de classe C^{∞} sur [0,1] par composée et

$$\forall t \in [0,1] \quad h'(t) = g'(t) \cdot \exp(g(t))$$
$$= \frac{z_0}{1 + z_0 t} h(t)$$

On a bien : $\forall t \in [0, 1] \quad h'(t) = \frac{z_0}{1 + z_0 t} h(t)$

14) L'équation différentielle de la question précédente est une équation différentielle linéaire du premier ordre homogène de la forme y' + a(t)y = 0 avec $a(t) = -\frac{z_0}{1 + z_0 t}$, a étant une fonction continue sur [0, 1].

On sait alors que S l'ensemble des solutions de cette équation différentielle est un espace vectoriel de dimension égale à 1.

L'équation y' + a(t)y = 0 est équivalente à $(1 + z_0t)y' - z_0y = 0$, on remarque alors que la fonction $y: t \mapsto 1 + tz_0$ vérifie cette équation différentielle et elle est non identiquement nulle alors

$$S = Vect(t \mapsto 1 + z_0 t)$$
 et les solutions de $y' + \frac{z_0}{1 + tz_0}y = 0$ sont $t \mapsto \alpha(1 + tz_0)$ avec $\alpha \in \mathbb{R}$.

On sait que la fonction $h = \exp \circ g$ vérifie l'équation différentielle y' + a(t)y = 0, donc il existe $\alpha \in \mathbb{R}$ tel que $\forall t \in [0,1]$ $h(t) = \alpha(1+tz_0)$. $h(0) = \exp(g(0))$ avec g(0) = 0, donc $\alpha = 1$.

On a obtenu $\forall t \in [0,1]$ $\exp(S(tz_0)) = 1 + tz_0$ et en particulier pour t=1 on obtient

$$\exp(S(z_0)) = 1 + z_0.$$