Exercice 1

Étudier la convergence, et calculer la somme en cas de convergence des séries de terme général u_n lorsque:

1.
$$u_n = 3^n$$

2.
$$u_n = \frac{1}{5^n}$$

2.
$$u_n = \frac{1}{5^n}$$
 3. $u_n = \frac{2^{n+2}}{3^{n-1}}$

4.
$$u_n = \left(1 + \frac{1}{2n^2}\right)^{n^2}$$

5.
$$u_n = \frac{n}{(n+1)!}$$

5.
$$u_n = \frac{n}{(n+1)!}$$
 6. $u_n = \ln\left(1 - \frac{1}{n^2}\right)$ 7. $u_n = \frac{9}{(3n+1)(3n+4)}$ 8. $u_n = \left(\frac{n}{n-1}\right)^n$

8.
$$u_n = \left(\frac{n}{n-1}\right)^r$$

9. $u_n = av_n + bv_{n+1} + cv_{n+2}$ avec a, b, c réels tels que a + b + c = 0 et (v_n) suite réelle qui converge

Exercice 2

On considère une suite $(a_n)_{n\in\mathbb{N}}$ de réels strictement positifs et la suite (b_n) définie par : $b_0=1$ et $\forall n \in \mathbf{N} \quad b_{n+1} = b_n + \frac{a_n}{b_n}.$

- 1. Montrer que si la suite (b_n) converge alors $\lim_{n\to +\infty} a_n = 0$.
- 2. Montrer que : (b_n) converge si, et seulement si, la série $\sum a_n$ converge.

Exercice 3

Déterminer les réels x tels que la série $\sum_{n>1} (-1)^n \frac{e^{-nx}}{n}$ converge.

Exercice 4

On définit la suite réele (u_n) par $u_0 > 0$ et $\forall n \in \mathbb{N}$ $u_{n+1} = \ln(1 + u_n)$.

- 1. Étudier la convergence et donner la limite de la suite (u_n) .
- 2. Montrer que la série $\sum u_n^2$ converge.
- 3. On pose $v_n = \frac{1}{u_{n+1}} \frac{1}{u_n}$. Déterminer la limite de la suite (v_n) .
- 4. On admet le théorème de Césaro :

 $Si(x_n)$ est une suite qui converge vers ℓ alors $\lim_{n\to+\infty} \left(\frac{1}{n}\sum_{k=1}^n x_k\right) = \ell$.

En utilisant la question précédente, déterminer un équivalent simple de u_n .

Exercice 5

Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+)^{\mathbb{N}}$ définie par $u_0=0$ et $\forall n\in\mathbb{N}$ $u_{n+1}=\sqrt{\frac{1+u_n}{2}}$. On pose $x_n=1-u_n$.

- 1. Étudier la suite $(u_n)_{n \in \mathbb{N}}$.
- 2. Trouver $k \in]0,1[$ tel que $\forall n \in \mathbb{N} \quad x_{n+1} \leq kx_n$. En déduire la nature de la série $\sum x_n$.

Exercice 6

On suppose que la série de terme général $a_n > 0$ diverge. Soit, pour tout $n \in \mathbb{N}$, $b_n = \frac{a_{n+1}}{S_n}$ avec $S_n = \sum_{k=0}^n a_k$. Déterminer la nature de la série de terme général b_n .

On pourra faire une disjonction de cas.

Exercice 7

Soit
$$a > 0$$
. On pose $u_n = n! \prod_{k=1}^n \ln\left(1 + \frac{a}{k}\right)$ pour $n \in \mathbf{N}^*$.

- 1. Quelle est la nature de la série $\sum u_n$ lorsque $a \neq 1$?
- 2. Montrer que : $\forall x \in]0,1[\ln(1+x) \geqslant x-x^2.$
- 3. En déduire la nature de la série $\sum u_n$ lorsque a=1.

Exercice 8

Déterminer un équivalent de $\sum_{k=n}^{2n}\frac{1}{\sqrt{k}}$ quand n tend vers l'infini, en utilisant :

- la technique de comparaison série-intégrale
- une somme de Riemann.

Exercice 9

Étudier la nature de la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n}\ln(n) + (-1)^n}$.

Exercice 10

On considère la suite (u_n) définie par $u_n = \sin\left(\pi n^3 \left(\ln\left(\frac{n}{n-1}\right)\right)^2\right)$.

1. Déterminer des réels $a_0, a_1, a_2, a_3, a_4, a_5$ tels que

$$\left(\ln\left(\frac{n}{n-1}\right)\right)^2 = a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \frac{a_3}{n^3} + \frac{a_4}{n^4} + \frac{a_5}{n^5} + o\left(\frac{1}{n^5}\right)$$

2. En déduire qu'il existe un réel α tel que $\sin\left(\pi n^3 \left(\ln\left(\frac{n}{n-1}\right)\right)^2\right) = \alpha \cdot \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right)$. Conclure quant à la nature de la série $\sum u_n$.

Exercice 11

Déterminer la nature et, en cas de convergence, la somme des séries $\sum_{n\geqslant 2} \left(\sum_{k=1}^{n-1} \frac{1}{k^2(n-k)^2}\right)$ et $\sum_{n\geqslant 1} \left(\sum_{k=1}^{n} \frac{1}{k^2(n-k)!}\right)$.

Exercice 12

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs.

- 1. On suppose que $\sum v_n$ diverge.
 - (a) Montrer que si $u_n = o(v_n)$, alors $\sum_{k=0}^n u_k = o\left(\sum_{k=0}^n v_k\right)$.
 - (b) Montrer que si $u_n \sim v_n$ alors $\sum_{k=0}^n u_k \sim \sum_{k=0}^n v_k$.
- 2. Soit (u_n) une suite réelle telle que $u_0 = a$, $u_1 = b$, avec $(a, b) \in \mathbf{R}_+^* \times \mathbf{R}_+^*$, et $u_{n+2} = u_{n+1} + \frac{1}{u_n}$.
 - (a) Montrer que (u_n) est bien définie. Montrer que (u_n) est divergente.
 - (b) Montrer que $u_{n+2}^2 u_1^2 = 2\sum_{k=0}^n \frac{u_{k+1}}{u_k} + \sum_{k=0}^n \frac{1}{u_k^2}$.
 - (c) Montrer que $u_n \sim \sqrt{2n}$.