Exercice 1

Montrer que pour tout réel α l'intégrale $I_{\alpha} = \int_{0}^{+\infty} \frac{1}{(1+t^2)(1+t^{\alpha})} dt$ converge. La calculer en effectuant le changement de variable $t = \frac{1}{u}$.

Exercice 2

Etudier la nature des intégrales suivantes :

$$\int_{0}^{+\infty} \frac{t^{5}}{(1+t^{4})\sqrt{t}} dt \qquad \int_{0}^{+\infty} e^{-t^{2}} dt \qquad \int_{0}^{+\infty} \frac{Arctan(t)}{t^{2}+2t+7} dt \qquad \int_{0}^{1} \frac{e^{-t}}{\sqrt{t^{3}-2t^{2}+t}} dt$$

$$\int_{0}^{+\infty} t^{-\sqrt{t}} dt \qquad \int_{2}^{+\infty} \frac{1}{\ln t} dt \qquad \int_{1}^{+\infty} \frac{\ln t}{t(1+\ln t)^{2}} dt \qquad \int_{0}^{\frac{\pi}{2}} \frac{\tan t}{t} dt$$

$$\int_{1}^{+\infty} \frac{\ln t}{e^{t}} dt \qquad \int_{0}^{1} \left| \sin\left(\frac{1}{t}\right) \right| dt$$

Exercice 3

Déterminer les polynômes $P \in \mathbf{R}[X]$ tels que la fonction $f: t \mapsto \sqrt{P(t)} - t^2 - t - 1$ soit intégrable sur $[1, +\infty[$.

Exercice 4

Vérifier l'égalité suivante $\int_{0}^{+\infty} e^{-t}t^{n}dt = n!$ pour tout $n \in \mathbb{N}$.

Exercice 5

Soit $f \in \mathscr{C}^0(\mathbf{R}^+, \mathbf{R})$ intégrable sur \mathbf{R}^+ . Montrer que $\lim_{x \to +\infty} \frac{1}{x} \int_0^x t f(t) dt = 0$.

Exercice 6

Montrer la convergence puis calculer les intégrales suivantes par changement de variable :

•
$$I_1 = \int_{-1}^1 \frac{1}{\sqrt{1-t^2}} dt$$
.

•
$$I_2 = \int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x^2}}$$
 en posant $u = \sqrt{1+x^2}$.

•
$$I_3 = \int_2^{+\infty} \frac{x}{(x^2 - 1)(x^2 + 1)} dx$$

•
$$I_3 = \int_2^{+\infty} \frac{x}{(x^2 - 1)(x^2 + 1)} dx$$
.
• $I_4 = \int_{-1}^1 \frac{1}{(1 + x^2)\sqrt{1 - x^2}} dx$ en posant $x = \frac{1}{u}$.

•
$$I_5 = \int_1^5 \sqrt{\frac{4t}{t-1}} dt$$
 en posant $u = \sqrt{\frac{t}{t-1}}$.

Exercice 7

Soit $f:[0,+\infty[\to \mathbf{R}$ une fonction continue, décroissante et intégrable sur $[0,+\infty[$.

1. En utilisant
$$\int_{x}^{2x} f(t)dt$$
, montrer que $\lim_{x\to +\infty} \int_{x}^{x+1} tf(t)dt = 0$ (utiliser un encadrement).

2. Montrer que l'intégrale $\int_0^{+\infty} t(f(t) - f(t+1)) dt$ converge et donner sa valeur.

Exercice 8

- 1. Montrer que $\forall x \in]0,1[, \frac{x-1}{x} \leq \ln(x) < x-1.$
- 2. Montrer que la fonction $f: x \mapsto \frac{x-1}{\ln(x)}$ se prolonge par continuité en une fonction continue sur [0,1].
- 3. Montrer que la fonction $g: x \mapsto \frac{1}{\ln(x)}$ se prolonge par continuité en une fonction continue sur [0,1].
- 4. Montrer que $\forall a \in]0,1[, \int_0^a f(t)dt = \int_a^{a^2} g(x)dx.$
- 5. En utilisant les résultats des questions précédentes, montrer que $\int_0^1 \frac{x-1}{\ln(x)} dx = \ln(2)$.

Exercice 9

- 1. Pour a > 0, montrer que $\int_a^{+\infty} \frac{\cos u 1}{u^3} du$ converge. Etudier la convergence de $\int_0^{+\infty} \frac{\cos u 1}{u^3} du$.
- 2. Montrer que la fonction φ telle que : $\varphi(x) = \int_x^{+\infty} \frac{\cos u 1}{u^3} du$ est de classe C^1 sur \mathbf{R}_+^* .
- 3. Etudier la limite lorsque x tend vers 0 de $\int_x^1 \frac{\cos u 1}{u^3} du + \int_x^1 \frac{du}{2u}$.
- 4. En déduire un équivalent de $\varphi(x)$ lorsque x tend vers 0.
- 5. La fonction φ est-elle intégrable sur $]0, +\infty[\,?\,$

Exercice 10

Donner le domaine de définition de la fonction définie par $f(x) = \int_0^{+\infty} \frac{\ln t}{t^2 + x^2} dt$. Calculer f(1) puis en effectuant un changement de variable, f(x) pour x > 0.

Exercice 11

Soit f continue et bornée sur \mathbf{R} , et $g(x) = \int_{-\infty}^{+\infty} e^{-|t|} f(x-t) dt$. Montrer que la fonction g est de classe C^2 sur \mathbf{R} , vérifiant g'' = g - 2f.

Exercice 12

 $\text{Montrer que}: \int_0^{+\infty} \frac{e^{-t}}{n+t} \mathrm{d}t \sim \frac{1}{n}. \quad \text{En déduire que}: \int_n^{+\infty} \frac{e^{-t}}{t} \mathrm{d}t \sim \frac{e^{-n}}{n}.$