Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet est composé d'un problème et de deux exercices indépendants.

Problème: Intégrales généralisées

Préliminaire

1. Exprimer, pour tout réel $t \in \left]0, \frac{\pi}{2}\right[\cup \left]\frac{\pi}{2}, \pi\left[1 + \frac{1}{\tan^2 t}\right]$ en fonction <u>uniquement</u> de sin² t.

Partie I

2. Pour tout réel x, on pose :

$$F(x) = \int_{-\infty}^{+\infty} \frac{1}{1 + x^2 + t^2} dt$$

- (a) Montrer que pour tout réel x l'intégrale F(x) converge.
- (b) Que vaut F(0)?
- (c) Exprimer, pour tout réel x, F(x) en fonction de x.
- 3. Soit α un réel positif. Pour tout entier naturel non nul n, on pose :

$$u_n = \frac{\pi}{\sqrt{1 + (n\pi)^{\alpha}}}, \qquad I_n = \int_0^{\pi} \frac{\mathrm{d}t}{1 + n^{\alpha}\pi^{\alpha}\sin^2 t}, \qquad J_n = \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + t^{\alpha}\sin^2 t}$$

- (a) Donner une condition nécessaire et suffisante portant sur le réel α pour que la série $\sum u_n$ converge.
- (b) Montrer que, pour tout entier naturel non nul $n: I_{n+1} \leq J_n \leq I_n$.
- (c) À l'aide du changement de variable $u = \frac{1}{\tan(t)}$ (ou $t = \arctan\left(\frac{1}{u}\right)$), que l'on justifiera avec soin, montrer que, pour tout entier naturel non nul n:

$$I_n = F\left(n^{\frac{\alpha}{2}}\pi^{\frac{\alpha}{2}}\right)$$

(On pensera à utiliser le résultat de la question du Préliminaire).

- (d) En déduire, pour tout entier naturel non nul $n: u_{n+1} \leq J_n \leq u_n$.
- (e) Donner une condition nécessaire et suffisante portant sur le réel α pour que l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^\alpha \sin^2 t}$ converge.

Partie II

- 4. Pour tout entier naturel non nul, n, on pose : $H_n = \int_0^{+\infty} \frac{u^{2n}}{1 + u^{4n}} du$.
 - (a) Étudier, pour tout entier naturel non nul n, la convergence de l'intégrale H_n .
 - (b) Calculer: $\lim_{n \to +\infty} \int_0^1 u^{2n} du$.
 - (c) Calculer: $\lim_{n \to +\infty} \int_{1}^{+\infty} \frac{u^{2n}}{1 + u^{4n}} du$.
 - (d) En déduire : $\lim_{n\to+\infty} H_n$.
- 5. Pour tout entier naturel non nul n, et tout réel strictement positif x, on rappelle la notation : $\sqrt[2n]{x} = x^{\frac{1}{2n}}$.

On pose:

$$K_n = \int_0^{\frac{\pi}{4}} \sqrt[2n]{\tan x} \, \mathrm{d}x, \qquad , \qquad L_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt[2n]{\tan x} \, \mathrm{d}x$$

- (a) Étudier, pour tout entier naturel non nul n, la convergence des intégrales K_n et L_n .
- (b) Montrer que la suite $(K_n)_{n \in \mathbb{N}^*}$ est croissante et majorée.
- (c) Étudier le sens de variation de la suite $(L_n)_{n \in \mathbb{N}^*}$.
- (d) Montrer que, pour tout entier naturel non nul $n: \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt[2n]{\tan x} \, \mathrm{d}x \geqslant \frac{\pi}{4}$
- (e) En déduire la convergence de la suite $(L_n)_{n\in\mathbb{N}^*}$, et montrer que :

$$\lim_{n \to +\infty} (K_n + L_n) \geqslant \frac{\pi}{4}$$

6. (a) Pour tout entier naturel non nul n, effectuer, en le justifiant, le changement de variable $\tan x = u^{2n}$ dans l'intégrale $(K_n + L_n)$, puis donner, pour tout entier naturel non nul, une relation entre $(K_n + L_n)$ et :

$$\int_0^{+\infty} \frac{u^{2n}}{1 + u^{4n}} \mathrm{d}u$$

(b) En déduire l'existence d'une constante réelle H telle que, lorsque n tend vers l'infini :

$$H_n \sim \frac{H}{n}$$

Exercice 1: Pseudo-inverse

Définition: Soit $A \in \mathcal{M}_{n,n}(\mathbf{R})$, une matrice $A' \in \mathcal{M}_{n,n}(\mathbf{R})$ est un pseudo-inverse de A lorsque les trois propriétés suivantes sont satisfaites :

$$AA' = A'A \tag{1}$$

$$A = AA'A \tag{2}$$

$$A' = A'AA' \tag{3}$$

Soit A une matrice de $\mathcal{M}_{n,n}(\mathbf{R})$ et a l'endomorphisme de \mathbf{R}^n canoniquement associé.

7. Montrer que l'existence d'un pseudo-inverse implique que $\operatorname{rang}(a) = \operatorname{rang}(a^2)$.

Inversement on suppose maintenant que $rang(a) = rang(a^2)$. On note r cet entier.

8. Montrer que l'image et le noyau de a sont en somme directe. En déduire

$$\mathbf{R}^n = Im(a) \oplus Ker(a)$$

9. Montrer qu'il existe $B \in \mathcal{M}_{r,r}(\mathbf{R})$, B inversible et $W \in \mathcal{M}_{n,n}(\mathbf{R})$, W inversible, telles que

$$A = W \left(\begin{array}{cc} B & 0 \\ 0 & 0 \end{array} \right) W^{-1}$$

10. Montrer que A admet au moins un pseudo-inverse.

Considérons un pseudo-inverse quelconque A' de A et a' l'endomorphisme canoniquement associé à A'.

11. Montrer que Ker(a) et Im(a) sont stables par a' et qu'il existe $D \in \mathcal{M}_{r,r}(\mathbf{R})$ telle que

$$A' = W \left(\begin{array}{cc} D & 0 \\ 0 & 0 \end{array} \right) W^{-1}$$

- 12. Montrer que $a \circ a'$ est un projecteur dont on précisera le noyau et l'image en fonction de ceux de a et préciser ce que vaut $W^{-1}(AA')W$.
- 13. Montrer que A admet au plus un pseudo-inverse.

Exercice 2 : Calculs de déterminants

Etant donnée une matrice A, la notation $A = (a_{i,j})$ signifie que $a_{i,j}$ est le coefficient de la ligne i et de la colonne j de la matrice A.

Lorsque A = (a) est une matrice de $\mathcal{M}_{1,1}(\mathbf{R})$, on identifie A avec le réel a.

On note det(A) le déterminant d'une matrice carrée A.

Soient p et n deux entiers naturels tels que $p \le n$, on rappelle la notation $\binom{n}{p} = \frac{n!}{p!(n-p)!}$. Soit $n \in \mathbb{N}$.

• Pour $p \in [0, n]$, on note $A_p = (a_{i,j})$ la matrice carrée de $\mathcal{M}_{n-p+1}(\mathbf{R})$ dont le coefficient de la ligne i et de la colonne j est égal à $a_{i,j} = \binom{p+i+j-2}{p+i-1}$ avec $(i,j) \in [1, n-p+1]^2$. On note

$$d_p = \det(A_p)$$

- On note D_n le déterminant de la matrice carrée de $\mathcal{M}_{n+1}(\mathbf{R})$ dont le coefficient de la ligne i et de la colonne j est (i+j)!, les lignes et les colonnes étant indexées de 0 à n.
- On note Δ_n le déterminant de la matrice carrée de $\mathcal{M}_{n+1}(\mathbf{R})$ dont le coefficient de la ligne i et de la colonne j est $\binom{i+j}{i}$ les lignes et les colonnes étant indexées de 0 à n.

On note de façon abusive $D_n = \det((i+j)!)$ et $\Delta_n = \det\left(\binom{i+j}{i}\right)$ avec $(i,j) \in [0,n]^2$.

- 14. Expliciter les entiers r et s tels que $a_{i,j} = \binom{r}{s}$ pour les quatre coefficients $a_{1,1}, a_{1,n-p+1}, a_{n-p+1,1}$ et $a_{n-p+1,n-p+1}$.
- 15. Pour tout entier naturel $n \geq 2$ calculer les déterminants d_n , d_{n-1} et d_{n-2} .
- 16. On suppose que la matrice A_p possède au moins deux lignes. On note L_i la ligne d'indice i.
 - (a) Dans le calcul de d_p on effectue les opérations suivantes : pour i variant de n-p+1 à 2, on retranche la ligne L_{i-1} à la ligne L_i (opération codée $L_i \leftarrow L_i L_{i-1}$). Déterminer le coefficient d'indice (i, j) de la nouvelle ligne L_i .
 - (b) En déduire une relation entre d_p et d_{p+1} , puis en déduire d_p .
- 17. Calculer les déterminants D_0 , D_1 , D_2 , Δ_0 , Δ_1 et Δ_2 .
- 18. Donner une relation entre D_n et Δ_n .
- 19. En déduire Δ_n puis D_n .

Fin de l'énoncé