Exercice: Somme de deux projecteurs qui commutent

On considère un **R**-espace vectoriel E de dimension finie, on note Id l'endomorphisme identité de E, et on se propose d'étudier l'endomorphisme f=p+q où p et q sont deux projecteurs de E qui commutent, c'est-à-dire qui vérifient : $p \circ q = q \circ p$.

Etude des valeurs propres de f = p + q

- 1. Trouver un polynôme annulateur de f = p + q de degré 3.
- 2. En déduire les valeurs propres possibles de l'endomorphisme f = p + q.

Etude des sous-espaces propres de f = p + q

- 3. Démontrer l'égalité : $Ker(p+q) = Ker(p) \cap Ker(q)$. En déduire l'égalité $Ker(p+q-2Id) = Im(p) \cap Im(q)$.
- 4. A quelles conditions portant sur les sous-espaces Ker(p), Ker(q), Im(p) et Im(q) chacun des réels 0 et 2 est-il valeur propre de f = p + q?

 Préciser dans ce cas les sous-espaces propres associés à chacune de ces valeurs propres 0 et 2.
- 5. Montrer l'égalité : $Im(p+q-2p\circ q)=Im(2f-f^2)=Ker(Id-f)$.
- 6. Calculer $(Id 2p)^2$ et $(Id 2p) \circ (p + q 2p \circ q)$. En déduire que 1 est valeur propre de f = p + q si, et seulement si $p \neq q$.

Réduction de l'endomorphisme f = p + q

- 7. Établir que $E = Ker(f) \oplus Ker(f Id) \oplus Ker(f 2Id)$.
- 8. Justifier que f = p + q est diagonalisable, et préciser les projecteurs π_0, π_1 et π_2 associant à tout vecteur x de E ses projections sur les sous-espaces Ker(f), Ker(f Id), Ker(f 2Id) dans la direction de la somme des deux autres.

Problème: Sous-espaces stables

 \mathbf{K} désigne le corps \mathbf{R} ou le corps \mathbf{C} et E est un \mathbf{K} -espace vectoriel non réduit au vecteur nul.

Si f est un endomorphisme de E, pour tout sous-espace F de E stable par f on note f_F l'endomorphisme de F induit par f, c'est-à-dire défini sur F par $f_F(x) = f(x)$ pour tout x dans F.

Pour tout endomorphisme f de E on définit la suite $(f^k)_{k \in \mathbb{N}}$ des puissances de f par : $f^0 = Id_E$ et $f^{k+1} = f \circ f^k = f^k \circ f$ pour tout $k \in \mathbb{N}$.

Première partie:

Dans cette partie, f désigne un endomorphisme d'un K-espace vectoriel E.

- 9. Montrer qu'une droite F engendrée par un vecteur \mathbf{y} de E est stable par f si et seulement si \mathbf{y} est un vecteur propre de f.
- 10. (a) Montrer qu'il existe au moins deux sous-espaces de E stables par f et donner un exemple d'un endomorphisme de \mathbf{R}^2 qui n'admet que deux sous-espaces stables.
 - (b) Montrer que si E est de dimension finie $n \ge 2$ et si f est non nul et non injectif, alors il existe au moins trois sous-espaces de E stables par f et au moins quatre lorsque n est impair.

Donner un exemple d'endomorphisme de \mathbb{R}^2 qui n'admet que trois sous-espaces stables.

11. (a) Montrer que tout sous-espace engendré par une famille de vecteurs propres de f est stable par f.

Préciser l'endomorphisme induit par f sur tout sous-espace propre.

- (b) Montrer que si f admet un sous-espace propre de dimension au moins égale à 2 alors il existe une infinité de droites de E stables par f.
- (c) Que dire de f si tous les sous-espaces de E sont stables par f?
- 12. Dans cette question, E est un espace de dimension finie.
 - (a) Montrer que si f est diagonalisable alors tout sous-espace de E admet un supplémentaire dans E stable par f.

 On pourra partir d'une base de F.
 - (b) Montrer que si $\mathbf{K} = \mathbf{C}$ et si tout sous-espace de E stable par f admet un supplémentaire dans E stable par f, alors f est diagonalisable. Qu'en est-il lorsque $\mathbf{K} = \mathbf{R}$?

Deuxième partie:

Dans cette partie, n et p sont deux entiers naturels au moins égaux à 2, f est un endomorphisme diagonalisable d'un **K**-espace vectoriel E de dimension n, qui admet p valeurs propres distinctes $\{\lambda_1, \ldots, \lambda_p\}$ et, pour tout i dans [1, p], on note E_i le sous-espace propre de f associé à la valeur propre λ_i .

13. Il s'agit ici de montrer qu'un sous-espace F de E est stable par f si et seulement si

$$F = \bigoplus_{i=1}^{P} (F \cap E_i).$$

(a) Montrer que tout sous-espace F de E tel que $F = \bigoplus_{i=1}^{p} (F \cap E_i)$ est stable par f.

- (b) Soit F un sous-espace de E stable par f et un vecteur x non nul de F.

 Justifier l'existence et l'unicité de $(x_i)_{1 \leqslant i \leqslant p}$ dans $E_1 \times \ldots \times E_p$ tel que $x = \sum_{i=1}^p x_i$.
- (c) Si on note $H_x = \{i \in [\![1,p]\!], \quad x_i \neq 0\}$, H_x est non vide et, quitte à renuméroter les valeurs propres (et les sous-espaces propres), on peut supposer que $H_x = [\![1,r]\!]$ avec $1 \leq r \leq p$. Anisi on a : $x = \sum_{i=1}^r x_i$ avec $x_i \in E_i \setminus \{0\}$ pour tout i de $[\![1,r]\!]$. On note $V_x = Vect(x_1, \ldots, x_r)$. Montrer que $\mathcal{B}_x = (x_1, \ldots, x_r)$ est une base de V_x .
- (d) Montrer que pour tout j de [1, r], $f^{j-1}(x)$ appartient à V_x et donner la matrice de la famille $(f^{j-1}(x))_{1 \le j \le r}$ dans la base \mathcal{B}_x .
- (e) Montrer que $(f^{j-1}(x))_{1 \le j \le r}$ est une base de V_x .
- (f) En déduire que pour tout i de [1, r], x_i appartient à F et conclure.
- 14. Dans cette question, on se place dans le cas p = n.
 - (a) Préciser la dimension de E_i pour tout i dans [1, p].
 - (b) Combien y a-t-il de droites stables par f?
 - (c) Si $n \ge 3$ et $k \in [2, n-1]$ combien y a-t-il de sous-espaces de E de dimension k stables par f?
 - (d) Combien y a-t-il de sous-espaces de E stables par f dans ce cas? Les donner tous.
 - (e) On considère l'endomorphisme f de \mathbf{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} -5 & 3 & -1 \\ -2 & 6 & 2 \\ -5 & 3 & -1 \end{pmatrix}$. Donner tous les sous-espaces de \mathbf{R}^3 stables par f.

Fin de l'énoncé