Problème: Extrait de PT 2022 Maths C

Préliminaire

1. Soit $t \in]0, \frac{\pi}{2}[\cup]\frac{\pi}{2}, \pi[,$

$$1 + \frac{1}{\tan^2 t} = 1 + \frac{\cos^2(t)}{\sin^2(t)}$$
$$= \frac{\sin^2(t) + \cos^2(t)}{\sin^2(t)}$$
$$1 + \frac{1}{\tan^2 t} = \frac{1}{\sin^2(t)}$$

Partie I

2. Pour tout réel x, on pose :

$$F(x) = \int_{-\infty}^{+\infty} \frac{1}{1 + x^2 + t^2} dt$$

(a) Pour tout réel x, la fonction $f_x: t \mapsto \frac{1}{1+x^2+t^2}$ est continue sur \mathbf{R} en tant qu'inverse d'une fonction polynômiale qui ne s'annule pas sur \mathbf{R} .

Par définition l'intégrale $F(x) = \int_{-\infty}^{+\infty} \frac{1}{1+x^2+t^2} dt$ converge si, et seulement si les intégrales $\int_{0}^{+\infty} f_x(t) dt$ et $\int_{-\infty}^{0} f_x(t) dt$ convergent. Or f_x est paire donc les intégrales $\int_{0}^{+\infty} f_x(t) dt$ et $\int_{-\infty}^{0} f_x(t) dt$ sont de même nature (changement de variable t = -u).

$$f_x(t) \underset{t \to +\infty}{\sim} \frac{1}{t^2}$$

D'après les intégrales de Riemann on sait que la fonction $t \mapsto \frac{1}{t^2}$ est intégrable en $+\infty$ (2 > 1), alors par comparaison la fonction f_x est aussi intégrable en $+\infty$ et finalement f_x est intégrable sur $[0, +\infty[$.

On a bien l'intégrale F(x) converge pour tout réel x.

(b)
$$F(0) = \int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt = \left[\arctan(t)\right]_{\infty}^{+\infty}$$
, or $\lim_{t \to \infty} \arctan = \frac{\pi}{2}$ et $\lim_{t \to \infty} \arctan = -\frac{\pi}{2}$, donc
$$F(0) = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi$$

(c)
$$F(x) = \int_{-\infty}^{+\infty} \frac{1}{1+x^2} \times \frac{1}{1+\left(\frac{t}{\sqrt{1+x^2}}\right)^2} dt$$

$$= \frac{1}{\sqrt{1+x^2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{1+x^2}} \times \frac{1}{1+\left(\frac{t}{\sqrt{1+x^2}}\right)^2} dt$$

$$= \frac{1}{\sqrt{1+x^2}} \left[\arctan\left(\frac{t}{\sqrt{1+x^2}}\right)\right]_{-\infty}^{+\infty}$$

$$F(x) = \frac{\pi}{\sqrt{1+x^2}}$$

3. Soit α un réel positif. Pour tout entier naturel non nul n, on pose :

$$u_n = \frac{\pi}{\sqrt{1 + (n\pi)^{\alpha}}}, \qquad I_n = \int_0^{\pi} \frac{\mathrm{d}t}{1 + n^{\alpha}\pi^{\alpha}\sin^2 t}, \qquad J_n = \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + t^{\alpha}\sin^2 t}$$

- (a) Si $\alpha = 0$ alors $u_n = \frac{\pi}{\sqrt{2}}$ et donc la série $\sum u_n$ diverge grossièrement.
 - Pour $\alpha > 0$, $\forall n \in \mathbb{N}^*$ $u_n > 0$ et $u_n \underset{n \to +\infty}{\sim} \frac{\pi^{1-\frac{\alpha}{2}}}{n^{\frac{\alpha}{2}}}$.

D'après les séries de Riemann et par comparaison pour des séries à termes positifs, la série $\sum u_n$ converge si, et seulement si $\frac{\alpha}{2} > 1$.

Ce qui donne, pour $\alpha \geqslant 0$:

 $\sum u_n$ converge si, et seulement si $\alpha > 2$.

(b) Les fonctions $t \mapsto \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^{2}(t)}$ et $t \mapsto \frac{1}{1 + t^{\alpha} \sin^{2}(t)}$ sont continues sur **R**, alors par intégration sur un segment I_{n} et J_{n} existent pour tout $n \in \mathbf{N}^{*}$.

De plus, pour $\alpha \geqslant 0$, la fonction $t \mapsto t^{\alpha}$ est croissante sur $]0, +\infty[$, donc

$$\forall t \in [n\pi, (n+1)\pi] \quad n^{\alpha}\pi^{\alpha} \leqslant t^{\alpha} \leqslant (n+1)^{\alpha}\pi^{\alpha}$$

 $\sin^2(t) \ge 0$, donc $0 < 1 + n^{\alpha} \pi^{\alpha} \sin^2(t) \le 1 + t^{\alpha} \sin^2(t) \le 1 + (n+1)^{\alpha} \pi^{\alpha} \sin^2(t)$ et par passage à l'inverse et intégration sur le segment $[n\pi, (n+1)\pi]$, il vient :

$$\int_{n\pi}^{(n+1)\pi} \frac{1}{1 + (n+1)^{\alpha} \pi^{\alpha} \sin^{2}(t)} dt \leqslant J_{n} \leqslant \int_{n\pi}^{(n+1)\pi} \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^{2}(t)} dt \quad (*)$$

1ère méthode:

Par le changement de variable affine $t = n\pi + u$, on obtient :

$$\int_0^{\pi} \frac{1}{1 + (n+1)^{\alpha} \pi^{\alpha} \sin^2(n\pi + u)} du \leqslant J_n \leqslant \int_0^{\pi} \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^2(n\pi + u)} du$$

 $\underline{\forall u \in [0,\pi] \quad \sin^2(n\pi + u)} = ((-1)^n \sin(u))^2 = \sin^2(u), \text{ alors on a bien :}$

$$\forall n \in \mathbf{N}^* \quad I_{n+1} \leqslant J_n \leqslant I_n$$

2nde méthode:

Pour tout $n \in \mathbf{N}^*$, la fonction $f_n: t \mapsto \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^2(t)}$ est continue sur \mathbf{R}^+ et π périodique alors $\forall a \in \mathbf{R}^+$ $\int_0^{\pi} f_n(t) dt = \int_a^{a+\pi} f(t) dt$, donc $I_n = \int_0^{\pi} \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^2(t)} dt = \int_{n\pi}^{n\pi + \pi} \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^2(t)} dt$. L'encadrement (*) devient alors $I_{n+1} \leq I_n \leq I_n$.

(c) On peut écrire
$$I_n = \int_0^{\frac{\pi}{2}} \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^2(t)} dt + \int_{\frac{\pi}{2}}^{\pi} \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^2(t)} dt$$

1ère méthode : changement de variable $u = \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^2(t)}$

<u>lère méthode</u> : changement de variable $u = \frac{1}{\tan(t)}$

La fonction $\varphi: t \mapsto \frac{1}{\tan(t)}$ est de classe C^1 sur $\left]0, \frac{\pi}{2}\right[\cup \left]\frac{\pi}{2}, \pi\right[$ avec

$$\varphi'(t) = -\frac{1 + \tan^2(t)}{\tan^2(t)} = -\left(1 + \frac{1}{\tan^2(t)}\right) = -\frac{1}{\sin^2(t)} < 0$$

Donc φ réalise une bijection décroissante de $\left]0,\frac{\pi}{2}\right[\sup]0,+\infty[$ et une bijection décroissante de $\left]\frac{\pi}{2},\pi\right[\sup]-\infty,0[$.

On peut écrire :

$$I_{n} = \int_{0}^{\frac{\pi}{2}} -\varphi'(t) \cdot \frac{1}{\frac{1}{\sin^{2}(t)} + n^{\alpha}\pi^{\alpha}} dt + \int_{\frac{\pi}{2}}^{\pi} -\varphi'(t) \cdot \frac{1}{\frac{1}{\sin^{2}(t)} + n^{\alpha}\pi^{\alpha}} dt$$

$$= \int_{0}^{\frac{\pi}{2}} -\varphi'(t) \cdot \frac{1}{1 + \varphi^{2}(t) + n^{\alpha}\pi^{\alpha}} dt + \int_{\frac{\pi}{2}}^{\pi} -\varphi'(t) \cdot \frac{1}{1 + \varphi^{2}(t) + n^{\alpha}\pi^{\alpha}} dt$$

$$I_{n} = \int_{0}^{\frac{\pi}{2}} -\varphi'(t) f(\varphi(t)) dt + \int_{\frac{\pi}{2}}^{\pi} -\varphi'(t) f(\varphi(t)) dt$$

avec $f: u \mapsto \frac{1}{1 + u^2 + n^{\alpha} \pi^{\alpha}}$ qui est continue sur **R**, alors par le changement de variable $u = \varphi(t)$, puisque I_n converge on a :

$$I_n = \int_0^{+\infty} f(u) du + \int_{-\infty}^0 f(u) du$$

PSI

Ce qui donne :
$$I_n = \int_{-\infty}^{+\infty} \frac{1}{1 + n^{\alpha} \pi^{\alpha} + u^2} du = F\left(n^{\frac{\alpha}{2}} \pi^{\frac{\alpha}{2}}\right).$$

<u>Variante de la 1ère méthode</u>: toujours le changement de variable $u = \frac{1}{\tan(t)}$.

La fonction $\varphi:t\mapsto \frac{1}{\tan(t)}$ est de classe C^1 sur $\left]0,\frac{\pi}{2}\right[\cup\left]\frac{\pi}{2},\pi\right[$ avec

$$\varphi'(t) = -\frac{1 + \tan^2(t)}{\tan^2(t)} = -\left(1 + \frac{1}{\tan^2(t)}\right) = -\frac{1}{\sin^2(t)} < 0$$

On remarque que $\lim_{t\to\frac{\pi}{2}^-}\varphi(t)=0=\lim_{t\to\frac{\pi}{2}^+}\varphi(t)$, donc φ se prolonge en une fonction $\bar{\varphi}$ continue sur $]0,\pi[$.

On remarque aussi que $\varphi'(t) = -\frac{1}{\sin^2(t)}$ admet une limite finie en $\frac{\pi}{2}$, alors le prolongement $\bar{\varphi}$ est de classe C^1 sur $]0,\pi[$ et réalise une bijection décroissante de $]0,\pi[$ sur $]-\infty,+\infty[$.

Puisque I_n converge, on a :

$$I_n = \int_0^{\pi} -\bar{\varphi}'(t) \cdot \frac{1}{\frac{1}{\sin^2(t)} + n^{\alpha} \pi^{\alpha}} dt$$
$$= \int_0^{\pi} -\bar{\varphi}'(t) \cdot \frac{1}{1 + \bar{\varphi}^2(t) + n^{\alpha} \pi^{\alpha}} dt$$
$$I_n = \int_0^{\pi} -\bar{\varphi}'(t) f(\bar{\varphi}(t)) dt$$

avec $f: u \mapsto \frac{1}{1 + u^2 + n^{\alpha} \pi^{\alpha}}$ qui est continue sur **R**, alors par le changement de variable $u = \bar{\varphi}(t)$, puisque I_n converge on a :

$$I_n = \int_0^{\pi} -\bar{\varphi}'(t)f(\bar{\varphi}(t))dt = \int_{-\infty}^{+\infty} f(u)du$$

Ce qui donne :
$$I_n = \int_{-\infty}^{+\infty} \frac{1}{1 + n^{\alpha} \pi^{\alpha} + u^2} du = F\left(n^{\frac{\alpha}{2}} \pi^{\frac{\alpha}{2}}\right).$$

 $\underline{2nde \ m\acute{e}thode}$: changement de variable $t=\arctan\left(\frac{1}{u}\right)$

Pour $n \in \mathbf{N}^*$, la fonction $f_n : t \mapsto \frac{1}{1 + n^{\alpha} \pi^{\alpha} \sin^2(t)}$ est continue et π -périodique sur \mathbf{R} , alors $\int_{\frac{\pi}{2}}^{\pi} f_n(t) dt = \int_{-\frac{\pi}{2}}^{0} f_n(t) dt$, donc $I_n = \int_{0}^{\frac{\pi}{2}} f_n(t) dt + \int_{-\frac{\pi}{2}}^{0} f_n(t) dt$.

On effectue le changement de variable $t = \varphi(u)$ avec $\varphi : u \mapsto \arctan\left(\frac{1}{u}\right)$, qui est de classe C^1 sur \mathbf{R}^* avec $\varphi'(u) = -\frac{1}{u^2} \times \frac{1}{1 + \frac{1}{u^2}} = \frac{-1}{1 + u^2} < 0$, donc φ est une bijection

PSI

décroissante de $]0, +\infty[$ sur $]0, \frac{\pi}{2}[$ et de $]-\infty, 0[$ sur $]-\frac{\pi}{2}, 0[$, alors puisque I_n converge :

$$I_n = -\int_0^{+\infty} \varphi'(u) f_n(\varphi(u)) du - \int_{-\infty}^0 \varphi'(u) f_n(\varphi(u)) du$$
$$= \int_{-\infty}^{+\infty} \frac{1}{1 + u^2} \times \frac{1}{1 + n^\alpha \pi^\alpha \sin^2(\varphi(u))} du$$

par le préliminaire $\sin^2(\varphi(u)) = \frac{\tan^2(\varphi(u))}{1 + \tan^2(\varphi(u))} = \frac{1}{1 + u^2}$

$$I_n = \int_{-\infty}^{+\infty} \frac{1}{1+u^2} \times \frac{1+u^2}{1+u^2+n^{\alpha}\pi^{\alpha}} du$$

$$I_n = \int_{-\infty}^{+\infty} \frac{1}{1 + n^{\alpha} \pi^{\alpha} + u^2} du$$

On retrouve bien $I_n = F\left(n^{\frac{\alpha}{2}}\pi^{\frac{\alpha}{2}}\right)$

- (d) On a vu que pour x réel $F(x) = \frac{\pi}{\sqrt{1+x^2}}$, alors par (c) on a : $I_n = \frac{\pi}{\sqrt{1+n^{\alpha}\pi^{\alpha}}}$ et par (b) on obtient : $u_{n+1} \leqslant J_n \leqslant u_n$.
- (e) La fonction $g: t \mapsto \frac{1}{1+t^{\alpha}\sin^2(t)}$ est continue sur $]0, +\infty[$ en tant qu'inverse d'une fonction continue ne s'annulant pas sur $]0, +\infty[$ et strictement positive. De plus g est prolongeable par continuité en 0 puisque $\alpha \ge 0$. On peut donc écrire

$$\int_{0}^{(N+1)\pi} g(t)dt = \int_{0}^{\pi} g(t)dt + \sum_{n=1}^{N} J_{n}$$

et la fonction $x \mapsto \int_0^x g(t) dt$ étant croissante(g est positive) on sait qu'elle admet une limite $L \text{ en } +\infty$ qui est finie ou égale à $+\infty$.

Par caractérisation séquentielle $L = \lim_{N \to +\infty} \int_0^{(N+1)\pi} g(t) dt = \int_0^{\pi} g(t) dt + \lim_{N \to +\infty} \sum_{n=1}^N J_n$.

• Les séries $\sum u_n$ et $\sum u_{n+1}$ sont toujours de même nature. D'après le résultat de la question (d), on a : $0 \le u_{n+1} \le J_n \le u_n$ donc par double comparaison pour des séries à termes positifs, la série $\sum J_n$ converge si et seulement si la série $\sum u_n$ converge. Par le résultat de la question (a), on sait que $\sum u_n$ converge si, et seulement si $\alpha > 2$.

On en déduit que l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^\alpha \sin^2 t}$ converge si, et seulement si $\alpha > 2$.

Partie II

- 4. Pour tout entier naturel non nul, n, on pose : $H_n = \int_0^{+\infty} \frac{u^{2n}}{1 + u^{4n}} du$.
 - (a) Pour $n \in \mathbf{N}^*$, la fonction $f_n : u \mapsto \frac{u^{2n}}{1 + u^{4n}}$ est continue sur $[0, +\infty[$ par quotient de fonctions continues dont le dénominateur ne s'annule pas. De plus $f_n(u) \underset{u \to +\infty}{\sim} \frac{1}{u^{2n}}$. Pour $n \in \mathbf{N}^*$, $2n \ge 2 > 1$, donc la fonction $u \mapsto \frac{1}{u^{2n}}$ est intégrable en $+\infty$ et par comparaison f_n est aussi intégrable en $+\infty$.

Finalement f_n étant intégrable sur $[0, +\infty[$ pour tout $n \in \mathbb{N}^*,$ H_n converge.

(b)
$$\int_0^1 u^{2n} du = \left[\frac{u^{2n+1}}{2n+1} \right]_0^1 = \frac{1}{2n+1}$$
 Donc $\lim_{n \to +\infty} \int_0^1 u^{2n} du = 0$.

(c) Pour $n \in \mathbf{N}^*$ et $u \in [1, +\infty[$ $0 \le \frac{u^{2n}}{1 + u^{4n}} \le \frac{u^{2n}}{u^{4n}}$, alors par intégration sur $[1, +\infty[$ puisque les intégrales convergent on obtient :

$$0 \leqslant \int_{1}^{+\infty} \frac{u^{2n}}{1 + u^{4n}} du \leqslant \int_{1}^{+\infty} \frac{1}{u^{2n}} du$$
Or $\int_{1}^{+\infty} \frac{1}{u^{2n}} du = \left[\frac{u^{1-2n}}{1 - 2n} \right]_{1}^{+\infty} = \frac{1}{2n - 1}$, donc
$$0 \leqslant \int_{1}^{+\infty} \frac{u^{2n}}{1 + u^{4n}} du \leqslant \frac{1}{2n - 1}$$

Et par encadrement $\lim_{n\to+\infty} \int_1^{+\infty} \frac{u^{2n}}{1+u^{4n}} du = 0.$

(d) Par relation de Chasles, $H_n = \int_0^1 \frac{u^{2n}}{1+u^{4n}} du + \int_1^{+\infty} \frac{u^{2n}}{1+u^{4n}} du$. $\forall u \in [0,1] \quad 0 \leqslant \frac{u^{2n}}{1+u^{4n}} \leqslant u^{2n}, \text{ alors par intégration sur le segment } [0,1], \text{ on a}:$ $0 \leqslant \int_0^1 \frac{u^{2n}}{1+u^{4n}} du \leqslant \int_0^1 u^{2n} du \text{ et par encadrement } \lim_{n \to +\infty} \int_0^1 \frac{u^{2n}}{1+u^{4n}} du = 0.$

Alors par somme de limites finies, $\lim_{n \to +\infty} H_n = 0$.

5. Pour tout entier naturel non nul n, et tout réel strictement positif x, on rappelle la notation : $\sqrt[2n]{x} = x^{\frac{1}{2n}}$.

On pose:

$$K_n = \int_0^{\frac{\pi}{4}} \sqrt[2n]{\tan x} \, \mathrm{d}x, \qquad , \qquad L_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt[2n]{\tan x} \, \mathrm{d}x$$

(a) • La fonction tangente est continue et positive sur $\left[0, \frac{\pi}{4}\right]$ et pour $n \in \mathbb{N}^*$ la fonction $t \mapsto \sqrt[2n]{t}$ est continue sur $[0, +\infty[$, comme réciproque de $t \mapsto t^{2n}$, donc l'intégrale K_n converge.

Remarque : si on écrit $\sqrt[2n]{\tan(x)} = (\tan x)^{\frac{1}{2n}}$, on a la continuité de $x \mapsto \sqrt[2n]{\tan(x)}$ sur $]0, \frac{\pi}{4}]$ et cette fonction est prolongeable par continuité en 0, donc K_n est faussement impropre en 0.

• La fonction tangente est continue et strictement positive sur $\left[\frac{\pi}{4}, \frac{\pi}{2}\right[$, donc $x \mapsto \sqrt[2n]{\tan(x)}$ est continue sur $\left[\frac{\pi}{4}, \frac{\pi}{2}\right[$.

1ère méthode:

$$\frac{\sin(x)}{\tan(x)} = \frac{\sin(x)}{\cos(x)} \approx \frac{1}{\frac{\pi}{2}} \cos(x), \text{ or } \cos(x) = \sin\left(\frac{\pi}{2} - x\right) \text{ et } \sin(u) \approx u, \text{ alors}$$

$$\tan(x) \approx \frac{1}{\frac{\pi}{2}} \frac{1}{\frac{\pi}{2} - x} \text{ et } \sqrt[2n]{\tan(x)} \approx \frac{1}{\frac{\pi}{2}} \frac{1}{\left(\frac{\pi}{2} - x\right)^{\frac{1}{2n}}}$$

Puisque $\frac{1}{2n} < 1$, on sait d'après les intégrales de Riemann généralisées que la fonction $x \mapsto \frac{1}{\left(\frac{\pi}{2} - x\right)^{\frac{1}{2n}}}$ est intégrable en $\frac{\pi}{2}$ et donc la fonction $x \mapsto \sqrt[2n]{\tan(x)}$ est intégrable sur $\left[\frac{\pi}{4}, \frac{\pi}{2}\right[$.

<u>2nde méthode</u>:

Avec le changement de variable affine $x = \frac{\pi}{2} - t$, l'intégrale L_n est de même nature que l'intégrale $\int_0^{\frac{\pi}{4}} \sqrt[2n]{\tan\left(\frac{\pi}{2} - t\right)} dt = \int_0^{\frac{\pi}{4}} \sqrt[2n]{\frac{\cos(t)}{\sin(t)}} dt$ La fonction $t \mapsto \sqrt[2n]{\frac{\cos(t)}{\sin(t)}}$ est continue sur $\left]0, \frac{\pi}{4}\right]$ avec $\sqrt[2n]{\frac{\cos(t)}{\sin(t)}} \approx \frac{1}{\sqrt[2n]{t}}$, or $\frac{1}{2n} < 1$ puisque $n \in \mathbb{N}^*$, donc la fonction $t \mapsto \frac{1}{\sqrt[2n]{t}}$ est intégrable en 0 et par comparaison la fonction $t \mapsto \sqrt[2n]{\frac{\cos(t)}{\sin(t)}}$ est intégrable sur $\left]0, \frac{\pi}{4}\right]$. On en déduit que l'intégrale L_n

Les intégrales K_n et L_n convergent pour tout $n \in \mathbf{N}^*$.

(b) Pour $n \in \mathbf{N}^*$, $\frac{1}{2(n+1)} \le \frac{1}{2n}$ et $\forall x \in [0, \frac{\pi}{4}]$ tan $(x) \in [0, 1]$, donc

$$(\tan(x))^{\frac{1}{2n}} \leqslant (\tan(x))^{\frac{1}{2(n+1)}} \leqslant 1$$

et par intégration sur le segment $\left[0, \frac{\pi}{4}\right]$, $K_n \leqslant K_{n+1} \leqslant \frac{\pi}{4}$.

La suite $(K_n)_{n \in \mathbf{N}^*}$ est croissante et majorée.

(c) Pour $n \in \mathbf{N}^*$, $\frac{1}{2(n+1)} \leqslant \frac{1}{2n}$ et $\forall x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right[\tan(x) \geqslant 1 \text{ alors}\right]$

$$\sqrt[2(n+1)]{\tan(x)} \leqslant \sqrt[2n]{\tan(x)}$$

et par intégration sur $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, on obtient, puisque les intégrales convergent, $L_{n+1} \leqslant L_n$.

La suite $(L_n)_{n \in \mathbb{N}^*}$ est décroissante.

(d) $\forall x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right[\tan(x) \geqslant 1, \text{ alors } \forall n \in \mathbf{N}^* \quad \forall x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right[\sqrt[2n]{\tan(x)} \geqslant 1 \text{ et par intégration sur } \left[\frac{\pi}{4}, \frac{\pi}{2}\right], L_n \geqslant \frac{\pi}{2} - \frac{\pi}{4}.$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt[2n]{\tan x} \, \mathrm{d}x \geqslant \frac{\pi}{4}$$

(e) La suite (L_n) est décroissante et minorée par $\frac{\pi}{4}$, donc elle converge avec $\lim_{n\to+\infty} L_n \geqslant \frac{\pi}{4}$.

La suite (K_n) est croissante et majorée, donc elle converge, de plus $K_n \ge 0$, alors sa limite est aussi positive et finalement

$$\lim_{n \to +\infty} (K_n + L_n) \geqslant \frac{\pi}{4}$$

6. (a) Pour tout entier naturel non nul n, $K_n + L_n = \int_0^{\frac{\pi}{2}} \sqrt[2n]{\tan(x)} dx$.

La fonction $\varphi: u \mapsto \arctan(u^{2n})$ est une bijection croissante de classe C^1 de $[0, +\infty[$ sur $\left[0, \frac{\pi}{2}\right[$ avec $\varphi'(u) = \frac{2nu^{2n-1}}{1+u^{4n}}$, alors le changement de variable $x = \varphi(u)$ dans l'intégrale $K_n + L_n$ donne :

$$K_n + L_n = \int_0^{+\infty} \varphi'(u) \sqrt[2n]{\tan(\varphi(u))} du = \int_0^{+\infty} \frac{2nu^{2n-1}}{1 + u^{4n}} u du$$

On a donc $K_n + L_n = 2n \int_0^{+\infty} \frac{u^{2n}}{1 + u^{4n}} du$.

(b) On en déduit que
$$H_n = \frac{K_n + L_n}{2n}$$
.
La suite $(K_n + L_n)$ converge vers un réel strictement positif par le résultat de (e), il existe donc une constante $H > 0$ telle que $H_n \underset{n \to +\infty}{\sim} \frac{H}{n}$.

Exercice 1: Extrait de Mines-Ponts 2007 PSI

Définition: Soit $A \in \mathcal{M}_{n,n}(\mathbf{R})$, une matrice $A' \in \mathcal{M}_{n,n}(\mathbf{R})$ est un pseudo-inverse de A lorsque les trois propriétés suivantes sont satisfaites :

$$AA' = A'A \tag{1}$$

$$A = AA'A \tag{2}$$

$$A' = A'AA' \tag{3}$$

Soit A une matrice de $\mathcal{M}_{n,n}(\mathbf{R})$ et a l'endomorphisme de \mathbf{R}^n canoniquement associé.

- 7. On suppose que A admet un pseudo-inverse A'. On note a' l'endomorphisme de \mathbf{R}^n canoniquement associé à A'.
 - On sait que l'on a toujours $Im(a^2) \subset Im(a)$: $\forall y \in Im(a^2), \quad \exists x \in \mathbf{R}^n, \quad y = a^2(x) = a(a(x)) \text{ donc } y \in Im(a).$
 - D'après AA' = A'A et A = AA'A, on peut écrire $A = A^2A'$, ce qui donne $a = a^2 \circ a'$.

Soit $y \in Im(a)$, il existe $x \in \mathbf{R}^n$ tel que $y = a(x) = a^2(a'(x))$ donc $Im(a) \subset Im(a^2)$.

Par double inclusion on a obtenu $Im(a) = Im(a^2)$ et donc $rang(a) = rang(a^2)$.

Inversement on suppose maintenant que $rang(a) = rang(a^2)$. On note r cet entier.

8. • Puisque rang(a)=rang (a^2) , le théorème du rang appliqué à a et à a^2 donne $dimKer(a) = dimKer(a^2)$, or on a toujours $Ker(a) \subset Ker(a^2)$, donc $Ker(a) = Ker(a^2)$.

Soit $y \in Im(a) \cap Ker(a)$, il existe $x \in \mathbf{R}^n$ tel que y = a(x) et $0 = a(y) = a^2(x)$, donc $x \in Ker(a^2)$ et finalement $x \in Ker(a)$ donc y = a(x) = 0.

On a donc $Im(a) \cap Ker(a) = \{0\}$: l'image et le noyau de a sont en somme directe.

• On a $Im(a) \cap Ker(a) = \{0\}$ et $dim \mathbf{R}^n = dim Im(a) + dim Ker(a)$ donc $\mathbf{R}^n = Im(a) \oplus Ker(a)$.

9. On sait que Im(a) et Ker(a) sont des sous-espaces vectoriels stables par a, donc dans une base \mathcal{B} adaptée à $\mathbf{R}^n = Im(a) \oplus Ker(a)$ la matrice de a est diagonale par blocs de la forme $\begin{pmatrix} B & O \\ O & O \end{pmatrix}$ avec $B \in \mathcal{M}_{r,r}(\mathbf{R})$ (r = dim Im(a)).

1ère méthode pour B inversible :

B est la matrice de l' endomorphisme u induit par a sur $Im(a): u: \frac{Im(a)}{x} \to \frac{Im(a)}{a(x)}$. Alors $Ker(u) = Im(a) \cap Ker(a) = \{0\}$. u est donc bijectif et sa matrice B est inversible.

2nde méthode pour B inversible :

Par hypothèse rang(a) = r, alors $r = rang\begin{pmatrix} B & O \\ O & O \end{pmatrix} = rang(B)$ (puisque les colonnes r+1 à n sont toutes nulles). B est une matrice carrée d'ordre r de rang égal à r donc B est inversible.

Par formule de changement de bases, en notant W la matrice de passage de la base canonique à la base \mathcal{B} , on sait que $W \in \mathcal{M}_{n,n}(\mathbf{R})$ est inversible et

$$A = W \left(\begin{array}{cc} B & O \\ O & O \end{array} \right) W^{-1}$$

10. Posons A' = W. $\begin{pmatrix} B^{-1} & O \\ O & O \end{pmatrix}$. W^{-1} , on a par produit de matrices par blocs compatibles :

$$AA' = W \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} W^{-1}.W. \begin{pmatrix} B^{-1} & O \\ O & O \end{pmatrix}.W^{-1} = W \begin{pmatrix} B & O \\ O & O \end{pmatrix}. \begin{pmatrix} B^{-1} & O \\ O & O \end{pmatrix}.W^{-1} = W. \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.W^{-1} = W.$$

De même
$$A'A = W. \begin{pmatrix} B^{-1} & O \\ O & O \end{pmatrix}.W^{-1}.W \begin{pmatrix} B & O \\ O & O \end{pmatrix}.W^{-1} = W. \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.W^{-1}$$
, donc

$$AA' = A'A$$

On a aussi

$$AA'A = W. \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} . W^{-1}.W. \begin{pmatrix} B & O \\ O & O \end{pmatrix} . W^{-1} = W. \begin{pmatrix} I_r.B & O \\ O & O \end{pmatrix} . W^{-1} = A$$

$$A'.A.A' = W. \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.W^{-1}.W. \begin{pmatrix} B^{-1} & O \\ O & O \end{pmatrix}.W^{-1} = W. \begin{pmatrix} I_r.B^{-1} & O \\ O & O \end{pmatrix}.W^{-1} = A'$$

La matrice $A' = W. \begin{pmatrix} B^{-1} & O \\ O & O \end{pmatrix}.W^{-1}$ est donc un pseudo-inverse de A.

Considérons un pseudo-inverse quelconque A' de A et a' l'endomorphisme canoniquement associé à A'.

11. D'après AA' = A'A, on a $a \circ a' = a' \circ a$, donc a et a' commutent, on sait alors que Im(a) et Ker(a) sont stables par a'.

Si on le redémontre : si $x \in Ker(a)$ alors a(a'(x)) = a'(a(x)) = a'(0) = 0 donc $a'(x) \in Ker(a)$.

Si $x \in Im(a)$ alors il existe $z \in \mathbf{R}^n$, x = a(z) et $a'(x) = a'(a(z)) = a(a'(z)) \in Im(a)$.

En reprenant la base \mathcal{B} , citée plus haut, adpatée à $\mathbf{R}^n = Im(a) \oplus Ker(a)$ la matrice de a' est alors diagonale par blocs $\begin{pmatrix} D & O \\ O & O \end{pmatrix}$ avec $D \in \mathcal{M}_{r,r}(\mathbf{R})$ matrice de l'endomorphisme induit par a' sur Im(a) (r = dim Im(a)).

En prenant toujours W la matrice de passage de la base canonique à la base \mathcal{B} , on a

$$A' = W \left(\begin{array}{cc} D & O \\ O & O \end{array} \right) W^{-1}$$

- 12. D'après A = AA'A, on a AA' = AA'AA', donc $AA' = (AA')^2$, ce qui donne $a \circ a' = (a \circ a')^2$ et donc $a \circ a'$ est un projecteur.
 - Soit $x \in Ker(a)$, puisque Ker(a) est stable par a', on a $a'(x) \in Ker(a)$ donc $a \circ a'(x) = 0$ donc $x \in Ker(a \circ a')$. On a montré : $Ker(a) \subset Ker(a \circ a')$.

Puisque AA' = A'A et A = AA'A, on a $a \circ a' = a' \circ a$ et $a = a \circ a' \circ a = a \circ a'$, donc si $x \in Ker(a \circ a')$ alors $a(x) = a((a \circ a')(x)) = a(0) = 0$ et donc $x \in Ker(a)$. On a montré $Ker(a \circ a') \subset Ker(a)$.

Par double inclusion $Ker(a \circ a') = Ker(a)$.

• On a toujours $Im(a \circ a') \subset Im(a)$, en effet : $\forall y \in Im(a \circ a') \quad \exists x \in \mathbf{R}^n, \quad y = (a \circ a')(x) = a(a'(x)).$

On a déjà vu $a = a \circ a' \circ a = (a \circ a') \circ a$, donc $Im(a) \subset Im(a \circ a')$, en effet : $\forall y \in Im(a) \quad \exists x \in \mathbf{R}^n, \quad y = a(x) = (a \circ a' \circ a)(x) = (a \circ a')(a(x))$.

Par double inclusion $Im(a \circ a') = Im(a)$.

Le noyau et l'image du projecteur $a \circ a'$ sont respectivement Ker(a) et Im(a).

 $W^{-1}(AA')W$ est la matrice du projecteur $a\circ a'$ dans la base $\mathcal B$ adaptée à la décomposition

$$\mathbf{R}^n = Im(a) \oplus Ker(a) = Im(a \circ a') \oplus Ker(a \circ a') \text{ donc} \quad W^{-1}(AA')W = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.$$

13. D'après ce qui, précède $W^{-1}(AA')W = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$ et

$$W^{-1}(AA')W = W^{-1}.A.W.W^{-1}.A'.W = \begin{pmatrix} B & O \\ O & O \end{pmatrix}.\begin{pmatrix} D & O \\ O & O \end{pmatrix} = \begin{pmatrix} BD & O \\ O & O \end{pmatrix}$$

donc $B.D = I_r$ et $A' = W. \begin{pmatrix} B^{-1} & O \\ O & O \end{pmatrix} .W^{-1}$.

Donc si A' est un pseudo-inverse de A alors A' est unique donnée par A' = W. $\begin{pmatrix} B^{-1} & O \\ O & O \end{pmatrix}$. W^{-1} .

A admet au plus un pseudo-inverse.

Exercice 2: Extrait de CCINP 2007 PSI

Etant donnée une matrice A, la notation $A = (a_{i,j})$ signifie que $a_{i,j}$ est le coefficient de la ligne i et de la colonne j de la matrice A.

Lorsque A = (a) est une matrice de $\mathcal{M}_{1,1}(\mathbf{R})$, on identifie A avec le réel a.

On note det(A) le déterminant d'une matrice carrée A.

Soient p et n deux entiers naturels tels que $p \le n$, on rappelle la notation $\binom{n}{p} = \frac{n!}{p!(n-p)!}$. Soit $n \in \mathbb{N}$.

• Pour $p \in [0, n]$, on note $A_p = (a_{i,j})$ la matrice carrée de $\mathcal{M}_{n-p+1}(\mathbf{R})$ dont le coefficient de la ligne i et de la colonne j est égal à $a_{i,j} = \binom{p+i+j-2}{p+i-1}$ avec $(i,j) \in [1, n-p+1]^2$. On note

$$d_p = \det(A_p)$$

- On note D_n le déterminant de la matrice carrée de $\mathcal{M}_{n+1}(\mathbf{R})$ dont le coefficient de la ligne i et de la colonne j est (i+j)!, les lignes et les colonnes étant indexées de 0 à n.
- On note Δ_n le déterminant de la matrice carrée de $\mathcal{M}_{n+1}(\mathbf{R})$ dont le coefficient de la ligne i et de la colonne j est $\binom{i+j}{i}$ les lignes et les colonnes étant indexées de 0 à n.

On note de façon abusive $D_n = \det((i+j)!)$ et $\Delta_n = \det\left(\binom{i+j}{i}\right)$ avec $(i,j) \in [0,n]^2$.

14. Par définition:

$$a_{1,1} = \binom{p+1+1-2}{p+1-1} = \binom{p}{p} = 1$$

$$a_{1,n-p+1} = \binom{p+1+n-p+1-2}{p+1-1} = \binom{n}{p}$$

$$a_{n-p+1,1} = \binom{p+n-p+1+1-2}{p+n-p+1-1} = \binom{n}{n} = 1$$

$$a_{n-p+1,n-p+1} = \binom{p+n-p+1+n-p+1-2}{p+n-p+1-1} = \binom{2n-p}{n}$$

- 15. Pour tout entier naturel $n \ge 2$ par définition,
 - Pour p = n, on a $A_p = A_n \in \mathcal{M}_1(\mathbf{R})$ et

$$d_n = det(A_n) = a_{1,1} = 1$$

PSI

• Pour p = n - 1, on a $A_p = A_{n-1} \in \mathcal{M}_2(\mathbf{R})$ et n - p + 1 = 2 donc

$$d_{n-1} = \det(A_{n-1}) = a_{11}a_{22} - a_{12}a_{21} = \binom{2n - (n-1)}{n} - \binom{n}{n-1} = (n+1) - n = 1$$

• Pour
$$p = n - 2$$
, on a $A_p = A_{n-2} = \begin{pmatrix} 1 & n - 1 & \frac{n(n-1)}{2} \\ 1 & n & \frac{n(n+1)}{2} \\ 1 & n + 1 & \frac{(n+1)(n+2)}{2} \end{pmatrix} \in \mathcal{M}_3(\mathbf{R}).$

On calcule d_{n-2} en effectuant les opérations $L_2 \leftarrow L_2 - \bar{L}_1$ et $L_3 \leftarrow L_3 - L_1$ puis en développant par rapport à la première colonne, ce qui donne :

$$d_{n-2} = \begin{vmatrix} 1 & n-1 & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 2 & 2n+1 \end{vmatrix} = (-1)^{1+1} \begin{vmatrix} 1 & n \\ 2 & 2n+1 \end{vmatrix} = 1$$

- 16. On suppose que la matrice A_p possède au moins deux lignes. On note L_i la ligne d'indice i.
 - (a) Dans le calcul de d_p on effectue les opérations suivantes : pour i variant de n-p+1 à 2, on retranche la ligne L_{i-1} à la ligne L_i (opération codée $L_i \leftarrow L_i L_{i-1}$).
 - On remarque que $\forall i \in [2, n-p+1]$ $a_{i,1} = \binom{p+i-1}{p+i-1} = 1$, donc le nouveau coefficient d'indice (i,1) de la nouvelle ligne L_i est $b_{i,1} = a_{i,1} a_{i-1,1} = 0$.
 - Pour $j \in [2, n-p+1]$, le coefficient d'indice (i, j) de la nouvelle ligne L_i est donné par :

$$b_{i,j} = a_{i,j} - a_{i-1,j}$$

$$= \binom{p+i+j-2}{p+i-1} - \binom{p+i-1+j-2}{p+i-1-1}$$

$$= \binom{p+i+j-2}{p+i-1} - \binom{(p+i+j-2)-1}{(p+i-1)-1}$$

par la formule du triangle de Pascal on a :

$$b_{i,j} = \begin{pmatrix} p+i+j-3 \\ p+i-1 \end{pmatrix}$$

(b) En effectuant les opérations citées dans la question précédente sur le déterminant d_p , on obtient le déterminant d'une matrice par blocs : $d_p = \det \begin{pmatrix} 1 & L_p \\ 0 & B_p \end{pmatrix}$, L_p étant une matrice ligne et B_p matrice carrée d'ordre n-p+1-1=n-(p+1)-1. Et d'après ce qui précède, le coefficient d'indice $(i,j) \in [2,n-p+1]^2$ de B_p s'écrit

$$b_{i,j} = \binom{(p+1) + (i-1) + (j-1) - 2}{(p+1) + (i-1) - 1}$$

c'est donc le coefficient d'indice $(i-1,j-1) \in [1,n-(p+1)-1]^2$ de la matrice A_{p+1} , donc $d_p = \det \begin{pmatrix} 1 & L_p \\ 0 & A_{p+1} \end{pmatrix}$.

En effectuant le développement de ce dernier déterminant par rapport à la première colonne ou en utilisant la propriété sur le déterminant d'une matrice triangulaire par blocs, on a :

$$d_p = (-1)^{1+1} \times 1 \times det(A_{p+1}) = 1 \times det(A_{p+1}) = d_{p+1}$$

On en déduit que la suite (d_n) est constante, et avec les résultats de la question 17, on

a finalement
$$d_p = 1$$

17. • $D_0 = det(0!) = 1$.

PSI

$$D_1 = \det \begin{pmatrix} 0! & 1! \\ 1! & 2! \end{pmatrix} = \det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 1.$$

$$D_2 = det \begin{pmatrix} 0! & 1! & 2! \\ 1! & 2! & 3! \\ 2! & 3! & 4! \end{pmatrix} = det \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 6 \\ 2 & 6 & 24 \end{pmatrix} = 2.det \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 6 \\ 1 & 3 & 12 \end{pmatrix}$$
. On effectue les opérations

$$L_2 \leftarrow L_2 - L_1$$
 et $L_3 \leftarrow L_3 - L_1$ pour obtenir $D_2 = 2 \times det \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 4 \\ 0 & 2 & 10 \end{pmatrix}$. On développe par

rapport à la première colonne et on obtient :

$$D_2 = 2(-1)^{1+1} \cdot 1 \cdot \begin{vmatrix} 1 & 4 \\ 2 & 10 \end{vmatrix} = 2 \times (10 - 8) = 4$$

•
$$\Delta_0 = det \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$
 et $\Delta_1 = det \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 2 - 1 = 1.$

$$\Delta_2 = \det \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix} \end{pmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{vmatrix}.$$
 On effectue les opérations $L_2 \leftarrow L_2 - L_1$ et

 $L_3 \leftarrow L_3 - L_1$ et on obtient $\Delta_2 = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 5 \end{vmatrix}$. On développe par rapport à la première colonne et on obtient finalement

$$\Delta_2 = (-1)^{1+1} \times 1 \times \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 5 - 4 = 1$$

18. Pour tout $(i,j) \in [0,n]$, $(i+j)! = \frac{(i+j)!}{i!j!}$, alors la ligne L_i de Δ_n se factorise par $\frac{1}{i!}$, ce qui donne par multilinéarité du déterminant :

$$\Delta_n = \left(\prod_{i=0}^n \frac{1}{i!}\right) \times \det\left(\frac{(i+j)!}{j!}\right)$$

La colonne C_j du déterminant $det\left(\frac{(i+j)!}{j!}\right)$ se factorise par $\frac{1}{j!}$, alors par multilinéarité du déterminant on obtient :

$$\Delta_n = \left(\prod_{i=0}^n \frac{1}{i!}\right) \times \left(\prod_{j=0}^n \frac{1}{j!}\right) \times det\left((i+j)!\right)$$

Et donc
$$\Delta_n = \left(\prod_{k=0}^n \frac{1}{k!}\right)^2 D_n$$

19. Dans Δ_n , en se ramenant à des indices de ligne et de colonne variant entre 1 et n+1, on

peut écrire
$$\Delta_n = \det\left(\binom{i'+j'-2}{i'-1}\right) = d_0.$$

peut écrire
$$\Delta_n = \det\left(\binom{i'+j'-2}{i'-1}\right) = d_0$$
. On a donc $\Delta_n = 1$ et $D_n = \left(\prod_{k=0}^n k!\right)^2$