Exercice 1

Soit $A \in GL_n(\mathbf{C})$ et $\| \|$ une norme sur $\mathcal{M}_{n1}(\mathbf{C})$, montrer que $N : X \mapsto \|AX\|$ est une norme sur $\mathcal{M}_{n1}(\mathbf{C})$.

Exercice 2

Soit
$$x = (x_1, \dots, x_n) \in \mathbf{C}^n$$
 et $p \in \mathbf{N}^*$. On pose $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$.
Montrer que $||x||_{\infty} = \lim_{p \to +\infty} ||x||_p$.

Exercice 3

Soit (E, N) un espace vectoriel normé, F un autre espace vectoriel et $f \in \mathcal{L}(E, F)$ un isomorphisme. Montrer que $N_f : y \in F \mapsto N(f^{-1}(y))$ est une norme sur F.

Exercice 4

Soit $E = C^0([0,1], \mathbf{R})$. Soit $(f_n)_{n \in \mathbf{N}^*}$ la suite de fonctions $f_n : x \in [0,1] \mapsto \sqrt{n}x^n$.

- 1. Montrer que la suite $(f_n)_{n \in \mathbb{N}^*}$ n'est pas bornée pour la norme infinie.
- 2. Montrer que la suite $(f_n)_{n \in \mathbb{N}^*}$ est bornée pour la norme $N_2 : f \mapsto \sqrt{\int_0^1 f^2(t) dt}$.
- 3. Qu'en est-il pour la norme $N_1: f \mapsto \int_0^1 |f(t)| dt$?

Exercice 5

Pour $P \in \mathbf{R}[X]$, noté sous la forme $P = \sum_{k=0}^{+\infty} a_k X^k$, on pose

$$||P|| = \sup_{0 \le x \le \frac{1}{2}} |P(x)|$$
 et $N(P) = \left| \sum_{k=0}^{+\infty} a_k \right| + \sum_{k=1}^{+\infty} \frac{|a_k|}{k}$

- 1. Montrer que l'on définit ainsi deux normes sur $\mathbf{R}[X]$.
- 2. Montrer que la suite $(X^n)_{n\in\mathbb{N}}$ converge vers le polynôme nul pour la norme $\|$ $\|$ et le polynôme 1 pour la norme N. Que peut-on en déduire?
- 3. Construire une norme sur $\mathbf{R}[X]$ pour laquelle la suite $(X^n)_{n \in \mathbb{N}}$ converge vers le polynôme X.

Exercice 6

Soit $E = C^1([a, b], \mathbf{K})$ et $c \in [a, b]$.

- 1. Montrer que les applications $N: f \in E \mapsto ||f||_{\infty} + ||f'||_{\infty}$ et $N_c: f \mapsto |f(c)| + ||f'||_{\infty}$ sont des normes sur E.
- 2. Montrer que N et N_c sont équivalentes.
- 3. N et $\| \|_{\infty}$ sont-elles équivalentes?

Exercice 7

Soit E l'ensemble des fonctions $f:[0,1]\to \mathbf{R}$ lipshitziennes. On définit sur E:

$$N(f) = ||f||_{\infty} + \sup_{x \neq y} \left| \frac{f(x) - f(y)}{x - y} \right| \qquad N_a(f) = |f(a)| + \sup_{x \neq y} \left| \frac{f(x) - f(y)}{x - y} \right|$$

Montrer quie N et N_a sont des normes sur E et qu'elles sont équivalentes.

Exercice 8

Soit $(A_p)_{p \in \mathbb{N}}$ une suite de matrices de $\mathcal{M}_n(\mathbf{R})$ qui converge vers une matrice A. Montrer que pour toute matrice P fixée dans $\mathcal{M}_n(\mathbf{R})$ xw, la suite $(PA_p)_{p \in \mathbb{N}}$ converge vers la matrice PA.

Exercice 9

Soit
$$A \in \mathbf{S}_n(\mathbf{R})$$
. Pour $p \in \mathbf{N}$, on pose $S_p = \sum_{k=0}^p \frac{1}{k!} A^k$.

- 1. Montrer que la suite de matrices $(S_p)_{p \in \mathbb{N}}$ converge.
- 2. Donner sa limite dans le cas où $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$.

Exercice 10

Pour
$$A = (a_{ij}) \in \mathcal{M}_n(\mathbf{R})$$
, on note $N(A) = n \underset{1 \leq i, j \leq n}{Max} |a_{ij}|$.

1. Montrer que N est une norme sur $\mathcal{M}_n(\mathbf{R})$ et qu'elle vérifie :

$$\forall (A, B) \in \mathcal{M}_n(\mathbf{R})^2 \quad N(AB) \leqslant N(A)N(B)$$

- 2. Montrer qu'il n'existe pas de norme $\| \| \sup \mathcal{M}_n(\mathbf{R})$ qui vérifie : $\forall (A, B) \in \mathcal{M}_n(\mathbf{R}) \times \mathcal{M}_n(\mathbf{R}) \| \|AB\| = \|A\|.\|B\|.$
- 3. Soit $A \in \mathcal{M}_n(\mathbf{R})$, pour $p \in \mathbf{N}$ on pose $S_p = \sum_{k=0}^p \frac{1}{k!} A^k$. Montrer que la suite $(S_p)_{p \in \mathbf{N}}$ converge.