Dans tout ce chapitre K désigne R ou C et E désigne un K-espace vectoriel.

Remarque:

PSI

Si A est une partie non vide et majorée de R alors $\forall k \in \mathbf{R}^+$ Sup(kA) = kSup(A).

1 Norme et distance associée

Definition 1.1 Norme

On appelle norme sur l'espace E, toute application N définie sur E qui vérifie :

- $\forall x \in E, \quad N(x) \in \mathbf{R}^+ \quad (positivit\acute{e})$
- $\bullet \forall x \in E \quad N(x) = 0 \Longleftrightarrow x = 0_E \quad (séparation)$
- $\bullet \forall \lambda \in \mathbf{K}, \quad \forall x \in E, \quad N(\lambda x) = |\lambda|.N(x)$ (homogénéité)
- $\bullet \forall (x,y) \in E^2, \quad N(x+y) \leqslant N(x) + N(y) \qquad \quad (in\acute{e}galit\acute{e}\ triangulaire)$

(E, N) est alors appelé un espace vectoriel normé. S'il n'y a pas d'ambiguité sur la norme, on dit que E est un espace vectoriel normé, et on préfèrera souvent la notation ||x|| à N(x).

Proposition 1.1 Norme associée à un produit scalaire

Si $\langle .|. \rangle$ est un produit scalaire sur E alors l'application $||.||: E \to \mathbb{R}^+$ est une norme, appelée norme associée au produit scalaire.

Proposition 1.2 Inégalités triangulaire et triangulaire inverse

Pour toute norme $\|.\|$ sur E, on a :

$$\forall (x,y) \in E^2, \quad | \quad ||x|| - ||y|| \quad | \leq ||x - y|| \leq ||x|| + ||y||$$

Et on peut généraliser l'inégalité triangulaire :

$$\forall (x_1, \dots, x_n) \in E^n \quad \forall (\alpha_1, \dots, \alpha_n) \in \mathbf{K}^n \quad \left\| \sum_{k=1}^n \alpha_k x_k \right\| \leqslant \sum_{k=1}^n |\alpha_k| \cdot \|x_k\|$$

Definition 1.2 Distance associée à une norme

Si $\parallel \parallel$ est une norme sur l'espace E, on appelle distance associée à cette norme l'application

$$d: \begin{array}{ccc} E \times E & \longrightarrow & \mathbf{R}^+ \\ (x,y) & \longmapsto & d(x,y) = \|x - y\| \end{array}$$

Proposition 1.3

Si d est la distance associée à une norme $\| \ \|$ sur E alors :

- d est à valeurs dans \mathbf{R}^+
- $\bullet \forall (x,y) \in E^2 \quad d(x,y) = 0 \Longleftrightarrow x = y \qquad (s\'{e}paration)$
- $\bullet \forall (x,y) \in E^2 \quad d(x,y) = d(y,x) \qquad (sym\acute{e}trie)$
- $\bullet \forall (x, y, z) \in E^3 \quad d(x, z) \leq d(x, y) + d(y, z)$ (inégalité triangulaire)

2 Exemples de normes usuelles

2.1 Norme sur R et sur C

- La valeur absolue est une norme sur ${\bf R}$. Si N est une autre norme sur ${\bf R}$ alors il existe $\lambda>0$ tel que $N=\lambda.$
- L'application $z \mapsto |z|$ est une norme sur \mathbb{C} .

2.2 Normes usuelles sur K^p

On définit trois normes usuelles sur \mathbf{K}^p . Soit $x = (x_1, x_2, \dots, x_p) \in \mathbf{K}^p$,

$$||x||_1 = \sum_{k=1}^p |x_k|$$
 $||x||_2 = \sqrt{\sum_{k=1}^p |x_k|^2}$ $||x||_\infty = \max_{1 \le k \le p} |x_k|.$

Sur \mathbf{R}^p , la norme $\| \ \|_2$ est la norme euclidienne associée au produit scalaire canonique.

Remarque 2.2.1 Normes sur un espace vectoriel de dimension finie

On peut, comme sur \mathbf{K}^p , définir trois normes usuelles sur un espace vectoriel E de dimension p.

Si $\mathcal{B} = (e_1, e_2, \dots, e_p)$ est une base de E alors $\forall x \in E, \exists! (x_1, \dots, x_p) \in \mathbf{K}^p$ tel que $x = \sum_{k=1}^p x_k e_k$, et on définit :

$$||x||_1 = \sum_{k=1}^n |x_k| \qquad ||x||_2 = \sqrt{\sum_{k=1}^p |x_k|^2} \qquad ||x||_\infty = \max_{1 \le k \le p} |x_k|$$

2.3 Norme de la convergence uniforme

On note $\mathcal{B}(I, \mathbf{K})$ l'espace vectoriel des fonctions définies sur un intervalle I de \mathbf{R} , à valeurs dans \mathbf{K} et qui sont bornées sur I.

Proposition 2.3.1 Norme sur $\mathcal{B}(I, \mathbf{K})$

L'application $\| \|_{\infty}$ définie sur $\mathcal{B}(I, \mathbf{K})$ par :

$$||f||_{\infty} = \sup_{x \in I} |f(x)| = \sup \{|f(x)|, \quad x \in I\}$$

est une norme sur $\mathcal{B}(I, \mathbf{K})$.

On l'appelle la norme de la convergence uniforme, ou encore norme infinie.

Exemple 2.1

Soit
$$f: \begin{bmatrix} -1,1 \end{bmatrix} \to \mathbf{C}$$

 $x \mapsto e^{(1+i)x}$. Calculer $||f||_{\infty}$.

3 Suites d'éléments d'un espace vectoriel normé

Dans tout ce paragraphe, $(E, \| \|_E)$ désigne un espace vectoriel normé.

Definition 3.1

On appelle suite d'éléments de l'espace vectoriel E, toute application $u: \begin{matrix} \mathbf{N} & \longrightarrow & E \\ n & \longmapsto & u(n) = u_n \end{matrix}$, notée $u = (u_n)_{n \in \mathbf{N}}$.

On note $E^{\mathbf{N}}$ l'ensemble des suites d'éléments de E.

Definition 3.2 Suite bornée

On dit qu'une suite $u=(u_n)_{n\in\mathbb{N}}\in E^{\mathbf{N}}$ est bornée si et seulement si il existe M>0 tel que :

$$\forall n \in \mathbf{N}, \quad \|u_n\|_E \leqslant M$$

On note $\ell^{\infty}(E)$ l'ensemble des suites bornées.

Proposition 3.1

 $\ell^{\infty}(E)$ est un espace vectoriel qui peut être muni de la norme uniforme :

$$\forall u \in \ell^{\infty}(E), \quad ||u||_{\infty} = \sup_{n \in \mathbf{N}} ||u_n||_E$$

Definition 3.3 Convergence

Soit
$$(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$$
.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge pour la norme $\| \|_E$ si et seulement si il existe $\ell\in E$ tel que la suite numérique $(\|u_n-\ell\|_E)_{n\in\mathbb{N}}$ converge vers 0, ce qui donne :

$$\forall \varepsilon > 0, \quad \exists N \in \mathbf{N}, \quad \forall n \in \mathbf{N}, \quad n \geqslant N \Longrightarrow ||u_n - \ell|| \leqslant \varepsilon$$

Proposition 3.2

- 1. Si une suite converge pour une norme alors sa limite ℓ est unique, notée $\ell = \lim_{n \to +\infty} u_n$.
- 2. Toute suite convergente est bornée.

Remarque 3.1

Si N_1 et N_2 sont deux normes sur E, une suite $(u_n)_{n\in\mathbb{N}}\in E^{\mathbf{N}}$ peut converger vers $\ell\in E$ pour une des normes et pas pour l'autre.

 $Par\ exemple$: la suite d'éléments de $E=C^0([0,1])$ $(f_n)_{n\in\mathbb{N}}$ avec $f_n:x\in[0,1]\mapsto x^n$ converge vers la fonction nulle pour la norme $\|\cdot\|_1$ mais pas pour la norme $\|\cdot\|_{\infty}$.

Proposition 3.3 Opérations algébriques - Suites extraites

On considère deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ de $E^{\mathbf{N}}$, deux scalaires α et β et une suite de scalaires $(\lambda_n)_{n\in\mathbb{N}}$.

- Si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ_1 et $(v_n)_{n\in\mathbb{N}}$ converge vers ℓ_2 alors la suite $(\alpha u_n + \beta v_n)_{n\in\mathbb{N}}$ converge vers $\alpha \ell_1 + \beta \ell_2$.
- Si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ et si $(\lambda_n)_{n\in\mathbb{N}}$ converge vers le scalaire λ alors la suite $(\lambda_n u_n)_{n\in\mathbb{N}}$ converge vers $\lambda.\ell$.
- Si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ alors toutes ses suites extraites convergent vers ℓ .
- Si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ alors la suite numérique $(\|u_n\|)_{n\in\mathbb{N}}$ converge vers $\|\ell\|$.

4 Comparaison de normes

Definition 4.1 Normes équivalentes

Soit N_1 et N_2 deux normes sur le même espace vectoriel E. On dit que ces deux normes sont équivalentes si et seulement si :

$$\exists \alpha>0, \quad \exists \beta>0, \quad \forall x\in E, \quad \alpha N_1(x)\leqslant N_2(x)\leqslant \beta N_1(x)$$
 Ce qui revient à dire :
$$\left\{\begin{array}{ll} \exists a>0 \quad N_1\leqslant aN_2\\\\ \exists b>0 \quad N_2\leqslant bN_1 \end{array}\right.$$

Proposition 4.1

Pour deux normes équivalentes, il y a invariance du caractère borné et de la convergence d'une suite (avec même limite).

Proposition 4.2 Les normes $\| \|_1, \| \|_2, \| \|_{\infty}$ précédemment définies sur \mathbf{K}^p , sont équivalentes deux à deux :

$$\forall x \in \mathbf{K}^p, \quad \|x\|_{\infty} \leqslant \|x\|_2 \leqslant \|x\|_1 \leqslant \sqrt{p} \|x\|_2 \leqslant p \|x\|_{\infty}$$

5 Cas particulier de la dimension finie

Proposition 5.1 Équivalence des normes en dimension finie (admis)

Dans un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Corollaire 5.2

En dimension finie, la convergence d'une suite et la valeur de sa limite ne dépendent pas du choix de la norme.

Proposition 5.3 Utilisation d'une base

Soit E espace vectoriel normé de dimension finie muni d'une base $\mathcal{B} = (e_1, e_2, \dots, e_p)$.

On considère une suite $(u_n)_{n\in\mathbb{N}}\in E^{\mathbf{N}}$ et un vecteur $\ell\in E$ tels que :

$$\forall n \in \mathbb{N}, \quad u_n = u_{n,1}e_1 + u_{n,2}e_2 + \ldots + u_{n,p}e_p \quad \text{ et } \quad \ell = \ell_1e_1 + \ell_2e_2 + \ldots + \ell_pe_p$$

La suite $(u_n)_{n\in\mathbb{N}}\in E^{\mathbf{N}}$ converge vers ℓ si et seulement si pour tout $k\in [1,p]$ la suite coordonnée $(u_{n,k})_{n\in\mathbb{N}}$ (suite numérique) converge vers ℓ_k .

C'est-à-dire :
$$\lim_{n \to +\infty} u_n = \ell \iff \forall k \in [1, p], \quad \lim_{n \to +\infty} u_{n,k} = \ell_k.$$

Exemple 5.1

- La suite de matrices définies par $A_n = \begin{pmatrix} \frac{n+1}{n} & e^{-n} \\ \frac{\ln(n)}{n^2} & e^{\frac{1}{n}} \end{pmatrix}$ converge vers la matrice I_2 .
- Soit D une matrice diagonale d'ordre p, donner une condition nécessaire et suffisante pour que la suite de matrices $(D^n)_{n\in\mathbb{N}}$ converge.

Remarque 5.1 Cas particulier de C

On retrouve qu'une suite de nombres complexes converge si et seulement si les parties réelles et imaginaires convergent.