Soit $n \in \mathbb{N}^*$. Dans la suite, on note $\| \|_{\infty}$ la norme usuelle sur \mathbb{C}^n définie pour $(z_1, z_2, \dots, z_n) \in \mathbb{C}^n$ par :

$$\|(z_1, z_2, \dots, z_n)\|_{\infty} = \max(|z_1|, |z_2|, \dots, |z_n|)$$

et on identifie le n-uplet $(z_1, z_2, \dots, z_n) \in \mathbf{C}^n$ au vecteur colonne $\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{C})$. Pour

 $A \in \mathcal{M}_n(\mathbf{C})$, on note $|||A|||_{\infty}$ la norme de A pour la norme subordonnée à la norme $||\cdot||_{\infty}$ définie de la manière suivante :

$$|\parallel A \mid \parallel_{\infty} = \sup_{X \in \mathbf{C}^n, \parallel X \parallel_{\infty} \leqslant 1} \parallel AX \parallel_{\infty}.$$

On admet que $A \mapsto ||| A |||_{\infty}$ définie bien une norme sur $\mathcal{M}_n(\mathbf{C})$. Enfin, pour $Z \in \mathbf{C}^n$ et $P \in \mathcal{M}_n(\mathbf{C})$, on pose : $N_P(Z) = ||PZ||_{\infty}$.

1. Soit $D \in \mathcal{M}_n(\mathbf{C})$ une matrice diagonale :

$$D = \begin{pmatrix} m_{1,1} & 0 & \dots & \dots & 0 \\ 0 & m_{2,2} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & m_{n,n} \end{pmatrix}.$$

On pose $m = \max_{1 \le i \le n} |m_{i,i}|$.

- (a) Soit $Z \in \mathbb{C}^n$. Montrer que $||DZ||_{\infty} \leqslant m ||Z||_{\infty}$.
- (b) Déterminer $|||D|||_{\infty}$.
- 2. Montrer que si A et B sont deux matrices de $\mathcal{M}_n(\mathbf{C})$ alors $|||AB|||_{\infty} \le |||A|||_{\infty}$. $|||B|||_{\infty}$
- 3. (a) Soit $P \in \mathcal{M}_n(\mathbf{C})$. Montrer que N_P est une norme sur \mathbf{C}^n ssi P est une matrice inversible.

 Lorsque P est inversible, on notera dorénavant $\| \|_P$ pour N_P et la norme subordonnée à la norme $\| \|_P$ sur $\mathcal{M}_n(\mathbf{C})$ sera notée $\| \| \|_P$.
 - (b) On se donne une matrice $P \in GL_n(\mathbf{C})$. Pour $A \in \mathcal{M}_n(\mathbf{C})$, montrer que :

$$||| A |||_P = ||| PAP^{-1} |||_{\infty}$$
.

- 4. Soit $A \in \mathcal{M}_n(\mathbf{C})$. Pour $M \in \mathcal{M}_n(\mathbf{C})$, on note $\operatorname{sp}(M)$ l'ensemble des valeurs propres de M et on définit $\rho(M)$ par : $\rho(M) = \max\{ \mid \mu \mid, \mu \in \operatorname{sp}(M) \}$.
 - (a) Montrer que, pour toute matrice $P \in GL_n(\mathbf{C})$, on a : $\rho(A) = \rho(PAP^{-1})$.
 - (b) Soit $P \in GL_n(\mathbf{C})$. Montrer que $\rho(A) \leq |||A|||_P$.

- (c) On suppose A diagonalisable. Montrer qu'il existe $P \in GL_n(\mathbf{C})$ telle que $\rho(A) = |||A|||_P$.
- (d) Un exemple. Soit $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Déterminer $\rho(A)$. Déterminer l'inverse P^{-1} d'une matrice $P \in GL_3(\mathbf{C})$ telle que $\rho(A) = |||A|||_P$.
- (e) Un exemple. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbf{C})$ définie par : $\forall (i,j) \in [1,n]^2, a_{i,j} = j$. Déterminer l'inverse P^{-1} d'une matrice $P \in GL_n(\mathbf{C})$ telle que $\rho(A) = |||A|||_P$.
- 5. Dans cette question, on suppose que n=2. Soit donc $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbf{C})$.
 - (a) On pose $m = \max(|a| + |b|, |c| + |d|)$. Montrer que, pour tout $Z \in \mathbb{C}^2$, on a : $||AZ||_{\infty} \leqslant m ||Z||_{\infty}$. Déterminer $|||A|||_{\infty}$.
 - (b) On suppose la matrice non diagonalisable et on note f l'endomorphisme de ${\bf C}^2$ canoniquement associé à A.
 - i. Démontrer que sp(A) ne contient qu'un seul élément. On le note α .
 - ii. Démontrer l'existence d'une base e de \mathbf{C}^2 telle que : $Mat_e(f) = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$.
 - iii. Soit $\varepsilon > 0$. Démontrer l'existence d'une base e' de \mathbf{C}^2 telle que : $Mat_{e'}(f) = \left(\begin{array}{cc} \alpha & \beta' \\ 0 & \alpha \end{array} \right) \text{ où } |\beta'| \leqslant \varepsilon.$
 - iv. En déduire l'existence d'une matrice $P \in GL_2(\mathbf{C})$ telle que : $||| A |||_P \leqslant \rho(A) + \varepsilon$.
 - (c) Déterminer $\inf_{P \in GL_2(\mathbf{C})} ||| A |||_P$.
 - (d) Un exemple. Soit $A = \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix}$. Calculer $|||A|||_{\infty}$ et montrer qu'il existe $P \in GL_2(\mathbf{C})$ telle que $|||A|||_P \leqslant 2$.
 - (e) On suppose que $\rho(A) < 1$. Justifier l'existence d'une matrice $P \in GL_2(\mathbf{C})$ telle que : $|||A|||_P < 1$. Que peut-on en déduire concernant la suite (A^n) ?

Fin de l'énoncé