Exercice: Extrait de EPITA 2021

On considère un \mathbf{R} -espace vectoriel E de dimension finie, on note Id l'endomorphisme identité de E, et on se propose d'étudier l'endomorphisme f = p + q où p et q sont deux projecteurs de E qui commutent, c'est-à-dire qui vérifient : $p \circ q = q \circ p$.

Etude des valeurs propres de f = p + q

1. En utilisant $p \circ q = q \circ p$ et la linéarité de p et de q, on a :

$$f^2 = p + q + 2p \circ q = f + 2p \circ q$$
 et $f^3 = p + q + 6p \circ q = f + 6p \circ q = f + 3(f^2 - f)$

On en déduit que $f^3-3f^2+2f=0$ et donc X^3-3X^2+2X est un polynôme annulateur de f

2. On sait que toute valeur propre de f est racine du polynôme annulateur $X^3 - 3X^2 + 2X$. Or $X^3 - 3X^2 + 2X = X(X - 1)(X - 2)$, donc

les valeurs propres possibles de l'endomorphisme f = p + q sont 0, 1 et 2.

Etude des sous-espaces propres de f = p + q

- 3. (a) Soit $x \in \text{Ker}(p) \cap \text{Ker}(q)$ i.e. p(x) = 0 et q(x) = 0, d'où (p+q)(x) = p(x) + q(x) = 0i.e. $x \in \text{Ker}(p+q)$. Donc $\text{Ker}(p) \cap \text{Ker}(q) \subset \text{Ker}(p+q)$.
 - Soit $x \in \text{Ker}(p+q)$, on a p(x)+q(x)=0 donc p(x)=-q(x). On applique p et q à cette égalité de vecteurs, ce qui donne $(p^2 = p \text{ et } q^2 = q) p(x) = -p \circ q(x)$ et $q \circ p(x) = -q(x) = p(x)$, or $p \circ q = q \circ p$ donc p(x) = -p(x). Finalement p(x) = 0 et ainsi 0 = p(x) + q(x) = q(x) = 0 donc $x \in \text{Ker}(p) \cap \text{Ker}(q)$.

Ainsi on a bien $\operatorname{Ker}(p) \cap \operatorname{Ker}(q) = \operatorname{Ker}(p+q)$.

(b) Montrons que $Ker(p+q-2Id) = Im(p) \cap Im(q)$:

1ère méthode:

p et q étant des projecteurs, on sait que Im(p) = Ker(p-Id) = Ker(Id-p) et Im(q) = Ker(q - Id) = Ker(Id - q). De plus on sait que Id - p et Id - q sont aussi des projecteurs et puisque p et q commutent, Id - p et Id - q commutent aussi, on déduit alors du 3(a) que :

$$Ker(p+q-2Id)=Ker((Id-p)+(Id-q))=Ker(Id-p)\cap Ker(Id-q)=Im(p)\cap Im(q).$$

2nde méthode:

Soit $x \in \text{Ker}(p+q-2Id)$, on a p(x)+q(x)-2x=0 donc $x=p\left(\frac{x}{2}\right)+q\left(\frac{x}{2}\right)$. Puisque $p^2=p$, on a $p(x)=p\left(\frac{x}{2}\right)+p\circ q\left(\frac{x}{2}\right)$ et puisque $p\circ q=q\circ p$ on a $p(x)=2p\left(\frac{x}{2}\right)=p\left(\frac{x}{2}\right)+q\circ p\left(\frac{x}{2}\right)$ donc $p\left(\frac{x}{2}\right)=q\circ p\left(\frac{x}{2}\right)$ et finalement $x=q\circ p\left(\frac{x}{2}\right)+q\left(\frac{x}{2}\right)=q\left(p\left(\frac{x}{2}\right)+\frac{x}{2}\right)\in Im(q)$

Par symétrie on obtient aussi $x=p\left(q\left(\frac{x}{2}\right)+\frac{x}{2}\right)\in Im(p)$ donc $x\in Im(p)\cap Im(q)$ et donc $\mathrm{Ker}(p+q-2Id)\subset Im(p)\cap Im(q)$.

Réciproquement, on sait que pour tout projecteur p, Im(p) = Ker(p - Id), donc si $x \in Im(p) \cap Im(q)$ alors x = p(x) = q(x) et donc p(x) + q(x) - 2x = 0, ce qui donne $x \in \text{Ker}(p+q-2Id)$ et $Im(p) \cap Im(q) \subset \text{Ker}(p+q-2Id)$.

Donc $Ker(p+q-2Id) = Im(p) \cap Im(q)$.

4. Par définition, 0 est valeur propre de f = p + q si, et seulement si $Ker(f) \neq \{0\}$, or $Ker(f) = Ker(p + q) = Ker(p) \cap Ker(q)$. Donc 0 est valeu rporpre de f si, et seulement si, $Ker(p) \cap Ker(q) \neq \{0\}$ et $E_0(f) = Ker(f) = Ker(p) \cap Ker(q)$.

2 est valeur propre de f si, et seulement si $\mathrm{Ker}(p+q-2Id)=Im(p)\cap Im(q)\neq\{0\}$ et $E_2(f)=Im(p)\cap Im(q).$

- 5. On a déjà vu $f^2 = p + q + 2p \circ q = f + 2p \circ q$ donc $2f f^2 = f 2p \circ q = p + q 2p \circ q$, donc $Im(p + q 2p \circ q) = Im(2f f^2)$.
 - Soit $x \in \text{Im}(2f f^2)$, il existe $z \in E$ tel que $x = 2f(z) f^2(z)$. D'où

$$f(x) = 2f^{2}(z) - f^{3}(z) = 2f^{2}(z) - 3f^{2}(z) - 3f^{2}(z) - 3f^{2}(z) - 2f(z) = 2f(z) - f^{2}(z) = x$$

Ainsi

$$f(x) - x = 0$$

i.e. $x \in \text{Ker}(f - Id)$ donc $\text{Im}(2f - f^2) \subset \text{Ker}(f - Id)$.

• Soit $x \in \text{Ker}(f - Id)$, alors x = f(x) et donc $x = f^2(x)$, on peut écrire $x = (2f - f^2)(x)$. On a donc $x \in \text{Im}(2f - f^2)$.

On a montré par double inclusion : $\operatorname{Ker}(f-Id) = \operatorname{Im}(2f-f^2) = \operatorname{Im}(p+q-2pq)$

6.

$$(Id - 2p)^2 = Id - 4p + 4p = Id$$

et

$$(Id-2p)\circ (p+q-2p\circ q)=p+q-2p\circ q-2p-2p\circ q+4p\circ q=q-p$$

• Si 1 est valeur propre de f alors $\operatorname{Ker}(f-Id) = \operatorname{Im}(p+q-2p\circ q) \neq \{0\}$. Il existe donc $x\in E$ tel que $(p+q-2p\circ q)(x)\neq 0$.

 $(Id-2p)^2=Id$, donc Id-2p est inversible d'inverse lui-même, on a donc $(p+q-2p\circ q)(x)\neq 0 \Longrightarrow (Id-2p)\circ (p+q-2p\circ q)(x)\neq 0$, ce qui donne $(q-p)(x)\neq 0$ d'où $p\neq q$.

• Réciproquement si $p \neq q$ alors il existe $x \in E$ tel que $(q - p)(x) \neq 0$ et donc $(Id - 2p) \circ (p + q - 2p \circ q)(x) \neq 0$, ce qui entraine $(p + q - 2p \circ q)(x) \neq 0$ et ainsi $Im(p + q - 2p \circ q) = Ker(f - Id) \neq \{0\}$, donc 1 est valeur propre.

On a bien obtenu : 1 est valeur propre de f = p + q si, et seulement si $p \neq q$.

Réduction de l'endomorphisme f = p + q

7. $f \in \mathcal{L}(E)$ donc $\operatorname{Ker}(f) + \operatorname{Ker}(f - Id) + \operatorname{Ker}(f - 2Id) \subset E$.

Soit $x \in E$.

• Analyse : On suppose qu'il existe $x_0 \in \text{Ker}(f)$, $x_1 \in \text{Ker}(f - Id)$ et $x_2 \in \text{Ker}(f - 2Id)$ tels que $x = x_0 + x_1 + x_2$, alors par linéarité de f :

$$f(x) = x_1 + 2x_2$$
 et $f^2(x) = x_1 + 4x_2$

On obtient ainsi un système à trois équations vérifié par les trois inconnues x_0, x_1, x_2 . Après résolution de ce système linéaire on obtient :

$$x_0 = x - \frac{3}{2}f(x) + \frac{1}{2}f^2(x), \qquad x_1 = 2f(x) - f^2(x), \qquad x_2 = \frac{1}{2}(f^2(x) - f(x))$$

On a ainsi obtenu que si x_0, x_1, x_2 existent alors ils sont uniques, donnés par les formules ci-dessus.

• Synthèse: Soit $x_0 = x - \frac{3}{2}f(x) + \frac{1}{2}f^2(x)$, $x_1 = 2f(x) - f^2(x)$, $x_2 = \frac{1}{2}(f^2(x) - f(x))$.

On a directement $x_0 + x_1 + x_2 = x$ et en utilisant $f^3 - 3f^2 + 2f = 0$, on obtient facilement

$$\begin{cases} f(x_0) = f(x - \frac{3}{2}f(x) + \frac{1}{2}f^2(x))) = 0\\ (f - Id)(x_1) = (f - Id)(2f(x) - f^2(x)) = 0\\ (f - 2Id)(x_2) = (f - 2Id)(\frac{1}{2}(f^2(x) - f(x))) = 0 \end{cases}$$

donc $x_0 \in \text{Ker}(f)$, $x_1 \in \text{Ker}(f - Id)$ et $x_2 \in \text{Ker}(f - 2Id)$.

On a montré par analyse synthèse

$$\forall x \in E \quad \exists! (x_0, x_1, x_2) \in \text{Ker}(f) \times \text{Ker}(f - Id) \times \text{Ker}(f - 2Id) \quad x = x_0 + x_1 + x_2$$

donc $E \subset \operatorname{Ker}(f) \oplus \operatorname{Ker}(f - Id) \oplus \operatorname{Ker}(f - 2Id)$ et finalement

$$E=\mathrm{Ker}(f)\oplus\mathrm{Ker}(f-Id)\oplus\mathrm{Ker}(f-2Id).$$

Remarque:

Certains ont voulu montrer d'abord que $\operatorname{Ker}(f) + \operatorname{Ker}(f-Id) + \operatorname{Ker}(f-2Id)$ est une somme directe puis que $E \subset \operatorname{Ker}(f) \oplus \operatorname{Ker}(f-Id) \oplus \operatorname{Ker}(f-2Id)$. Mais attention à la façon de prouver qu'une somme de trois sous-espaces (et non deux) est directe, cela se traite par la caractérisation vue dans le cours :

Soit $(x_0, x_1, x_2) \in \text{Ker}(f) \times \text{Ker}(f - Id) \times \text{Ker}(f - 2Id)$ tel que $x_0 + x_1 + x_2 = 0$. Il faut montrer que $x_0 = 0 = x_1 = x_2$:

On a $x_0 + x_1 + x_2 = 0$ donc par linéarité de f $\begin{cases} x_0 + x_1 + x_2 &= 0 \\ f(x_0) + f(x_1) + f(x_2) &= f(0) = 0 \\ f^2(x_0) + f^2(x_1) + f^2(x_2) &= f^2(0) = 0 \end{cases}$ ce qui donne

$$x_0 + x_1 + x_2 = 0 \Longrightarrow \left\{ \begin{array}{lll} x_0 + x_1 + x_2 & = & 0 \\ x_1 + 2x_2 & = & 0 \\ x_1 + 4x_2 & = & 0 \end{array} \right. \Longrightarrow \left\{ \begin{array}{lll} x_0 + x_1 + x_2 & = & 0 \\ x_1 + 2x_2 & = & 0 \\ 2x_2 & = & 0 \end{array} \right. \Longrightarrow \left\{ \begin{array}{lll} x_2 & = & 0 \\ x_1 & = & 0 \\ x_0 & = & 0 \end{array} \right.$$

Et on montre $E \subset \mathrm{Ker}(f) \oplus \mathrm{Ker}(f-Id) \oplus \mathrm{Ker}(f-2Id)$ par analyse-synthèse comme écrit précédemment.

8. 1ère méthode:

X(X-1)(X-2) est un polynôme annulateur de f et il est scindé à racines simples donc f=p+q est diagonalisable.

2nde méthode:

On sait que les sous-espaces propres de f sont **parmi** les noyaux Ker(f), Ker(f-Id) et Ker(f-2Id) puisque $Sp(f) \subset \{0,1,2\}$.

 $E = \operatorname{Ker}(f) \oplus \operatorname{Ker}(f - Id) \oplus \operatorname{Ker}(f - 2Id)$, un ou deux de ces noyaux peut être réduit au vecteur nul et les autres sont alors sous-espaces propres de f, donc E est égal à la somme

directe des sous-espaces propres de f et $\left| f = p + q \right|$ est diagonalisable.

Avec les notations de la guestion 7 on a pour tout $x \in E$

$$\begin{cases} \pi_0(x) = x_0 = x - \frac{3}{2}f(x) + \frac{1}{2}f^2(x) \\ \pi_1(x) = x_1 = 2f(x) - f^2(x) \\ \pi_2(x) = x_2 = \frac{1}{2}(f^2(x) - f(x)) \end{cases}$$

Donc
$$\pi_0 = Id - \frac{3}{2}f + \frac{1}{2}f^2$$
 $\pi_1 = 2f - f^2$ $\pi_2 = \frac{1}{2}(f^2 - f)$

Problème: Extrait de Centrale PC 2015

 \mathbf{K} désigne le corps \mathbf{R} ou le corps \mathbf{C} et E est un \mathbf{K} -espace vectoriel non réduit au vecteur nul.

Si f est un endomorphisme de E, pour tout sous-espace F de E stable par f on note f_F l'endomorphisme de F induit par f, c'est-à-dire défini sur F par $f_F(x) = f(x)$ pour tout x dans F.

Pour tout endomorphisme f de E on définit la suite $(f^k)_{k \in \mathbb{N}}$ des puissances de f par : $f^0 = Id_E$ et $f^{k+1} = f \circ f^k = f^k \circ f$ pour tout $k \in \mathbb{N}$.

Première partie:

Dans cette partie, f désigne un endomorphisme d'un K-espace vectoriel E.

- 9. Soit D une droite engendrée par un vecteur \mathbf{y} de E alors $\mathbf{y} \neq 0$ et $D = Vect(\mathbf{y})$.
 - Si $D = Vect(\mathbf{y})$ est stable par f alors puisque $\mathbf{y} \in D$, on a $f(\mathbf{y}) \in D = Vect(\mathbf{y})$ donc il existe $\lambda \in \mathbf{K}$ tel que $f(\mathbf{y}) = \lambda \mathbf{y}$. Puisque $\mathbf{y} \neq 0$, \mathbf{y} est un vecteur propre de f.
 - Si \mathbf{y} est un vecteur propre de f alors $\mathbf{y} \neq 0$ et il existe $\lambda \in \mathbf{K}$ tel que $f(\mathbf{y}) = \lambda \mathbf{y}$. $\forall x \in D = Vect(\mathbf{y}), \quad \exists \alpha \in \mathbf{K}, \quad x = \alpha \mathbf{y}$ alors par linéarité de f, $f(x) = \alpha f(\mathbf{y}) = \alpha \lambda \mathbf{y} \in Vect(\mathbf{y})$, donc D est stable par f.

Par double implication on a montré :

Une droite $D = Vect(\mathbf{y})$ est stable par f si et seulement si \mathbf{y} est un vecteur propre de f.

10. (a) • f est linéaire donc f(0) = 0 et donc $\{0\}$ est un sous-espace stable par f. f est un endomorphisme de E donc $\forall x \in E$, $f(x) \in E$, donc E est stable par f.

 $\{0\}$ et E sont toujours deux sous-espaces stables par f.

• Soit f l'endomorphisme de \mathbf{R}^2 de matrice dans la base canonique $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Un sous-espace stable par f est de dimension égale à 0, ou 1 ou 2, c'est donc soit $\{0\}$, soit une droite D engendrée par un vecteur propre \mathbf{y} de f, soit \mathbf{R}^2 . Or

$$\lambda \in Sp(f) \iff \lambda \in Sp_{\mathbf{R}}(A) \iff det(\lambda I_2 - A) = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = 0 \text{ et } \lambda \in \mathbf{R}$$

$$\lambda \in Sp(f) \iff \lambda^2 + 1 = 0 \text{ et } \lambda \in \mathbf{R}$$

On en déduit que f n'admet pas de valeur propre et par conséquent n'admet pas de vecteur propre \mathbf{y} . Il n'existe donc pas de sous-espace stable par f de dimension 1, donc les seuls sous-espaces propres de f sont $\{0\}$ et \mathbf{R}^2 .

- (b) On suppose que $dim(E) = n \ge 2$ avec $f \ne 0$ et f non injectif. $f \ne 0$ alors $Ker(f) \ne E$ et f non injectif alors $Ker(f) \ne \{0\}$.
 - Ker(f) est un sous-espace stable par $f: \forall x \in Ker(f), \quad f(f(x)) = f(0) = 0$ donc $f(x) \in Ker(f)$. (Ou encore plus rapide: f et f commutent donc Ker(f) est stable par f.)

On a donc trouvé trois sous-espaces distincts stables par $f: \{0\}, Ker(f)$ et E.

• Supposons que n soit impair, par le théorème du rang on sait que n=dimKer(f)+dimIm(f) et donc ici $dimIm(f)\neq dimKer(f)$.

De plus $f \neq 0$ et f non injectif donc $Im(f) \neq \{0\}$ et $Im(f) \neq E$. Or Im(f) est aussi stable par f (f et f commutent), on a donc trouvé un quatrième sous-espace stable par

f. $\{0\}, Ker(f), Im(f) \text{ et } E \text{ sont quatres sous-espaces stables par } f.$

• Soit $f \in \mathcal{L}(\mathbf{R}^2)$ dont la matrice dans la base canonique (e_1, e_2) est $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

A est triangulaire à diagonale nulle, donc la seule valeur propre de A (de f) est 0 et f est de rang égal à 1, donc Ker(f) est de dimension 1 et $Ker(f) = Vect(e_1)$.

Tout sous-espace F stable par f est de dimension 0 ou 1 ou 2, donc $F = \{0\}$ ou $F = \mathbb{R}^2$ ou F est une droite.

Si F est une droite stable par f alors F est engendré par un vecteur propre \mathbf{y} qui est associé à la seule valeur propre 0 donc $F \subset Ker(f)$ et F = Ker(f) par égalité des dimensions.

fne possède que trois sous-espaces stables : $\{0\}\,, Ker(f)$ et ${\bf R}^2.$

11. (a) Soit $F = Vect(e_1, \dots, e_p)$ avec $\forall i \in [1, p], e_i$ un vecteur propre de f.

Si $x \in F$ alors il existe $(\alpha_1, \dots, \alpha_p) \in \mathbf{K}^p$ tel que $x = \sum_{i=1}^p \alpha_i e_i$. Par linéarité de f, on aura :

$$f(x) = f\left(\sum_{i=1}^{p} \alpha_i e_i\right) = \sum_{i=1}^{p} \alpha_i f(e_i)$$

 $\forall i \in [1, p], \quad \exists \lambda_i \in \mathbf{K}, \quad f(e_i) = \lambda_i e_i \text{ puisque } e_i \text{ est un vecteur propre de } f, \text{ donc}$

$$f(x) = \sum_{i=1}^{p} \alpha_i \lambda_i e_i$$

 $\underline{f}(x)$ est combinaison linéaire des vecteurs e_1, \dots, e_p donc $\underline{f}(x) \in F = Vect(e_1, \dots, e_p)$.

Tout sous-espace engendré par une famille de vecteurs propres est donc stable par f.

Soit $\lambda \in \mathbf{K}$ une valeur propre de f et $E_{\lambda} = Ker(f - \lambda Id_E)$ le sous-espace propre associé est stable par f avec $\forall x \in E_{\lambda}$, $f(x) = \lambda x$, donc l'endomorphisme de E_{λ} induit par f est $\lambda Id_{E_{\lambda}}$ (homothétie de rapport λ sur E_{λ}).

(b) On suppose ici que f admet un sous-espace propre $E_{\lambda} = Ker(f - \lambda Id_E)$ de dimension au moins égale à 2, alors E_{λ} admet au moins une famille libre contenant 2 vecteurs \mathbf{u}_1 et \mathbf{u}_2 . $\forall \alpha \in \mathbf{R}, \alpha \mathbf{u}_1 + \mathbf{u}_2 \in E_{\lambda}$ et $\alpha \mathbf{u}_1 + \mathbf{u}_2 \neq 0$ (($\mathbf{u}_1, \mathbf{u}_2$) est libre), donc $F_{\alpha} = Vect(\alpha \mathbf{u}_1 + \mathbf{u}_2)$ est une droite engendrée par un vecteur propre de f, c'est donc une droite stable par f.

Puisque $(\mathbf{u}_1, \mathbf{u}_2)$ est libre, $\alpha \mathbf{u}_1 + \mathbf{u}_2 = \mu(\beta \mathbf{u}_1 + \mathbf{u}_2) \iff \alpha = \mu\beta$ et $1 = \mu$ donc $\alpha = \beta$. On en déduit que si $\alpha \neq \beta$ alors $\alpha u_1 + \mathbf{u}_2$ et $\beta \mathbf{u}_1 + \mathbf{u}_2$ ne sont pas colinéaires donc F_{α} PSI

et F_{β} sont deux droites distinctes. On a ainsi une infinité de droites stables par f.

(c) On suppose que tout sous-espace de E est stable par f. En particulier $\forall x \in E \setminus \{0\}$, Vect(x) est une droite stable par f, donc:

$$\forall x \in E \setminus \{0\}, \quad \exists \lambda_x \in \mathbf{K}, \quad f(x) = \lambda_x x$$

Montrons que $\forall (x, y) \in (E \setminus \{0\})^2$, $\lambda_x = \lambda_y$:

Soit $(x, y) \in E^2$ avec $x \neq 0$ et $y \neq 0$:

• Si (x, y) est une famille libre alors $x + y \neq 0$ et

$$\lambda_x x + \lambda_y y = f(x) + f(y) = f(x+y) = \lambda_{x+y}(x+y)$$

par identification des coefficients puisque la famille (x, y) est libre on a :

$$\lambda_x = \lambda_{x+y} = \lambda_y$$

• Si (x,y) est une famille liée alors il existe $\alpha \in \mathbf{K}$ tel que $y=\alpha x$ et

$$\lambda_y y = f(y) = \alpha f(x) = \alpha \lambda_x x = \lambda_x y$$

or $y \neq 0$ donc $\lambda_y = \lambda_x$.

Dès que x et y sont non nuls, on a bien $\lambda_x = \lambda_y$. De plus $f(0) = 0 = \lambda.0$ pour tout scalaire λ .

On a finalement l'existence d'un scalaire λ tel que $\forall x \in E$, $f(x) = \lambda x$. Si tout sous-espace de E est stable par f alors f est une homothétie.

- 12. Dans cette question, E est un espace de dimension finie.
 - (a) On suppose que f est diagonalisable alors il existe une base \mathcal{B} de E dans laquelle la matrice de f est diagonale, ce qui revient à \mathcal{B} est formée de vecteurs propres de f.

Soit F un sous-espace stable par f, notons k la dimension de F.

- Si k = n alors F = E et $\{0\}$ est un supplémentaire de F stable par f.
- Si k=0 alors $F=\{0\}$ et E est un supplémentaire de F stable par f.
- Si $k \in [1, n-1]$ alors F admet une base $\mathcal{B}_F = (v_1, \ldots, v_k)$ formée de k vecteurs de E. Cette famille \mathcal{B}_F est libre, par théorème de la base incomplète on peut la compléter en une base de E avec (n-k) vecteurs de \mathcal{B} que l'on peut noter $\mathbf{u}_1, \ldots, \mathbf{u}_{n-k}$. On sait alors que $E = F \oplus Vect(\mathbf{u}_1, \ldots, \mathbf{u}_{n-k})$, et $G = Vect(\mathbf{u}_1, \ldots, \mathbf{u}_{n-k})$ est un supplémentaire de F stable par f puisqu'il est engendré par une famille de vecteurs propres de f.
- (b) On considère dans cette question que $\mathbf{K} = \mathbf{C}$ et que f est un endomorphisme de E tel que tout sous-espace stable par f admet un supplémentaire stable par f. Montrons qu'alors f est diagonalisable :

Notons \mathcal{X}_f le polynôme caractéristique de f, $\mathcal{X}_f \in \mathbf{K}[X] = \mathbf{C}[X]$ est donc scindé sur $\mathbf{K} = \mathbf{C}$, il admet alors au moins une racine λ_1 qui est donc valeur propre de f, son sous-espace propre associé $E_{\lambda_1} = Ker(f - \lambda_1 Id_E) \neq \{0\}$.

Notons alors $\lambda_1, \ldots, \lambda_r$ les valeurs propres distinctes de f (les racines de χ_f) et $E_{\lambda_1}, \ldots, E_{\lambda_r}$ les sous-espaces propres associés. On sait que la somme $E_{\lambda_1} + \ldots + E_{\lambda_r}$ est une somme directe et qu'une base de ce sous-espace est formée de vecteurs propres de f donc

$$F = \bigoplus_{i=1}^r E_{\lambda_i} \subset E$$
 est un sous-espace stable par f qui est différent de $\{0\}$.

Supposons : $F \neq E$ alors F admet un supplémentaire $G \neq \{0\}$ stable par f. On sait alors que l'endomorphisme g induit par f sur G $(g: x \in G \mapsto f(x))$ a un polynôme caractéristique χ_g qui divise χ_f et qui est aussi scindé sur $\mathbf{K} = \mathbf{C}$, g admet donc une valeur propre $\lambda \in Sp(f) = \{\lambda_1, \ldots, \lambda_r\}$. On en déduit :

$$\exists k \in [1, r], \quad \lambda = \lambda_k \text{ et } \exists x \in G, x \neq 0, \quad g(x) = \lambda x = \lambda_k x$$

Or par définition g(x) = f(x) donc $f(x) = \lambda_k x$ et donc $x \in G \cap E_{\lambda_k}$. Mais $E_{\lambda_k} \subset F$ et $F \cap G = \{0\}$ donc $G \cap E_{\lambda_k} = \{0\}$ et donc x = 0 ce qui est en contradiction avec x est un vecteur propre de g. On a montré par l'absurde que F = E.

On aura donc
$$E = \bigoplus_{i=1}^{r} E_{\lambda_i}$$
, et par caractérisation f est diagonalisable.

On reprend l'endomorphisme f de \mathbf{R}^2 canoniquement associé à $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ de la question 10(a). Les seuls sou-espaces stables par f sont $\{0\}$ et \mathbf{R}^2 et ils admettent un supplémentaire stable par f (\mathbf{R}^2 et $\{0\}$), mais f n'est pas diagonalisable (n'a pas de valeur propre réelle).

Deuxième partie:

Dans cette partie, n et p sont deux entiers naturels au moins égaux à 2, f est un endomorphisme diagonalisable d'un K-espace vectoriel E de dimension n, qui admet p valeurs propres distinctes $\{\lambda_1, \ldots, \lambda_p\}$ et, pour tout i dans [1, p], on note E_i le sous-espace propre de f associé à la valeur propre λ_i .

13. Il s'agit ici de montrer qu'un sous-espace F de E est stable par f si et seulement si

$$F = \bigoplus_{i=1}^{p} (F \cap E_i).$$

(a) On considère un sous-espace vectoriel F tel que $F = \bigoplus_{i=1}^{p} (F \cap E_i)$.

 $\forall x \in F \quad \exists ! (x_1, \dots, x_p) \in (F \cap E_1) \times \dots \times (F \cap E_p), \quad x = \sum_{i=1}^p x_i, \text{ et } \forall i \in [1, p],$ $f(x_i) = \lambda_i x_i, \text{ on en déduit que :}$

$$f(x) = \sum_{i=1}^{p} f(x_i) = \sum_{i=1}^{p} \lambda_i x_i$$

Or F et E_i sont des sous-espaces vectoriels donc $F \cap E_i$ aussi et donc si $x_i \in F \cap E_i$ alors $\lambda_i x_i \in F \cap E_i$, ce qui entraine que

$$f(x) = \sum_{i=1}^{p} f(x_i) = \sum_{i=1}^{p} \lambda_i x_i \in F$$

Si
$$F = \bigoplus_{i=1}^{p} (F \cap E_i)$$
 alors F est stable par f .

(b) Soit F un sous-espace de E stable par f et un vecteur x non nul de F.

Soit $x \in F$, alors $x \in E$ et puisque f est diagonalisable on sait que $E = \bigoplus^p E_i$.

On en déduit immédiatement que

$$\exists ! (x_1, \dots, x_p) \in \prod_{i=1}^p E_i, \quad x = \sum_{i=1}^p x_i$$

(c) Si on note $H_x = \{i \in [1, p], x_i \neq 0\}$, H_x est non vide et, quitte à renuméroter les valeurs propres (et les sous-espaces propres), on peut supposer que $H_x = [1, r]$ avec

 $1 \leqslant r \leqslant p$. Ainsi on a : $x = \sum_{i=1}^{n} x_i$ avec $x_i \in E_i \setminus \{0\}$ pour tout i de [1, r].

On note $V_x = Vect(x_1, \dots, x_r)$.

Par définition de V_x , la famille (x_1, \ldots, x_r) est une famille génératrice de V_x . La famille (x_1, \ldots, x_r) est une famille de vecteurs propres de f associés à des valeurs propres distinctes, alors on sait (c'est du cours) que la famille est libre.

 $\mathcal{B}_x = (x_1, \dots, x_r)$ est donc une base de V_x .

(d) Soit $j \in [1, r]$, par linéarité de f, on a :

$$f^{j-1}(x) = \sum_{i=1}^{r} f^{j-1}(x_i)$$

Or $f(x_i) = \lambda_i x_i$, donc par linéarité $f^2(x_i) = f(\lambda_i x_i) = \lambda_i f(x_i) = \lambda_i^2 x_i$ et par récurrence on obtient $\forall k \in \mathbf{N}^*$, $f^k(x_i) = \lambda_i^k x_i$, ce qui est encore vrai avec k = 0 avec la convention $f^0 = Id_E$ et $\lambda_i^0 = 1$, donc

$$f^{j-1}(x) = \sum_{i=1}^{p} \lambda_i^{j-1} x_i \in Vect(x_1, \dots, x_r) = V_x$$

D'après ce qui précède, les coordonnées de x dans la base \mathcal{B}_x sont $\begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}$, celles de f(x)

sont $\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_r \end{pmatrix}$, ..., celles de $f^{r-1}(x)$ sont $\begin{pmatrix} \lambda_1^{r-1} \\ \lambda_2^{r-1} \\ \vdots \\ \lambda_r^{r-1} \end{pmatrix}$. La matrice de la famille $(f^{j-1}(x))_{1 \leqslant j \leqslant r}$

dans la base \mathcal{B}_x est donc

$$M_x = \begin{pmatrix} 1 & \lambda_1 & \dots & \lambda_1^{r-1} \\ 1 & \lambda_2 & \dots & \lambda_2^{r-1} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_r & \dots & \lambda_r^{r-1} \end{pmatrix}$$

(e) La famille $(f^{j-1}(x))_{1 \leq j \leq r}$ est une famille de V_x qui contient r vecteurs avec $\dim V_x = r$, c'est une base de V_x si, et seulement si la matrice de la famille $(f^{j-1}(x))_{1 \leq j \leq r}$ dans la base \mathcal{B}_x est de déterminant non nul.

$$det(M_x) = \begin{vmatrix} 1 & \lambda_1 & \dots & \lambda_1^{r-1} \\ 1 & \lambda_2 & \dots & \lambda_2^{r-1} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_r & \dots & \lambda_r^{r-1} \end{vmatrix}$$
est un déterminant de Vandermonde avec $\lambda_1, \dots, \lambda_r$ distincts

$$det(M_x) = \prod_{1 \le i < j \le r} (\lambda_j - \lambda_i) \ne 0$$
 et $(f^{j-1}(x))_{1 \le j \le r}$ est une base de V_x .

(f) $\forall i \in [1, r], x_i \in E_i$ et $x_i \in V_x$, alors il existe d'uniques scalaires $\alpha_0, \dots, \alpha_{r-1}$ tels que

$$x_i = \sum_{j=1}^r \alpha_{j-1} f^{j-1}(x)$$

 $x \in F$ et F est stable par f donc $\forall j \in [1, r], f^{j-1}(x) \in F$, et par stabilité de F par combinaisons linéaires, on aura $x_i \in F$ et même $x_i \in E_i \cap F$.

Finalement on a montré : $\forall x \in F$, $\exists ! (x_1, \dots, x_p) \in E_1 \times \dots \times E_p$ tel que $x = \sum_{i=1}^p x_i$ avec $x_i = 0$ ou $x_i \in E_i \cap F$, dans tous les cas $x_i \in E_i \cap F$, et donc :

$$\forall x \in F, \quad \exists! (x_1, \dots, x_p) \in (F \cap E_1) \times \dots \times (F \cap E_p), \quad x = \sum_{i=1}^p x_i$$

On a prouvé $F \subset \bigoplus_{i=1}^{p} (F \cap E_i)$ et puisque $\bigoplus_{i=1}^{p} (F \cap E_i) \subset F$, on a $F = \bigoplus_{i=1}^{p} (F \cap E_i)$.

Si
$$F$$
 est stable par f alors $F = \bigoplus_{i=1}^{p} (F \cap E_i)$.

On a finalement l'équivalence :

F est un sous-espace stable par f si, et seulement si $F=\bigoplus_{i=1}^p (F\cap E_i).$

- 14. Dans cette question, on se place dans le cas p = n.
 - (a) On a donc n sous-espaces propres distincts tels que $dim(E) = n = \sum_{i=1}^{n} dim(E_i)$ avec $dim(E_i) \ge 1$, donc finalement

$$\forall i \in [1, n], \quad dim(E_i) = 1$$

(b) 1ère méthode:

 $\forall i \in [1, n] \ E_i = \text{Ker}(f - \lambda_i Id) \text{ est une droite stable par } f.$

On sait que $D = Vect(\mathbf{y})$ est une droite stable par f si et seulement si \mathbf{y} est un vecteur propre de f, donc si et seulement si $\exists i \in [1, n]$, $\mathbf{y} \in E_i$, mais alors $D = Vect(\mathbf{y}) \subset E_i$ et par égalité des dimensions $D = E_i$.

Il n'y a donc que n droites stables par f : les n sous-espaces propres de f.

2nde méthode:

 $\forall i \in [1, n], E_i = \text{Ker}(f - \lambda_i Id)$ est une droite stable par f.

Soit D une droite stable par f, d'après la question 13 $D = \bigoplus_{i=1}^{n} (D \cap E_i)$ donc

 $dim(D) = 1 = \sum_{i=1}^{n} dim(D \cap E_i)$, alors il existe $i \in [1, n]$ tel que $dim(D \cap E_i) = 1$ et $\forall j \neq i \quad dim(D \cap E_j) = 0$. De plus $dim(D \cap E_i) = 1 = dim(D) = dim(E_i)$ donc $D = E_i$. Finalement si D est une droite stable par f alors il existe un unique $i \in [1, n]$ tel que $D = E_i$.

Il n'y a donc que n droites stables par f : les n sous-espaces propres de f.

(c) Si $n \ge 3$ et $k \in [2, n-1]$.

D'après le résultat de la question 13, F est un sous-espace stable par f de dimension k si et seulement si $F = \bigoplus_{i=1}^n (F \cap E_i)$ avec $dim(F) = k = \sum_{i=1}^n dim(F \cap E_i)$ et $0 \le dim(F \cap E_i) \le 1$, dans cette somme il y a donc k termes de dimension 1 et n-k de dimension 0 et lorsque $dim(F \cap E_i) = 1$ on aura $F \cap E_i = E_i$.

Un sous-espace stable F de dimension k s'écrit donc comme somme directe de k sous-espaces propres de f. Pour faire un sous-espace stable par f de dimension k, il suffit donc de choisir k sous-espaces propres distincts parmi les n sous-espaces propres de f et d'en faire la somme.

On en déduit qu'il y en a $\binom{n}{k}$ sous-espaces stables par f de dimension k.

(d) On compte le nombre de sous-espaces stables en fonction de leur dimension : (0) est le seul sous-espace stable par f de dimension 0, E est le seul sous-espace stable de dimension n, il y a n sous-espaces stables de dimension 1, et il y a $\binom{n}{k}$ sous-espaces stables par f de dimension k avec $k \in [2, n-1]$, donc en tout

PSI

il y a :
$$1 + 1 + n + \sum_{k=2}^{n-1} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n$$
 sous-espaces stables par f .

Ces sous-espaces sont :

$$\{0\}, E, E_1, \dots, E_n, \bigoplus_{i \in I_k} E_i \text{ avec pour } k \in [2, n-1)], \quad I_k \subset [1, n] \text{ et } card(I_k) = k$$

(e) On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -5 & 3 & -1 \\ -2 & 6 & 2 \\ -5 & 3 & -1 \end{pmatrix}.$$

Les valeurs propres de f (de A) sont les racines du polynôme caractéristique de f (de

A), or par définition:
$$\forall x \in \mathbf{R}$$
, $\chi_f(x) = det(xI_3 - A) = \begin{vmatrix} x+5 & -3 & 1\\ 2 & x-6 & -2\\ 5 & -3 & x+1 \end{vmatrix}$

On effectue $C_1 \leftarrow C_1 + C_3$ et on obtient :

$$\forall x \in \mathbf{R}, \quad \chi_f(x) = \begin{vmatrix} x+6 & -3 & 1\\ 0 & x-6 & -2\\ x+6 & -3 & x+1 \end{vmatrix}$$

$$= \begin{vmatrix} x+6 & -3 & 1\\ 0 & x-6 & -2\\ 0 & 0 & x \end{vmatrix}$$

$$\forall x \in \mathbf{R}, \quad \chi_f(x) = (x+6)(x-6)x$$

Le polynôme caractéristique de f est scindé à racines simples et d'après le théorème de Cayley-Hamilton il est annulateur de f alors f est diagonalisable avec pour valeurs propres les réels 6, -6 et 0.

On note $E_0 = Ker(f)$, $E_6 = Ker(f - 6Id_E)$ et $E_{-6} = Ker(f + 6Id_E)$ les sous-espaces propres de f. Nous avons ici le cas n = p = 3, d'après l'étude précédente, on sait qu'il y a $2^n = 2^3 = 8$ sous-espaces stables par f qui sont :

$$\{0\}, E_0, E_6, E_{-6}, E_0 \oplus E_6, E_0 \oplus E_{-6}, E_6 \oplus E_{-6} \text{ et } \mathbf{R}^3.$$

• Recherche de $E_0 = \text{Ker}(A)$:

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Ker}(A) \iff AX = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} -5x + 3y - z = 0 \\ -2x + 6y + 2z = 0 \\ -5x + 3y - z = 0 \end{cases}$$

On effectue $L_2 \leftarrow \frac{-1}{2}L_2$ et $L_3 \leftarrow L_3 - L_1$ et on obtient

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Ker}(A) \iff \begin{cases} -5x + 3y - z = 0 \\ x - 3y - z = 0 \end{cases}$$

$$\iff \begin{cases} x - 3y - z = 0 \\ -5x + 3y - z = 0 \end{cases}$$

On effectue $L_2 \leftarrow L_2 + L_1$, ce qui donne

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Ker}(A) \iff \begin{cases} x - 3y - z = 0 \\ -4x - 2z = 0 \end{cases}$$
$$\iff \begin{cases} z = -2x \\ y = x \end{cases}$$

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Ker}(A) \iff X = x \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

On a donc
$$E_0 = \operatorname{Ker}(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\-2 \end{pmatrix}\right)$$
.

• Recherche de $E_{-6} = \text{Ker}(A + 6I_3)$:

Autre méthode de recherche d'un sous-espace propre lorsque l'on connait déjà la dimension de ce sous-espace :

 $E_{-6} = \text{Ker}(A + 6I_3)$ avec $A + 6I_3 = \begin{pmatrix} 1 & 3 & -1 \\ -2 & 12 & 2 \\ -5 & 3 & 5 \end{pmatrix}$. On remarque que la première et

dernière colonne de $A+6I_3$ sont opposées donc $(A+6I_3)$ $\begin{pmatrix} 1\\0\\1 \end{pmatrix} = 0$ et on a $\begin{pmatrix} 1\\0\\1 \end{pmatrix} \in E_{-6}$.

Or on sait que $dim E_{-6} = 1$, donc $E_{-6} = Vect \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

• Recherche de $E_6 = \text{Ker}(A - 6I_3)$:

En utilisant l'une ou l'autre méthode vue ci-dessus on trouve $E_6 = Vect \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$.

Fin du corrigé