Exercice 1

Étudier la convergence simple puis uniforme sur]0,1[de la suite de fonctions (f_n) avec $f_n: x \mapsto x^{2n+1} \ln(x)$.

Exercice 2

$$f_n: x \mapsto \frac{e^{-x}}{1 + n^2 x^2}.$$

- 1. Étudier la convergence simple de la suite (f_n) .
- 2. Étudier la convergence uniforme de (f_n) sur $[0, +\infty[$.
- 3. Soit $\alpha > 0$. Étudier la convergence uniforme de (f_n) sur $[\alpha, +\infty[$.
- 4. Convergence de la suite (u_n) avec $u_n = \int_0^1 f_n(x) dx$?

Exercice 3

Soit (f_n) une suite de fonctions définie sur \mathbf{R}^+ par :

$$\forall n \in \mathbf{N} \quad \forall x \in \mathbf{R}^+ \quad f_n(x) = \frac{x^n e^{-x}}{n!}$$

- 1. Montrer que (f_n) converge simplement sur \mathbf{R}^+ vers une fonction g.
- 2. Montrer que (f_n) converge uniformément vers g.
- 3. Justifier que $\forall n \in \mathbf{N}$ f_n est intégrable sur \mathbf{R}^+ .
- 4. Calculer $\int_0^{+\infty} f_n(x) dx$. Comparez $\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx$ et $\int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx$.

Exercice 4

1. Soit $p \in \mathbb{N}^*$, f une fonction de classe C^p sur un segment [a, b]. On note L_1, \ldots, L_p les polynômes d'interpolations de Lagrange associés à des réels distincts $a_1 < \cdots < a_p$ de [a, b].

On pose
$$\Pi(f) = \sum_{i=1}^{p} f(a_i)L_i$$
. On fixe x dans $[a, b] \setminus \{a_1, \dots, a_p\}$.

- (a) Déterminer un réel λ tel que la fonction $F: t \mapsto f(t) \Pi(f)(t) \lambda \prod_{k=1}^{p} (t a_k)$ s'annule en x.
- (b) Justifier qu'il existe $c_x \in]a, b[$ tel que $f(x) \Pi(f)(x) = \frac{f^{(p)}(c_x)}{p!} \prod_{k=1}^p (x a_k).$
- (c) En déduire que $\sup_{x\in[a,b]}|f(x)-\Pi(f)|\leqslant \frac{M_p(b-a)^p}{p!}$ avec $M_p=\sup_{x\in[a,b]}|f^{(p)}(x)|.$
- 2. Pour tout entier naturel n non nul, on considère des réels distincts $a_{1,n} < \cdots < a_{n,n}$ d'un segment [a,b] et $L_{1,n},\ldots,L_{n,n}$ les polynômes de Lagrange associés à ces réels. On pose

$$P_n = \sum_{i=1}^{n} e^{a_{i,n}} L_{i,n}.$$

Montrer que la suite $(P_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [a, b] vers la fonction exponentielle.

Exercice 5

Pour $x \in \mathbf{R}$ et $n \in \mathbf{N}$, on pose $f_n(x) = \frac{n+2}{n+1}e^{-nx^2}$.

- 1. La suite (f_n) converge-t-elle simplement sur \mathbf{R} ?
- 2. Étude de la convergence uniforme de (f_n) .
- 3. Étude de la convergence simple de $\sum f_n$.
- 4. Étude de la convergence uniforme de $\sum f_n$ sur \mathbf{R}^* .
- 5. Étude de la continuité de $S = \sum_{n=0}^{+\infty} f_n$.

Exercice 6

Pour x > 0, on pose $f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{1 + nx}$.

- 1. Montrer que l'on définit ainsi une application f continue sur $]0, +\infty[$.
- 2. Déterminer la limite de f en $+\infty$.
- 3. Étudier la dérivabilité de f sur $]0, +\infty[$.

Exercice 7

Pour $n \in \mathbf{N}^*$, on définit $u_n :]0, +\infty[\to \mathbf{R} \text{ par } \forall x > 0 \quad u_n(x) = x \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{x}{n}\right).$

1. Montrer que la série de fonctions $\sum u_n$ converge simplement sur $]0, +\infty[$.

On définit alors la fonction $\varphi: x \mapsto -\ln(x) + \sum_{n=1}^{+\infty} u_n(x)$.

- 2. Montrer qu'il existe une suite $(\varepsilon_n)_{n\in\mathbb{N}^*}$ telle que la série $\sum \varepsilon_n$ converge absolument et $\forall x>0 \quad \forall n\in\mathbb{N}^* \quad u_n'(x)=\frac{x}{n(n+x)}+\varepsilon_n$.
- 3. En déduire que la série de fonctions $\sum u'_n$ converge normalement sur tout segment [a,b] inclus dans $]0,+\infty[$.
- 4. Montrer que φ vérifie les conditions suivantes :
 - φ est de classe C^1 sur $]0, +\infty[$,
 - $\forall x > 0$ $\varphi(x+1) \varphi(x) = \ln(x)$,
 - φ' est croissante sur $]0, +\infty[$,
 - $\bullet \ \varphi(1) = 0.$

Exercice 8

Soit $f: x \mapsto \sum_{n=0}^{+\infty} \frac{e^{-nx}}{n^2 + 1}$.

- 1. Déterminer la domaine de définition de f.
- 2. Montrer que f est de classe C^2 sur $]0, +\infty[$.
- 3. Justifier que f admet une limite en $+\infty$ et calculer cette limite.
- 4. Résoudre l'équation différentielle $y'' + y = \frac{e^x}{e^x 1}$ sur $]0, +\infty[$.

Exercice 9

Soit
$$f: x \mapsto \sum_{n=2}^{+\infty} \frac{1}{n^x \ln(n)}$$
.

- 1. Déterminer le domaine de définition de f.
- 2. Trouver les limites de f aux bornes de son intervalle de définition.