Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet est composé de deux problèmes indépendants.

Problème : Puissances de matrices et limite d'une suite de matrices

Soit $(n, p) \in \mathbf{N}^* \times \mathbf{N}^*$. On s'intéresse ici à la convergence des suites matricielles $(M_k)_{k \in \mathbf{N}}$ où pour tout $k \in \mathbf{N}$, $M_k \in \mathcal{M}_{n,p}(\mathbf{C})$ avec p = 1 (matrices colonnes) ou p = n (matrices carrées). Pour tout $k \in \mathbf{N}$, on note alors $M_k = \left(m_{i,j}^{(k)}\right)_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]}$ ou plus simplement $M_k = \left(m_{i,j}^{(k)}\right)$.

On suppose que l'espace vectoriel $\mathcal{M}_{n,p}(\mathbf{C})$ est muni d'une norme notée $\|.\|$ indifféremment des valeurs de n et p. En particulier, si $V \in \mathcal{M}_{n,1}(\mathbf{C})$, V est une matrice colonne assimilée à un vecteur de \mathbf{C}^n et on note $\|V\|$ sa norme.

On rappelle que les trois assertions suivantes sont équivalentes :

- 1. la suite $(M_k)_{k \in \mathbb{N}}$ converge vers la matrice $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{C})$;
- 2. la suite des normes $(\|M_k A\|)_{k \in \mathbb{N}}$ converge vers 0;
- 3. pour tout $(i,j) \in [1,n] \times [1,p]$, la suite de nombres complexes $\left(m_{i,j}^{(k)}\right)_{k \in \mathbb{N}}$ converge vers $a_{i,j} \in \mathbb{C}$ (convergence des coefficients de la matrice).

On s'intéresse en particulier à la suite des puissances itérées $(M^k)_{k\in\mathbb{N}}$ d'une matrice donnée $M\in\mathcal{M}_n(\mathbf{C})$.

Partie I - Diagonalisation et puissances d'une matrice particulière

Soit $n \in \mathbb{N}$ tel que $n \geq 3$. Pour tout $(a, b) \in \mathbb{C}^2$, on définit la matrice $M(a, b) \in \mathcal{M}_n(\mathbb{C})$ par :

$$M(a,b) = \begin{pmatrix} b & a & a & \dots & a \\ a & b & a & \dots & a \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a & \dots & a & b & a \\ a & \dots & a & a & b \end{pmatrix}$$

et on note $P_{a,b}$ le polynôme caractéristique de la matrice $M(a,b): \forall z \in \mathbf{C}$ $P_{a,b}(x) = det(xI_n - M(a,b)).$

On note I_n la matrice identité de $\mathcal{M}_n(\mathbf{C})$ et on remarque que pour tous réels a et b,

$$M(a,b) = bI_n + aM(1,0).$$

- 1. On suppose, dans cette question uniquement, que $(a,b) \in \mathbf{R}^2$. Justifier que dans ce cas M(a,b) est diagonalisable.
- 2. Montrer que $V = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{C})$ est un vecteur propre de M(a,b) et déterminer la valeur propre associée à V.
- 3. Montrer que $P_{1,0}(X) = (X (n-1))(X+1)^{n-1}$.

PSI

- 4. On suppose que $a \neq 0$. Montrer que $P_{a,b}(X) = a^n P_{1,0}\left(\frac{X-b}{a}\right)$. En déduire l'ensemble des valeurs propres de M(a,b) ainsi que leurs multiplicités.
- 5. On définit le polynôme $Q_{a,b} \in \mathbf{C}[X]$ par $Q_{a,b}(X) = (X (b-a))(X (b+(n-1)a))$.

Montrer que $Q_{a,b}$ est un polynôme annulateur de M(a,b) et en déduire que M(a,b) est diagonalisable (on distinguera les cas a=0 et $a\neq 0$).

- 6. Soit $k \in \mathbb{N}$. On suppose que $a \neq 0$. Déterminer le reste de la division euclidienne du polynôme X^k par le polynôme $Q_{a,b}$ et en déduire une expression de $M(a,b)^k$ comme combinaison linéaire de M(a,b) et de I_n .
- 7. Supposons que |b-a| < 1 et |b+(n-1)a| < 1. Déterminer la limite de la suite de matrices $(M(a,b)^k)_{k\in\mathbb{N}}$.

Partie II - Limite des puissances d'une matrice

Soit $n \in \mathbb{N}^*$. On considère l'espace vectoriel \mathbb{C}^n muni d'une norme notée $\|.\|$. On note sa base canonique $\mathscr{B} = (e_1, \dots, e_n)$. Soit u un endomorphisme de \mathbb{C}^n vérifiant la propriété suivante :

$$\forall \lambda \in \mathrm{Sp}(u), \quad |\lambda| < 1$$

où $\operatorname{Sp}(u)$ est l'ensemble des valeurs propres de u. On note A la matrice de l'endomorphisme u dans la base \mathscr{B} .

L'objectif de cette partie est de montrer que $\lim_{k\to +\infty} A^k = 0$.

On suppose (sauf à la question 12.) que A = T où T est une matrice triangulaire supérieure :

$$T = \begin{pmatrix} \lambda_1 & * & \dots & \ddots & * \\ 0 & \lambda_2 & * & \dots & * \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & * \\ 0 & \dots & \dots & 0 & \lambda_n \end{pmatrix}.$$

8. Montrer que $\lim_{k\to+\infty} \|u^k(e_1)\| = 0$ et en déduire $\lim_{k\to+\infty} u^k(e_1)$.

On suppose qu'il existe $i \in [1, n-1]$ tel que pour tout $j \in [1, i]$, $\lim_{k \to +\infty} u^k(e_j) = 0$.

9. Montrer qu'il existe $x \in \text{Vect}(e_j)_{j \in [\![1, i]\!]}$ tel que :

$$u(e_{i+1}) = \lambda_{i+1}e_{i+1} + x.$$

En déduire que pour tout $k \in \mathbf{N}^*$:

$$u^{k}(e_{i+1}) = \lambda_{i+1}^{k} e_{i+1} + \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^{m}(x).$$

- 10. Montrer que $\lim_{k\to +\infty} \left\| \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) \right\| = 0$. En déduire que $\lim_{k\to +\infty} u^k(e_{i+1}) = 0$.
- 11. Montrer alors que $\lim_{k \to +\infty} T^k = 0$.
- 12. On ne suppose plus que A est triangulaire supérieure. Montrer que $\lim_{k\to +\infty} A^k = 0$.

Problème n°2 : Ensemble des matrices diagonalisables à coefficients réels

Soit n un entier supérieur ou égal à 2. On note $\mathcal{M}_n(\mathbf{R})$, le **R**-espace vectoriel des matrices carrées à n lignes et n colonnes et à coefficients réels.

Dans tout l'exercice, une matrice de $\mathcal{M}_n(\mathbf{R})$ est dite diagonalisable si elle est diagonalisable dans $\mathcal{M}_n(\mathbf{R})$.

 \mathcal{D}_n désigne l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbf{R})$, \mathcal{S}_n l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbf{R})$, et \mathscr{A}_n celui des matrices antisymétriques de $\mathcal{M}_n(\mathbf{R})$.

Question de cours : Donner sans démonstration les dimensions des espaces vectoriels S_n et \mathcal{A}_n .

Partie 1

On prend dans cette partie n=2.

- 13. Exhiber un sous-espace vectoriel de dimension 3 de $\mathcal{M}_2(\mathbf{R})$ constitué de matrices diagonalisables.
- 14. En déduire la dimension maximale d'un sous-espace vectoriel de $\mathcal{M}_2(\mathbf{R})$ contenu dans \mathcal{D}_2 .
- 15. \mathcal{D}_2 est-il un sous-espace vectoriel de $\mathcal{M}_2(\mathbf{R})$? Justifier. On pourra utiliser des arguments de dimension.
- 16. Déterminer alors tous les sous-espaces vectoriels de $\mathcal{M}_2(\mathbf{R})$ contenant \mathcal{D}_2 .
- 17. Soient $\Omega = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid (a-d)^2 + 4bc > 0 \right\}$ et $F = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid (a-d)^2 + 4bc \geqslant 0 \right\}$. Prouver que l'on a : $\Omega \subset \mathcal{D}_2 \subset F$.

Partie 2

PSI

On revient au cas général avec n > 2.

- 18. Soient $A = (a_{i,j}) \in \mathcal{M}_n(\mathbf{R})$ et $B = (b_{i,j}) \in \mathcal{M}_n(\mathbf{R})$ définies par :
 - $a_{1,1} = a_{1,2} = 1$, $a_{2,2} = -1$ et $a_{i,j} = 0$ sinon,
 - $b_{1,1} = -1$, $b_{1,2} = b_{2,2} = 1$ et $b_{i,j} = 0$ sinon.
 - (a) Vérifier que A et B sont diagonalisables.
 - (b) \mathcal{D}_n est-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{R})$? Justifier.
- 19. Soit $N \in \mathcal{M}_n(\mathbf{R})$, antisymétrique.

Démontrer que l'ensemble des valeurs propres réelles de N est inclus dans $\{0\}$. On pourra calculer le produit matriciel tXNX pour un vecteur X de $\mathcal{M}_{n,1}(\mathbf{R})$.

- 20. Soit S un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{R})$ contenu dans \mathcal{D}_n . Déterminer $S \cap \mathscr{A}_n$. En déduire la dimension maximale d'un tel sous-espace vectoriel S. On donnera un exemple d'un sous-espace réalisant cette condition.
- 21. Soit un matrice $P \in GL_n(\mathbf{R})$.

On note f_P l'application linéaire qui à une matrice $M \in \mathcal{M}_n(\mathbf{R})$ associe la matrice $P^{-1}MP$.

- (a) Vérifier que f_P est un automorphisme de $\mathcal{M}_n(\mathbf{R})$ et expliciter f_P^{-1} . En déduire la dimension de $\mathcal{S}_P = f_P(\mathcal{S}_n)$.
- (b) Prouver que l'on a : $\mathcal{S}_P \subset \mathcal{D}_n$.
- (c) Démontrer enfin que : $\mathcal{D}_n = \bigcup_{P \in GL_n(\mathbf{R})} \mathcal{S}_P$.
- 22. On note $\{E_{i,j}, (i,j) \in [\![1,n]\!]^2\}$ la base canonique de $\mathcal{M}_n(\mathbf{R})$ où $E_{i,j}$ est la matrice de $\mathcal{M}_n(\mathbf{R})$ dont tous les coefficients sont nuls excepté celui de la ligne i et colonne j qui vaut 1.
 - (a) Donner sans démonstration une base \mathcal{B}_1 de \mathcal{S}_n .
 - (b) Pour tout couple (i,j) de $[1,n]^2$ où i < j, on pose $T_{i,j} = 4E_{j,i} + E_{i,j}$.

Soit P la matrice diagonale dont les termes diagonaux sont $(1, \ldots, 1, 2, 1, \ldots, 1)$ où le 2 est à la j-ème position.

Décomposer la matrice $P^{-1}T_{i,j}P$ dans la base canonique de mn. On pourra utiliser l'endomorphisme φ de \mathbf{R}^n canoniquement associé à $T_{i,j}$.

Justifier alors que la matrice $T_{i,j}$ est diagonalisable.

- (c) Soit $T = \text{Vect}(T_{i,j}, (i,j) \in [1, n]^2, i < j)$. Prouver que $\mathcal{M}_n(\mathbf{R}) = T \oplus \mathcal{S}_n$. En déduire une base de mn constituée de matrices toutes diagonalisables.
- (d) Déterminer enfin tous les sous-espaces vectoriels de $\mathcal{M}_n(\mathbf{R})$ contenant \mathcal{D}_n .

Fin de l'énoncé