Problème 1 : Fonction zeta de Riemann et zeta alternée

On admet qu'il existe $\gamma \in]0,1[$ tel que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$ lorsque n tend vers $+\infty$.

Partie I - Fonction zêta de Riemann

PSI

On considère la fonction réelle ζ définie sur $]1, +\infty[$ par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$

Pour tout entier naturel non nul n, on définit sur $]0,+\infty[$ les fonctions réelles φ_n et ψ_n par :

$$\varphi_n(x) = \frac{1}{n^x} - \int_n^{n+1} \frac{1}{t^x} dt$$
 et $\psi_n(x) = \frac{1}{n^x} - \frac{1}{(n+1)^x}$

1. Montrer que pour tout entier naturel n non nul et tout réel x de $]0, +\infty[$,

$$0 \leqslant \varphi_n(x) \leqslant \psi_n(x)$$

2. Montrer que la série de fonctions $\sum_{n\geqslant 1} \varphi_n$ converge simplement sur $]0,+\infty[$.

On note ainsi pour tout réel x de $]0, +\infty[$, $\varphi(x) = \sum_{n=1}^{+\infty} \varphi_n(x)$.

- 3. Montrer que la fonction φ est continue sur $]0, +\infty[$.
- 4. On considère la fonction K définie sur $]1, +\infty[$ par $K(x) = \zeta(x) + \frac{1}{1-x}.$
 - (a) Montrer que pour tout réel x de $]1, +\infty[$, $K(x) = \varphi(x)$.
 - (b) En déduire que la fonction K admet une limite finie quand x tend vers 1 à droite.
 - (c) En déduire un équivalent simple de $\zeta(x)$ lorsque x tend vers 1 à droite, puis la limite de $\zeta(x)$ quand x tend vers 1 à droite.

Partie II: Fonction zêta alternée

Pour tout entier naturel non nul n, on définit la fonction f_n sur $]0, +\infty[$ par $f_n(x) = \frac{(-1)^{n-1}}{n^x}.$

5. Montrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge simplement sur $]0,+\infty[$.

On définit ainsi la fonction f sur $]0, +\infty[$ par $f(x) = \sum_{n=1}^{+\infty} f_n(x).$

- 6. La convergence de la série $\sum_{n\geq 1} f_n$ est-elle uniforme sur $]0,+\infty[$? Justifier votre réponse.
- 7. Montrer que pour tout réel strictement positif α , la série de fonctions $\sum_{n\geqslant 1} f'_n$ converge uniformément sur $[\alpha, +\infty[$, où f'_n désigne la dérivée de la fonction f_n .

8. Montrer que f est de classe C^1 sur $]0, +\infty[$ et que, pour tout réel x de $]0, +\infty[$

$$f'(x) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\ln(n)}{n^x}$$

9. Montrer que pour tout entier naturel non nul n et tout réel x de $]1,+\infty[$,

$$\sum_{k=1}^{2n} \frac{1}{k^x} = \frac{1}{2^x} \sum_{k=1}^{n} \frac{1}{k^x} + \sum_{k=1}^{n} \frac{1}{(2k-1)^x}$$

10. Montrer que pour tout entier naturel non nul n et tout réel x de $]1, +\infty[$,

$$\sum_{k=1}^{2n} \frac{(-1)^k}{k^x} = \frac{1}{2^x} \sum_{k=1}^n \frac{1}{k^x} - \sum_{k=1}^n \frac{1}{(2k-1)^x}$$

- 11. En déduire que pour tout réel x de $]1, +\infty[$ $f(x) = (2^{1-x} 1)\zeta(x)$.
- 12. (a) Déterminer le développemennt limité à l'ordre 2 de $(2^{1-x} 1)$, lorsque x tend vers 1 à droite.
 - (b) En déduire le développement limité à l'ordre 1 de f(x), lorsque x tend vers 1 à droite.

13. Déterminer les valeurs de
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$$
 et de $\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\ln(n)}{n}$.

Problème 2 : Exponentielle de matrices diagonalisables

Dans tout ce problème, p désigne un entier naturel non nul.

 $\mathbf{R}[X]$ est l'ensemble des polynômes à coefficients réels.

 $\mathcal{M}_p(\mathbf{R})$ est l'ensemble des matrices carrées d'ordre p à coefficients réels.

 I_p est la matrice identité de $\mathcal{M}_p(\mathbf{R})$.

 $GL_p(\mathbf{R})$ est l'ensemble des matrices inversibles de $\mathcal{M}_p(\mathbf{R})$.

Si A est une matrice de $\mathcal{M}_p(\mathbf{R})$, on note u_A l'endomorphisme de \mathbf{R}^p canoniquement associé à la matrice A, et par abus de notation, $Ker(A) = Ker(u_A)$.

Si A est une matrice de $\mathcal{M}_p(\mathbf{R})$ on définit, lorsque la limite existe,

$$E(A) = \lim_{n \to +\infty} \left(I_p + \frac{1}{n} A \right)^n$$

- 14. Soit x un réel, justifier que $\lim_{n\to+\infty} \left(1+\frac{x}{n}\right)^n = e^x$.
- 15. Soit $D \in \mathcal{M}_p(\mathbf{R})$ une matrice diagonale.
 - (a) Montrer que E(D) existe et que $E(D) \in GL_p(\mathbf{R})$.
 - (b) Montrer qu'il existe un polynôme $Q \in \mathbf{R}[X]$ tel que Q(D) = E(D).

(c) Montrer que si D et Δ sont deux matrices diagonales de $\mathcal{M}_p(\mathbf{R})$ alors

$$E(D + \Delta) = E(D).E(\Delta)$$

- 16. Soit $A \in \mathcal{M}_p(\mathbf{R})$ une matrice diagonalisable.
 - (a) Montrer que E(A) existe.
 - (b) Montrer que $det(E(A)) = e^{tr(A)}$.
 - (c) Soit $x \in \mathbf{R}$. Montrer que $E(xI_p + A)$ existe et que

$$E(xI_p + A) = e^x E(A)$$

- 17. Soient A et B dans $\mathcal{M}_p(\mathbf{R})$ deux matrices diagonalisables. On suppose que A et B commutent.
 - (a) Montrer qu'il existe $P \in GL_p(\mathbf{R})$ telle que $P^{-1}AP$ et $P^{-1}BP$ soient diagonales. On étudiera les restriction de u_B aux sous-espaces propres de u_A .
 - (b) En déduire que E(A+B) existe et que E(A+B)=E(A)E(B)=E(B)E(A).

Fin de l'énoncé