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Problème 1 : Fonction zeta de Riemann et zeta alternée

On admet qu’il existe γ ∈]0, 1[ tel que
n∑

k=1

1

k
= ln(n) + γ + o(1) lorsque n tend vers +∞.

Partie I - Fonction zêta de Riemann

On considère la fonction réelle ζ définie sur ]1,+∞[ par ζ(x) =
+∞∑
n=1

1

nx
.

Pour tout entier naturel non nul n, on définit sur ]0,+∞[ les fonctions réelles ϕn et ψn par :

ϕn(x) =
1

nx
−
∫ n+1

n

1

tx
dt et ψn(x) =

1

nx
− 1

(n+ 1)x

1. Montrer que pour tout entier naturel n non nul et tout réel x de ]0,+∞[,

0 6 ϕn(x) 6 ψn(x)

2. Montrer que la série de fonctions
∑
n>1

ϕn converge simplement sur ]0,+∞[.

On note ainsi pour tout réel x de ]0,+∞[, ϕ(x) =
+∞∑
n=1

ϕn(x).

3. Montrer que la fonction ϕ est continue sur ]0,+∞[.

4. On considère la fonction K définie sur ]1,+∞[ par K(x) = ζ(x) +
1

1− x
.

(a) Montrer que pour tout réel x de ]1,+∞[, K(x) = ϕ(x).

(b) En déduire que la fonction K admet une limite finie quand x tend vers 1 à droite.

(c) En déduire un équivalent simple de ζ(x) lorsque x tend vers 1 à droite, puis la limite
de ζ(x) quand x tend vers 1 à droite.

Partie II : Fonction zêta alternée

Pour tout entier naturel non nul n, on définit la fonction fn sur ]0,+∞[ par fn(x) =
(−1)n

nx
.

5. Montrer que la série de fonctions
∑
n>1

fn converge simplement sur ]0,+∞[.

On définit ainsi la fonction f sur ]0,+∞[ par f(x) =
+∞∑
n=1

fn(x).

6. La convergence de la série
∑
n>1

fn est-elle uniforme sur ]0,+∞[ ? Justifier votre réponse.

7. Montrer que pour tout réel strictement positif α, la série de fonctions
∑
n>1

f ′n converge uni-

formément sur [α,+∞[, où f ′n désigne la dérivée de la fonction fn.
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8. Montrer que f est de classe C1 sur ]0,+∞[ et que, pour tout réel x de ]0,+∞[

f ′(x) =
+∞∑
n=1

(−1)n−1
ln(n)

nx

9. Montrer que pour tout entier naturel non nul n et tout réel x de ]1,+∞[,

2n∑
k=1

1

kx
=

1

2x

n∑
k=1

1

kx
+

n∑
k=1

1

(2k − 1)x

10. Montrer que pour tout entier naturel non nul n et tout réel x de ]1,+∞[,

2n∑
k=1

(−1)k

kx
=

1

2x

n∑
k=1

1

kx
−

n∑
k=1

1

(2k − 1)x

11. En déduire que pour tout réel x de ]1,+∞[ f(x) = (21−x − 1)ζ(x).

12. (a) Déterminer le développememnt limité à l’ordre 2 de (21−x − 1), lorsque x tend vers 1 à
droite.

(b) En déduire le développement limité à l’ordre 1 de f(x), lorsque x tend vers 1 à droite.

13. Déterminer les valeurs de
+∞∑
n=1

(−1)n−1

n
et de

+∞∑
n=1

(−1)n−1
ln(n)

n
.

Problème 2 : Exponentielle de matrices diagonalisables

Dans tout ce problème, p désigne un entier naturel non nul.

R[X] est l’ensemble des polynômes à coefficients réels.
Mp(R) est l’ensemble des matrices carrées d’ordre p à coefficients réels.
Ip est la matrice identité de Mp(R).
GLp(R) est l’ensemble des matrices inversibles de Mp(R).
Si A est une matrice de Mp(R), on note uA l’endomorphisme de Rp canoniquement associé à la
matrice A, et par abus de notation, Ker(A) = Ker(uA).

Si A est une matrice de Mp(R) on définit, lorsque la limite existe,

E(A) = lim
n→+∞

(
Ip +

1

n
A

)n

14. Soit x un réel, justifier que lim
n→+∞

(
1 +

x

n

)n
= ex.

15. Soit D ∈Mp(R) une matrice diagonale.

(a) Montrer que E(D) existe et que E(D) ∈ GLp(R).

(b) Montrer qu’il existe un polynôme Q ∈ R[X] tel que Q(D) = E(D).
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(c) Montrer que si D et ∆ sont deux matrices diagonales de Mp(R) alors

E(D + ∆) = E(D).E(∆)

16. Soit A ∈Mp(R) une matrice diagonalisable.

(a) Montrer que E(A) existe.

(b) Montrer que det(E(A)) = etr(A).

(c) Soit x ∈ R.
Montrer que E(xIp + A) existe et que

E(xIp + A) = exE(A)

17. Soient A etB dansMp(R) deux matrices diagonalisables. On suppose queA etB commutent.

(a) Montrer qu’il existe P ∈ GLp(R) telle que P−1AP et P−1BP soient diagonales.
On étudiera les restriction de uB aux sous-espaces propres de uA.

(b) En déduire que E(A+B) existe et que E(A+B) = E(A)E(B) = E(B)E(A).

Fin de l’énoncé


