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Dans tout ce chapitre, E' désigne un R-espace vectoriel et tous les espaces vectoriels considérés
sont des R-espaces vectoriels.

1 Produit scalaire, norme euclidienne

1.1 Définition d’un produit scalaire

Definition 1.1

Soit ' un R-espace vectoriel.

On appelle produit scalaire sur F, toute forme bilinéaire symétrique définie-positive sur E.

Un produit scalaire sur E est donc une application ¢ : (z,y) € E X E — (z]y) telle que :

e o est a valeurs dans R.

EF—-R

Vy € E, est linéaire
z = (z]y)
e p est bilinéaire :
Ve e E, E—=R est linéaire.
y = (zly)

e © est symétrique : V(x,y) € B, (z|y) = (y|x)

o © est définie-positive : Yx € E, (z|lr)>0et (zlz)=0=2=0

On utilisera en général la notation introduite précédemment : (z|y) ou (x,y). La notation x.y est
réservée a la géométrie.

Remarque 1.1 Conséquence de la bilinéarité

Pour (z,2',y,y') € E*, on aura :

(z + 2|y +y') = (zly) + (@'|y) + (z]y') + (@'[y)

Et plus généralement pour (x1,...,Tn,Y1,---,Yp) € E" P et (A, ..., An,y fla, ..., fp) € R™P

(Z AiT; Z Mk?ﬂc) = Z Z it (i |Yk)

k=1 i=1 k=1
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Proposition 1.1 Caractérisation

: ExFE—R
Soit ¢ : .
(z,y) = (z]y)
© est linéaire par rapport a la premiere variable
© est un produit scalaire sur F si et seulement si: ¢ ¢ est symétrique

@ est définie-positive.

Definition 1.2

e On appelle espace préhilbertien réel tout couple (F,( | )) ou E est un R-espace vectoriel
et (| ) est un produit scalaire sur E.

e On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

1.2 Exemples de référence

1. Produit scalaire canonique sur R" et sur M,;(R) :

R" xR" — R
L’application ,avec x = (x1,...,T,) et y = (y1,...,Y,) est
pp (z,1) (z]y) = Z“’ " (21 )ety = (Y1, yn)

un produit scalaire sur R™ appelé le prodult scalaire canonique.
R" est ainsi muni de sa structure euclidienne canonique.

Expression matricielle :

L1 Y1
Soit z = (x1,...,2,) E R" et y = (y1,...,yn) € R", notons X = | : |etY =] : |,

Ln Yn
alors on peut écrire X7.Y = (z]y).

Mnl (R) X Mnl (R) —

R . .
(X,Y) .y xTy est un produit scalaire sur

On en déduit que 'application
M1 (R).

Ce produit scalaire est appelé le produit scalaire canonique de M,,;(R).

2. Produit scalaire canonique sur M,(R) :

Proposition 1.2
M, (R) x M,(R) — R

(A, B) — (A|B) =tr (AT.B)
appelé produit scalaire canonique sur M, (R).

L’application est un produit scalaire sur M,,(R)

De plus en notant A = (a;;) et B = (by;), alors | (A[B) = tr (A".B) = Z aijbij.

(i,4)€1,n]?]
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3. Produits scalaires intégral sur C°([a,b],R) :

1.3

Soit £ = C°([a,b], R) avec a < b.

ExE—R
(F.9) = (flg) / (1) est un produit scalaire sur E, appelé produit
g

scalaire intégral sur CO([a b],

L’application

Généralisation : produit scalaire intégral avec poids

Soit E = C°([a,b],R) avec a < b.
ExE—R

b
(f.9) = (f]g) = / w(t) f(B)g(t)dt

Siw € C%[a, b],]0, +o0[) alors I'application est un pro-

duit scalaire sur E.

Inégalité de Cauchy-Schwarz

Proposition 1.3

Soit E un R-espace vectoriel muni d’un produit scalaire (| ).

V(z,y) € E?, (z|y)* < (z]7) (yly)

Avec égalité si et seulement si x et y sont colinéaires (z =0 ou IN € R, y = Az).

Remarque 1.2 Application aux exemples de référence
1. Si(zq,...,2,) € R" et (y1,...,yn) € R™ alors

(&) <(57) (£9)

avec égalité si et seulement si (z1,...,2,) =0ouINe€ R, Vie[l,n] vy = Az,

2. Si f € C%a,b],R) et g € C°[a,b],R) alors

([ o) < o
( / f(t) > / fAt)dt / 2(t)dt si et seulement si (f, g) est liée.

Exemple 1.1

Justifier que V(zy,...,z,) € R" <Z %) S
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1.4 Norme euclidienne

Definition 1.3 Norme euclidienne

Soit £ muni d’un produit scalaire (| ).

e Soit z € E, on appelle norme du vecteur z le nombre réel, noté ||z||, défini par : ||z|| = \/(z|z).
- L E +

e On appelle norme euclidienne 'application - :le” .

Remarque 1.3 Réécriture de ['inégalité de Cauchy-Schwarz

V(z,y) € B2 | (2]y)| < ||=[|.]ly]

Proposition 1.4 Propriété de la norme euclidienne

Soit £ muni d’un produit scalaire (| ).

1.VeeE, |z]|=0=2z=0.
2. Ve e E, VAeR, |Az]| =]\

3. Inégalité triangulaire : ¥(z,y) € E* ||z +y|l < ||z]| + ||y||

Proposition 1.5

Soit E muni d’'un produit scalaire (| ).

1. Cas d’égalité dans l'inégalité triangulaire
|z + y|| = ||z|| + ||y|| si et seulement si (z,y) est liée positivement :
r=0oudleR", y=\r

2. 2éme inégalité triangulaire :
V(z,y) € B2 llz| = [yl <z +yl

n
E ALTp
=1

3.

n
< Z Akl |zkll, pour xy, ..., z, des vecteurs de E et Ay, ..., A, des réels.
k=1

Proposition 1.6 Relations entre produit scalaire et norme euclidienne

Soit F muni d’un produit scalaire ( | ) et (z,y) € E?

2
o [lz+ylI” = [lz|* + 2 (zly) + lly|I”

o llz—yl* = llzl* — 2 (zly) + lylI”
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o lz+y|*+lz—y|* =2 (lz]” + ||y||2) Identité du parallélogramme

1 1 » .
o (ly) = 7 (lz + yll* = lle = yl*) ou (zly) = 5 (le+ yl* =Nzl = llyl*) ~ Identités de polarisation
2 Orthogonalité
Dans tout ce paragraphe F désigne un R-espace vectoriel muni d’un produit scalaire (| ).

2.1 Familles orthogonale, orthonormée, base orthonormée

Definition 2.1

On dit que x et y sont des vecteurs orthogonaux lorsque (z|y) = 0.

On note alors z_Ly.

Remarque 2.1

oeVrekE, (6\:6) =0.

e Le vecteur nul est le seul vecteur orthogonal a lui-méme.

On en déduit que le vecteur nul est le seul vecteur orthogonal a tout vecteur de F.

e Si x est un vecteur orthogonal a chacun des vecteurs zy,...,z, alors x est orthogonal a toute

combinaison linéaire des vecteurs x1, ..., x,.

Definition 2.2 Famille orthogonale

Soit 1, ..., x, des vecteurs de F.
On dit que (z1,...,x,) est une famille orthogonale lorsque z, ..., z, sont 2 a 2 orthogonaux :

V(i,j) € [Ln* i#j= (zilr;) =0

Proposition 2.1

Toute famille orthogonale (z1,...,z,) de vecteurs non nuls est libre.

Proposition 2.2 Relations de Pythagore

Soit (x1, T3, ..., T,) une famille de vecteurs de F.
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o w1 lry <= o1 + a2* = |21 + |22

n

>

=1

e Si (z1,x9,...,x,) est une famille orthogonale alors

2 n
= llall?
i=1

Definition 2.3 Famille orthonormée

Soit 1, ..., x, des vecteurs de F.
On dit que (z1,...,x,) est une famille orthonormée (ou orthonormale) lorsque 1, ..., x, sont 2 &
2 orthogonaux et unitaires :

(i, j) € [L*  (ailxy) = 0

Definition 2.4 Base orthonormée

(é1,...,€,) est une base de £

On dit que (eq, . .., e,) est une base orthonormée de F lorsque : { (e1,...,en) est une famille orthonormée

Proposition 2.3 Argument de dimension

Soit £ un espace euclidien.
Soient x1,...,x, des vecteurs de F.

. e t famille orth $
S { (#1,., ) est une famille orthonormée alors (x1,...,x,) est une base orthonormale de F.

et n = dim(FE)

Exemple 2.1

La base canonique est une base orthonormée de R™ muni de son produit scalaire canonique.

2.2 Procédé d’orthonormalisation de Gram-Schmidt

Ce procédé permet de construire une famille orthonormée a partir d’une famille libre.

Proposition 2.4

Soit E/ un espace préhilbertien réel.

Si (21,2, ...,%,) est une famille libre de E alors

1. il existe une famille orthonormée (e, ..., e,) telle que :
Vk € [1,n], Vect(ey,...,ex) = Vect(zy,..., xg).

il existe une et une seule famille orthonormée (eq, e, ..., e,) de E telle que :
2. | eVk e [l,n], Vect(ey,...,e) = Vect(zy,...,xx)

o Vk e [l,n], (ex|zx) >0
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Formules pratiques :

La famille orthonormale (eq, ..., e,) obtenue a partir de (x1,...,z,) est donnée par les formules :
1 _
e = ——x ey = 72— (maler) &1 et plus généralement
1 |22 — (2]e1) x|
1 k-1 k-1 (zale)
Vke[2,n], er=—€, ou e, =x,— Z (xkle;) e; = g, e .
€] 1 (€3le;)

=1 i=

2.3 Orthogonalité et sous-espaces vectoriels

Dans tout ce paragraphe F' et G désignent deux sous-espaces vectoriels de E et X une partie de

E.

Definition 2.5 Sous-espaces orthogonaux

On dit que F' et G sont orthogonaux lorsque tout vecteur de F' est orthogonal a tout vecteur de
G :
Vee F, YyeG (z|y)=0

On note alors F_LG.

Definition 2.6 Orthogonal d’un sous-espace ou d’une partie

e On appelle orthogonal de F' I’ensemble des vecteurs de F qui sont orthogonaux a tous les vecteurs
de F. On le note F*.
Ft={zcE, VYycF (zly)=0}

e On appelle orthogonale d’une partie X de F I’ensemble des vecteurs de E qui sont orthogonaux
A tous les vecteurs de X. On le note X .

Proposition 2.5

Ft et Xt sont des sous-espaces vectoriels de E.

Exemple 2.2
E+ ={0}et {0} =E.

Proposition 2.6 Propriétés

Pour F' sous-espace vectoriel de E, on a :

FLIFt  FnFt={0} e Fc(FY"

Proposition 2.7 Caractérisation de 'appartenance o F+

On suppose que F' est de dimension finie non nulle.

Si (eq,...,ep) est une base de F alors :

reFt<=Vic[l,p] (vle)) =0 (vLle;)



PSI Chapitre 10 Espaces préhilbertiens réels, espaces euclidiens

Proposition 2.8 Lien entre sous-espaces vectoriels orthogonauz et orthogonal d’un s.e.v.

Pour F' et G deux sous-espaces vectoriels de F.

FI1G+=FcCcG+ (etGCFh)
Proposition 2.9 Orthogonalité et somme directe
e Si F1G alors F'N G = {0}, donc la somme F' + G est directe.

e Si Fi, ..., F, sont des sous-espaces vectoriels de E orthogonaux 2 a 2 alors la somme F; +. .

est directe.

3 Bases orthonormées d’un espace euclidien

Dans ce paragraphe E est un espace euclidien de dimension n € N*.

3.1 Existence de bases orthonormeées

Proposition 3.1

Tout espace euclidien admet une base orthonormeée.

Proposition 3.2 Théoreme de la base orthonormée incomplete

A+ F,

Si(eq,...,ep) est une famille orthonormée de £ alors on peut la compléter en une base orthonormée

(€1, €p,€Ept1s--.,6,) de E.

Toute famille orthonormée d’un espace euclidien peut étre complétée en une base orthonormée.

3.2 Expressions dans une base orthonormée

Coordonnées, produit scalaire, norme dans une B.O.N.

Soit E un espace euclidien et soit B = (eq, €, ..., e,) une base orthonormée de E.

Soit (:v, y) € E? tel que xr = inei et y = Zyiei.

i=1 i=1

oeVie[l,n] z;=(x|e;) et donc z = Z (x]e;) e;.

=1

o (aly) = > .
=1

n
o [lzll = /D 2%
i=1
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Expression matricielle

X1 U1

Notons X = | : | et Y = | : | les matrices des vecteurs x et y dans la base orthonormale B.
Tn Yn
(zly) =" XY

Matrice d’un endomorphisme dans une base orthonormée

Soit u € Z(FE), si on note A = (a;;) = Mp(u) la matrice de u dans la base orthonormale
B = (e,...,e,) de E alors

V(i,5) € [1,n] ai; = (eilu(e;))

4 Projection orthogonale sur un sous-espace vectoriel de
dimension finie

4.1 Supplémentaire orthogonal

Proposition 4.1

Soit E un espace préhilbertien réel.

Si F est un sous-espace vectoriel de E de dimension finie alors £ = F @ F*.

1
On dit que F'* est le supplémentaire orthogonal de F' et parfois on note £ = F @ F+.

Proposition 4.2 Cas d'un espace euclidien

Soit E est un espace euclidien de dimension n € N*.

E=FgF+
Si F est un sous-espace vectoriel de E alors { dim(F*) =n — dim(F)
F=(F"

4.2 Projection orthogonale

Definition 4.1

Soit E un espace préhilbertien.
Si F est un sous-espace vectoriel de dimension finie, alors £ = F @ F*.

On appelle projection orthogonale sur F, la projection sur F' dans la direction de F'*.

E—F
x> pr(z) =y
pr(z) s’appelle le projeté orthogonal de x sur F'.

On la note pg : ott (y, ) est 'unique élément de F' x F'+ tel que z =y + 2.
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Remarque 4.1 Cas euclidien

Dans le cas d’'un espace euclidien, on peut toujours définir la projection orthogonale sur un sous-
espace vectoriel F'.

Proposition 4.3 Propriétés usuelles d’une projection

Soit F' un sous-espace vectoriel de dimension finie d’un espace préhilbertien réel E, si pp est la
projection orthogonale sur F' alors :

pr € ZL(F) Ker(pp) = F* Im(pr) =F ={z € E, pp(x)=x}= Ker(pr— Idg)

On remarque que Ker(pp) = (Im(pg))™.

Proposition 4.4 Propriété spécifique a une projection orthogonale
Si pr est la projection orthogonale sur un sous-espace vectoriel F' alors :
pr(z) € F
Ve e &
x—pr(z) € F*
Proposition 4.5 Détermination pratique du projeté orthogonal d’un vecteur

Soit E un espace préhilbertien réel et F' un sous-espace vectoriel de dimension finie égale a p € N*.

P
e Si(eq,...,6p,) est une base orthonormée de F' alors Vo € E, pp(x) = Z (ex|x) e.

k=1
e Si (eq,...,e,) est une base quelconque de F' et x un vecteur de E alors pp(x) est caractérisé par :

d(aq,...qap) € RP tel que

pr(T) = aner + s+ e+ ...+ ape,
et

Vie[l,p], (z—pr(z)le;)=0

pr(z) € F
ce qui équivaut a
r—pp(x) € F*

Exemple 4.1

Soit F' = Vect(er,es) C R? avec e; = (1,0,0), es = (1,1,0).
Déterminer le projeté orthogonal du vecteur z = (1,—1,1) sur F.

Remarque 4.2

On peut aussi définir la symétrie orthogonale par rapport a un sous-espace vectoriel de dimension

finie : c’est la symétrie sp associée a la projection orthogonale sur F' : sp = 2pp — Idg.

E— FE .
SF :y . olt (y, 2) est I'unique couple de F' x F* tel que x =y + 2.
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4.3 Distance d’un vecteur a un sous-espace vectoriel de dimension finie

Soit F' un sous-espace vectoriel de dimension finie d'un espace préhilbertien E et x un vecteur de F.

— R

F
e [’application
PP y = |lz—vy

H admet un minimum.
e Ce minimum est atteint pour y = pp(x) et uniquement pour ce vecteur.

e Ce minimum est appelé distance du vecteur x au sous-espace vectoriel F' et noté d(z, F') :

d(z, F) = Min|lz — y[| = ||z — pp(z)|
yeF

Cette propriété permet de calculer certaines bornes inférieures, on peut en effet écrire, pour F'
sous-espace vectoriel de dimension finie, Inf||z — y||* = d*(x, F) = ||z — pr(2)|*.
yeF

|z — pr(2)|| = ||ppe(2)||* si E est de dimension finie.

Exemple 4.2
1
Déterminer Inf (¢! — at — b)*dt.
(a,b)eR2 JO

1

Cas particulier : Distance a I’hyperplan Vect(u)- en dimension finie

Soit u un vecteur non nul.

e Le projeté orthogonal d'un vecteur x sur I'hyperplan H = Vect(u)* est : | py(z) =

e La distance d'un vecteur = & 'hyperplan H = Vect(u)t est | d(z, H) = M

Exemple 4.3

R3 est muni de son produit scalaire canonique. Déterminer la distance du vecteur x = (1,1, —1)
au plan d’équation x — y + 2z = 0.
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5 Formes linéaires sur un espace euclidien
Dans tout ce paragraphe E désigne un espace euclidien de dimension n > 2.
5.1 Représentation des formes linéaires d’un espace euclidien

Soit a € F, 'application > (alz) est une forme linéaire par bilinéarité du produit scalaire.

On peut la noter (a.)

Le théoreme suivant montre que toutes les formes linéaires sont de ce type la.

Proposition 5.1

© est une forme linéaire sur F si et seulement si
il existe un vecteur a de E tel que Vo € E, ¢(x) = (z]a).

Le vecteur a est unique.

o . o E— B
On note E* I'espace des formes linéaires sur F, appelé espace dual de E. L’application o (al.)

est un isomorphisme.

5.2 Hyperplans d’un espace euclidien

Definition 5.1 Vecteur normal a un hyperplan

Soit H un hyperplan de E.
On appelle vecteur normal & '’hyperplan H tout vecteur non nul appartenant a H-+.

On sait que dim(H*) = dim(E) — dim(H) = 1, donc H* est une droite et donc :

a est un vecteur normal & H ssi H+ = Vect(a) = Ra.

Proposition 5.2 FEquation d’un hyperplan dans une base orthonormée

Soit B = (ey,...,e,) une base orthonormée de E.
Soit a = (ay,...,a,) € R™ tel que a # 0.

n n
H est un hyperplan de vecteur normal a = Z a;e; ssi H a pour équation Z a;z; = 0 dans la base B.
i=1 i=1




