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Dans tout ce chapitre, E désigne un R-espace vectoriel et tous les espaces vectoriels considérés
sont des R-espaces vectoriels.

1 Produit scalaire, norme euclidienne

1.1 Définition d’un produit scalaire

Definition 1.1

Soit E un R-espace vectoriel.

On appelle produit scalaire sur E, toute forme bilinéaire symétrique définie-positive sur E.

Un produit scalaire sur E est donc une application ϕ : (x, y) ∈ E × E 7→ (x|y) telle que :

• ϕ est à valeurs dans R.

• ϕ est bilinéaire :


∀y ∈ E, E → R

x 7→ (x|y)
est linéaire

∀x ∈ E, E → R
y 7→ (x|y)

est linéaire.

• ϕ est symétrique : ∀(x, y) ∈ E2, (x|y) = (y|x)

• ϕ est définie-positive : ∀x ∈ E, (x|x) > 0 et (x|x) = 0 =⇒ x = 0

On utilisera en général la notation introduite précédemment : (x|y) ou 〈x, y〉. La notation x.y est
réservée à la géométrie.

Remarque 1.1 Conséquence de la bilinéarité

Pour (x, x′, y, y′) ∈ E4, on aura :

(x+ x′|y + y′) = (x|y) + (x′|y) + (x|y′) + (x′|y′)

Et plus généralement pour (x1, . . . , xn, y1, . . . , yp) ∈ En+p et (λ1, . . . , λn, µ1, . . . , µp) ∈ Rn+p :(
n∑

i=1

λixi

∣∣∣∣∣
p∑

k=1

µkyk

)
=

n∑
i=1

p∑
k=1

λiµk (xi|yk)
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Proposition 1.1 Caractérisation

Soit ϕ :
E × E → R
(x, y) 7→ (x|y)

.

ϕ est un produit scalaire sur E si et seulement si :


ϕ est linéaire par rapport à la première variable

ϕ est symétrique

ϕ est définie-positive.

Definition 1.2

• On appelle espace préhilbertien réel tout couple (E, ( | )) où E est un R-espace vectoriel
et ( | ) est un produit scalaire sur E.

• On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

1.2 Exemples de référence

1. Produit scalaire canonique sur Rn et sur Mn1(R) :

L’application

Rn ×Rn → R

(x, y) 7→ (x|y) =
n∑

k=1

xkyk
, avec x = (x1, . . . , xn) et y = (y1, . . . , yn) est

un produit scalaire sur Rn appelé le produit scalaire canonique.
Rn est ainsi muni de sa structure euclidienne canonique.

Expression matricielle :

Soit x = (x1, . . . , xn) ∈ Rn et y = (y1, . . . , yn) ∈ Rn, notons X =

x1...
xn

 et Y =

y1...
yn

,

alors on peut écrire XT .Y = (x|y).

On en déduit que l’application
Mn1(R)×Mn1(R) → R

(X, Y ) 7−→ XTY
est un produit scalaire sur

Mn1(R).
Ce produit scalaire est appelé le produit scalaire canonique de Mn1(R).

2. Produit scalaire canonique sur Mn(R) :

Proposition 1.2

L’application
Mn(R)×Mn(R) → R

(A,B) 7→ (A|B) = tr
(
AT .B

) est un produit scalaire surMn(R)

appelé produit scalaire canonique sur Mn(R).

De plus en notant A = (aij) et B = (bij), alors (A|B) = tr
(
AT .B

)
=

n∑
(i,j)∈[[1,n]]2]

aijbij.
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3. Produits scalaires intégral sur C0([a, b],R) :

Soit E = C0([a, b],R) avec a < b.

L’application
E × E → R

(f, g) 7→ (f |g) =

∫ b

a

f(t)g(t)dt
est un produit scalaire sur E, appelé produit

scalaire intégral sur C0([a, b],R).

Généralisation : produit scalaire intégral avec poids

Soit E = C0([a, b],R) avec a < b.

Si ω ∈ C0([a, b], ]0,+∞[) alors l’application
E × E → R

(f, g) 7→ (f |g) =

∫ b

a

ω(t)f(t)g(t)dt
est un pro-

duit scalaire sur E.

1.3 Inégalité de Cauchy-Schwarz

Proposition 1.3

Soit E un R-espace vectoriel muni d’un produit scalaire ( | ).

∀(x, y) ∈ E2, (x|y)2 6 (x|x) (y|y)

Avec égalité si et seulement si x et y sont colinéaires (x = 0 ou ∃λ ∈ R, y = λx).

Remarque 1.2 Application aux exemples de référence

1. Si (x1, . . . , xn) ∈ Rn et (y1, . . . , yn) ∈ Rn alors(
n∑

i=1

xiyi

)2

6

(
n∑

i=1

x2i

)(
n∑

i=1

y2i

)

avec égalité si et seulement si (x1, . . . , xn) = 0 ou ∃λ ∈ R, ∀i ∈ [[1, n]] yi = λxi.

2. Si f ∈ C0([a, b],R) et g ∈ C0([a, b],R) alors(∫ b

a

f(t)g(t)dt

)2

6
∫ b

a

f 2(t)dt

∫ b

a

)g2(t)dt

et

(∫ b

a

f(t)g(t)dt

)2

=

∫ b

a

f 2(t)dt

∫ b

a

)g2(t)dt si et seulement si (f, g) est liée.

Exemple 1.1

Justifier que ∀(x1, . . . , xn) ∈ Rn

(
n∑

k=1

xk
2k

)
6

1

3

n∑
k=1

x2k.
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1.4 Norme euclidienne

Definition 1.3 Norme euclidienne

Soit E muni d’un produit scalaire ( | ).

• Soit x ∈ E, on appelle norme du vecteur x le nombre réel, noté ‖x‖, défini par : ‖x‖ =
√

(x|x).

• On appelle norme euclidienne l’application
E → R+

x 7→ ‖x‖ .

Remarque 1.3 Réécriture de l’inégalité de Cauchy-Schwarz

∀(x, y) ∈ E2 | (x|y) | 6 ‖x‖.‖y‖

Proposition 1.4 Propriété de la norme euclidienne

Soit E muni d’un produit scalaire ( | ).

1. ∀x ∈ E, ‖x‖ = 0⇒ x = 0.

2. ∀x ∈ E, ∀λ ∈ R, ‖λx‖ = |λ|.‖x‖

3. Inégalité triangulaire : ∀(x, y) ∈ E2 ‖x+ y‖ 6 ‖x‖+ ‖y‖

Proposition 1.5

Soit E muni d’un produit scalaire ( | ).

1. Cas d’égalité dans l’inégalité triangulaire
‖x+ y‖ = ‖x‖+ ‖y‖ si et seulement si (x, y) est liée positivement :
x = 0 ou ∃λ ∈ R+, y = λx.

2. 2ème inégalité triangulaire :
∀(x, y) ∈ E2 |‖x‖ − |y‖| 6 ‖x+ y‖

3.

∥∥∥∥∥
n∑

k=1

λkxk

∥∥∥∥∥ 6
n∑

k=1

|λk|.‖xk‖, pour x1, . . . , xn des vecteurs de E et λ1, . . . , λn des réels.

Proposition 1.6 Relations entre produit scalaire et norme euclidienne

Soit E muni d’un produit scalaire ( | ) et (x, y) ∈ E2

• ‖x+ y‖2 = ‖x‖2 + 2 (x|y) + ‖y‖2

• ‖x− y‖2 = ‖x‖2 − 2 (x|y) + ‖y‖2
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• ‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
Identité du parallélogramme

• (x|y) =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
ou (x|y) =

1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
Identités de polarisation

2 Orthogonalité

Dans tout ce paragraphe E désigne un R-espace vectoriel muni d’un produit scalaire ( | ).

2.1 Familles orthogonale, orthonormée, base orthonormée

Definition 2.1

On dit que x et y sont des vecteurs orthogonaux lorsque (x|y) = 0.

On note alors x⊥y.

Remarque 2.1

• ∀x ∈ E,
(
~0|x
)

= 0.

• Le vecteur nul est le seul vecteur orthogonal à lui-même.

On en déduit que le vecteur nul est le seul vecteur orthogonal à tout vecteur de E.

• Si x est un vecteur orthogonal à chacun des vecteurs x1, . . . , xn alors x est orthogonal à toute
combinaison linéaire des vecteurs x1, . . . , xn.

Definition 2.2 Famille orthogonale

Soit x1, . . . , xn des vecteurs de E.
On dit que (x1, . . . , xn) est une famille orthogonale lorsque x1, . . . , xn sont 2 à 2 orthogonaux :

∀(i, j) ∈ [[1, n]2 i 6= j ⇒ (xi|xj) = 0

Proposition 2.1

Toute famille orthogonale (x1, . . . , xn) de vecteurs non nuls est libre.

Proposition 2.2 Relations de Pythagore

Soit (x1, x2, . . . , xn) une famille de vecteurs de E.
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• x1⊥x2 ⇐⇒ ‖x1 + x2‖2 = ‖x1‖2 + ‖x2‖2

• Si (x1, x2, . . . , xn) est une famille orthogonale alors

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

=
n∑

i=1

‖xi‖2

Definition 2.3 Famille orthonormée

Soit x1, . . . , xn des vecteurs de E.
On dit que (x1, . . . , xn) est une famille orthonormée (ou orthonormale) lorsque x1, . . . , xn sont 2 à
2 orthogonaux et unitaires :

∀(i, j) ∈ [[1, n]2 (xi|xj) = δij

Definition 2.4 Base orthonormée

On dit que (e1, . . . , en) est une base orthonormée de E lorsque :

{
(e1, . . . , en) est une base de E
(e1, . . . , en) est une famille orthonormée

Proposition 2.3 Argument de dimension

Soit E un espace euclidien.
Soient x1, . . . , xn des vecteurs de E.

Si

{
(x1, . . . , xn) est une famille orthonormée
et n = dim(E)

alors (x1, . . . , xn) est une base orthonormale de E.

Exemple 2.1

La base canonique est une base orthonormée de Rn muni de son produit scalaire canonique.

2.2 Procédé d’orthonormalisation de Gram-Schmidt

Ce procédé permet de construire une famille orthonormée à partir d’une famille libre.

Proposition 2.4

Soit E un espace préhilbertien réel.

Si (x1, x2, . . . , xn) est une famille libre de E alors

1. il existe une famille orthonormée (e1, . . . , en) telle que :
∀k ∈ [[1, n]], V ect(e1, . . . , ek) = V ect(x1, . . . , xk).

2.

il existe une et une seule famille orthonormée (e1, e2, . . . , en) de E telle que :

• ∀k ∈ [[1, n]], V ect(e1, . . . , ek) = V ect(x1, . . . , xk)

• ∀k ∈ [[1, n]], (ek|xk) > 0
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Formules pratiques :

La famille orthonormale (e1, . . . , en) obtenue à partir de (x1, . . . , xn) est donnée par les formules :

e1 =
1

‖x1‖
x1 e2 =

x2 − (x2|e1) e1
‖x2 − (x2|e1) e1‖

et plus généralement

∀k ∈ [[2, n]], ek =
1

‖e′k‖
e′k où e′k = xk −

k−1∑
i=1

(xk|ei) ei = xk

k−1∑
i=1

(xk|e′i)
(e′i|e′i)

e′i .

2.3 Orthogonalité et sous-espaces vectoriels

Dans tout ce paragraphe F et G désignent deux sous-espaces vectoriels de E et X une partie de
E.

Definition 2.5 Sous-espaces orthogonaux

On dit que F et G sont orthogonaux lorsque tout vecteur de F est orthogonal à tout vecteur de
G :

∀x ∈ F, ∀y ∈ G (x|y) = 0

On note alors F⊥G.

Definition 2.6 Orthogonal d’un sous-espace ou d’une partie

• On appelle orthogonal de F l’ensemble des vecteurs de E qui sont orthogonaux à tous les vecteurs
de F . On le note F⊥.

F⊥ = {x ∈ E, ∀y ∈ F (x|y) = 0}
• On appelle orthogonale d’une partie X de E l’ensemble des vecteurs de E qui sont orthogonaux
à tous les vecteurs de X. On le note X⊥.

Proposition 2.5

F⊥ et X⊥ sont des sous-espaces vectoriels de E.

Exemple 2.2

E⊥ = {0} et {0}⊥ = E.

Proposition 2.6 Propriétés

Pour F sous-espace vectoriel de E, on a :

F⊥F⊥ F ∩ F⊥ = {0} et F ⊂
(
F⊥
)⊥

Proposition 2.7 Caractérisation de l’appartenance à F⊥

On suppose que F est de dimension finie non nulle.

Si (e1, . . . , ep) est une base de F alors :

x ∈ F⊥ ⇐⇒ ∀i ∈ [[1, p]] (x|ei) = 0 (x⊥ei)
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Proposition 2.8 Lien entre sous-espaces vectoriels orthogonaux et orthogonal d’un s.e.v.

Pour F et G deux sous-espaces vectoriels de E.

F⊥G⇐⇒ F ⊂ G⊥ ( et G ⊂ F⊥)

Proposition 2.9 Orthogonalité et somme directe

• Si F⊥G alors F ∩G = {0}, donc la somme F +G est directe.

• Si F1, . . . , Fn sont des sous-espaces vectoriels de E orthogonaux 2 à 2 alors la somme F1+ . . .+Fn

est directe.

3 Bases orthonormées d’un espace euclidien

Dans ce paragraphe E est un espace euclidien de dimension n ∈ N∗.

3.1 Existence de bases orthonormées

Proposition 3.1

Tout espace euclidien admet une base orthonormée.

Proposition 3.2 Théorème de la base orthonormée incomplète

Si (e1, . . . , ep) est une famille orthonormée de E alors on peut la compléter en une base orthonormée
(e1, . . . , ep, ep+1, . . . , en) de E.

Toute famille orthonormée d’un espace euclidien peut être complétée en une base orthonormée.

3.2 Expressions dans une base orthonormée

Coordonnées, produit scalaire, norme dans une B.O.N.

Soit E un espace euclidien et soit B = (e1, e2, . . . , en) une base orthonormée de E.

Soit (x, y) ∈ E2 tel que x =
n∑

i=1

xiei et y =
n∑

i=1

yiei.

• ∀i ∈ [[1, n]] xi = (x|ei) et donc x =
n∑

i=1

(x|ei) ei.

• (x|y) =
n∑

i=1

xiyi

• ‖x‖ =

√
n∑

i=1

x2i
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Expression matricielle

Notons X =

x1...
xn

 et Y =

y1...
yn

 les matrices des vecteurs x et y dans la base orthonormale B.

(x|y) =t XY

Matrice d’un endomorphisme dans une base orthonormée

Soit u ∈ L (E), si on note A = (aij) = MB(u) la matrice de u dans la base orthonormale
B = (e1, . . . , en) de E alors

∀(i, j) ∈ [[1, n]] aij = (ei|u(ej))

4 Projection orthogonale sur un sous-espace vectoriel de

dimension finie

4.1 Supplémentaire orthogonal

Proposition 4.1

Soit E un espace préhilbertien réel.

Si F est un sous-espace vectoriel de E de dimension finie alors E = F ⊕ F⊥.

On dit que F⊥ est le supplémentaire orthogonal de F et parfois on note E = F
⊥
⊕ F⊥.

Proposition 4.2 Cas d’un espace euclidien

Soit E est un espace euclidien de dimension n ∈ N∗.

Si F est un sous-espace vectoriel de E alors


E = F ⊕ F⊥

dim(F⊥) = n− dim(F )

F =
(
F⊥
)⊥

4.2 Projection orthogonale

Definition 4.1

Soit E un espace préhilbertien.
Si F est un sous-espace vectoriel de dimension finie, alors E = F ⊕ F⊥.

On appelle projection orthogonale sur F , la projection sur F dans la direction de F⊥.

On la note pF :
E −→ E
x 7→ pF (x) = y

où (y, z) est l’unique élément de F × F⊥ tel que x = y + z.

pF (x) s’appelle le projeté orthogonal de x sur F .
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Remarque 4.1 Cas euclidien

Dans le cas d’un espace euclidien, on peut toujours définir la projection orthogonale sur un sous-
espace vectoriel F .

Proposition 4.3 Propriétés usuelles d’une projection

Soit F un sous-espace vectoriel de dimension finie d’un espace préhilbertien réel E, si pF est la
projection orthogonale sur F alors :

pF ∈ L (E) Ker(pF ) = F⊥ Im(pF ) = F = {x ∈ E, pF (x) = x} = Ker(pF − IdE)

On remarque que Ker(pF ) = (Im(pF ))⊥.

Proposition 4.4 Propriété spécifique à une projection orthogonale

Si pF est la projection orthogonale sur un sous-espace vectoriel F alors :

∀x ∈ E


pF (x) ∈ F

x− pF (x) ∈ F⊥

Proposition 4.5 Détermination pratique du projeté orthogonal d’un vecteur

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie égale à p ∈ N∗.

• Si (e1, . . . , ep) est une base orthonormée de F alors ∀x ∈ E, pF (x) =

p∑
k=1

(ek|x) ek.

• Si (e1, . . . , ep) est une base quelconque de F et x un vecteur de E alors pF (x) est caractérisé par :


pF (x) ∈ F

x− pF (x) ∈ F⊥
ce qui équivaut à


∃(α1, . . . αp) ∈ Rp tel que
pF (x) = α1e1 + α2 + e2 + . . .+ αpep

et
∀i ∈ [[1, p]], (x− pF (x)|ei) = 0

Exemple 4.1

Soit F = V ect(e1, e2) ⊂ R3 avec e1 = (1, 0, 0), e2 = (1, 1, 0).
Déterminer le projeté orthogonal du vecteur x = (1,−1, 1) sur F .

Remarque 4.2

On peut aussi définir la symétrie orthogonale par rapport à un sous-espace vectoriel de dimension
finie : c’est la symétrie sF associée à la projection orthogonale sur F : sF = 2pF − IdE.

sF :
E → E
x 7→ y − z où (y, z) est l’unique couple de F × F⊥ tel que x = y + z.
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4.3 Distance d’un vecteur à un sous-espace vectoriel de dimension finie

Soit F un sous-espace vectoriel de dimension finie d’un espace préhilbertien E et x un vecteur de E.

• L’application
F → R
y 7→ ‖x− y‖ admet un minimum.

• Ce minimum est atteint pour y = pF (x) et uniquement pour ce vecteur.

• Ce minimum est appelé distance du vecteur x au sous-espace vectoriel F et noté d(x, F ) :

d(x, F ) = Min
y∈F
‖x− y‖ = ‖x− pF (x)‖

Cette propriété permet de calculer certaines bornes inférieures, on peut en effet écrire, pour F
sous-espace vectoriel de dimension finie, Inf

y∈F
‖x− y‖2 = d2(x, F ) = ‖x− pF (x)‖2.

‖x− pF (x)‖ = ‖pF⊥(x)‖2 si E est de dimension finie.

Exemple 4.2

Déterminer Inf
(a,b)∈R2

∫ 1

0

(et − at− b)2dt.

Cas particulier : Distance à l’hyperplan V ect(u)⊥ en dimension finie

Soit u un vecteur non nul.

• Le projeté orthogonal d’un vecteur x sur l’hyperplan H = V ect(u)⊥ est : pH(x) = x− (x|u)

‖u‖2
u.

• La distance d’un vecteur x à l’hyperplan H = V ect(u)⊥ est d(x,H) =
| (x|u) |
‖u‖

.

Exemple 4.3

R3 est muni de son produit scalaire canonique. Déterminer la distance du vecteur x = (1, 1,−1)
au plan d’équation x− y + 2z = 0.
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5 Formes linéaires sur un espace euclidien

Dans tout ce paragraphe E désigne un espace euclidien de dimension n > 2.

5.1 Représentation des formes linéaires d’un espace euclidien

Soit a ∈ E, l’application
E → R
x 7→ (a|x)

est une forme linéaire par bilinéarité du produit scalaire.

On peut la noter (a|.)

Le théorème suivant montre que toutes les formes linéaires sont de ce type là.

Proposition 5.1

ϕ est une forme linéaire sur E si et seulement si

il existe un vecteur a de E tel que ∀x ∈ E, ϕ(x) = (x|a).

Le vecteur a est unique.

On note E∗ l’espace des formes linéaires sur E, appelé espace dual de E. L’application
E → E∗

a 7→ (a|.)
est un isomorphisme.

5.2 Hyperplans d’un espace euclidien

Definition 5.1 Vecteur normal à un hyperplan

Soit H un hyperplan de E.

On appelle vecteur normal à l’hyperplan H tout vecteur non nul appartenant à H⊥.

On sait que dim(H⊥) = dim(E)− dim(H) = 1, donc H⊥ est une droite et donc :

a est un vecteur normal à H ssi H⊥ = V ect(a) = Ra.

Proposition 5.2 Equation d’un hyperplan dans une base orthonormée

Soit B = (e1, . . . , en) une base orthonormée de E.
Soit a = (a1, . . . , an) ∈ Rn tel que a 6= 0.

H est un hyperplan de vecteur normal a =
n∑

i=1

aiei ssi H a pour équation
n∑

i=1

aixi = 0 dans la base B.


