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Probleme 1 : Extrait de CNM PSI 2021

1
On admet qu’il existe v €]0, 1] tel que Z 7= In(n) + v + o(1) lorsque n tend vers +oo.
k=1

Partie I - Fonction zéta de Riemann
+00 1
On considere la fonction réelle ¢ définie sur |1, +oo[ par {(z) = —.
nfE
n=1

Pour tout entier naturel non nul n, on définit sur |0, +oo[ les fonctions réelles ¢, et 1, par :

1 ntlq 1 1
onle) == [ pdt et b= -

ne ot (n4 1)
1. Soit m un entier naturel non nul et z un réel de ]0,4o00], par décroissance de la fonction

i L _ emo
continue t w=e ») sur [1, +o0], on a :

1 1 1
Vt € [n,n + 1] CFS g—t < —
n X T n$

et par intégration sur le segment [n,n + 1] :

n+1 1 n+1 1 n+1 1
/ ——dt < / —dt < / —dt
no (n+1)7 0ot no N

1
on multiplie par (—1) et on additionne — pour obtenir :
n

0 < ¢n(®) < ()

1 1
2. Pour z dans |0, +o0], lilil — = hIJ’I_l e — 0, donc la suite (—) converge. On
n—+oo NT n—+4o0o nx neEN*

en déduit que la série télescopique Z Yn(x) converge.
n>1

Par comparaison la série a termes positifs E ©n(x) est convergente.
n>1

La série de fonctions Z ©n converge donc simplement sur |0, +o0|.
n=>1

+o00
On note ainsi pour tout réel x de |0, +o00|, p(z) = Z ©on ().
n=1

3. Pour montrer que ¢ est continue sur |0, 400, on va utiliser le théoreme de continuité de la
somme d’une série de fonctions, on va donc vérifier que VYn € N*, ¢, est continue sur |0, +oo[
et que la série de fonctions > ¢, converge uniformément sur |0, +oo[ ou sur tout segment
inclus dans |0, 4+o00.
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e Etude de la continuité de On

lere méthode : par continuité de fonctions usuelles

(1)—1—/%11(175—1—1( +1) 4+ In(n)
©n —'n/ ; ; = n nn ni(n

Vo €]0,1[U]1, +00], @n(z) = 1 [tl—x rﬂ

1 (n+ 1)1_I —nl=®
ne 11—z

1 e(l—x) In(n+1) __ e(l—a}) In(n)

enlw) = nt 11—z

On en déduit que ¢, est continue sur |0, 1] et sur |1, +oo[ par somme, composées et quotient
de fonctions continues dont le dénominateur ne s’annule pas sur ces intervalles. De plus

e(l=®)In(n+1) _ g(1=2)In(n) I+(I1—2)ln(n+1)—1—(1—2)In(n) +o(1 — x)
11—z z—1 1— 2

= In(n+1)—1In(n)+o(1)

z—1
s : 1
On en déduit que hrr% on(z) = — —In(n+ 1) + In(n) = ¢,(1).
T— n
La fonction ¢, est donc continue sur |0, +oo[ pour tout n € N*.

2nde méthode : avec les intégrales a parametre

1
Soit n € N*, on pose u : (x,t) —r — = e~ =1(®),

t.Z’

Vz €]0,400] ¢+ u(z,t) est continue par morceaux sur le segment [n,n + 1].
Vte n,n+1 x+— m est continue sur |0, 00| .

Vo €]0,+oo[ Vt € [n,n+1] |u(z,t)| =e ™0 < 1 et la fonction ¢ +— 1 est intégrable sur
[n,n + 1] puisque continue sur ce segment.

n+1 1
Par théoreme de continuité pour une intégrale a parametre, la fonction x — / t—wdt est
n
continue sur |0, 00|
n+1
Alors par différence de deux fonctions continues, la fonction ¢, : © +— — — / t—zdt est
n

nl‘
continue sur |0, o0/

e Etude de la convergence uniforme sur tout segment [a,b] C]0,+oo[ de 3 ¢,

Pour tout z €]0,4+00[ on a ¥n € N* 0 < p,(z) < ¥,(x) et les séries numériques Y v, ()
et > 1, () convergent, alors

—+00

+o0
Vr €]0,400[ YneN" 0< Z () < Z Ui ()

k=n+1 k=n+1
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Ce qui donne par télescopage

1
Vz €]0, 400 Vn e N* ()| <
DA N
+o00
: 1
Soit [a,b] C]0, 400, Vx € [a,b] Vn € N* Z or(T)| € T
k=n+1 (n T 1)
+oo
En notant R, : z — Z ¢k (z), on obtient que la fonction R,, est bornée sur [a, b] et
k=n-+1
0 < IRIEY = Sup|Ruw)] < o
z€la,b] (n + 1)
Et par théoreme d’encadrement, puisque a > 0, lir}rq | R, |12t = 0.
n—-+0oo

On en déduit que la série de fonctions > ¢, converge uniformément sur tout segment [a, b
inclus dans |0, 4+o00].

Par théoreme de continuité pour la somme d’une série de fonctions, on sait alors que

la fonction ¢ est continue sur |0, +00.

1
1—2x

4. On considere la fonction K définie sur |1, +oo[ par K(x) = ((z) +
(a) Pour tout réel x de |1, +o0],

p(r) = ) pulx)

+oo n+1
Z 1 1
n* " t*

par convergence des séries et intégrales de Riemann et relation de Chasles

or 1 —x < 0 donc

o) = )+ 17—

On a bien Vz €]1,400[ K(z) = ¢(z).
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(b) La fonction ¢ étant continue sur |0, +oo], elle est particulierement continue en 1, donc
lim K(z) = lir{1+gp(a:) = (1) € R.
z—

z—1t

La fonction K admet une limite finie quand x tend vers 1 a droite.

1 z—1t

1
(¢) On déduit de ce qui précede que hr?+ C(x) + —x) =¢(1). Or (1 —x)p(l) — 0,
T—r -
donc lim+ ((1 —z)¢(z) + 1) =0, ce qui donne
z—1

C(z) ~ ! 1 et donc lim ((z) = 400

r—1t T — z—1t

Partie II : Fonction zéta alternée
(="

nl’

Pour tout entier naturel non nul n, on définit la fonction f,, sur ]0, 400 par f,(x) =

1
5. Pour x €]0, 00|, la suite positive (—x) est décroissante de limite nulle, donc par le
neN*

critére spécial des séries alternées, la série alternée > f,(x) converge.

La série de fonctions Z fn converge simplement sur |0, +o00].
n=1

On définit ainsi la fonction f sur |0, +oo[ par f Z fulz

1 1
6. Va €]0,400] |fn(x)] = — et pour n € N la fonction z — — est décroissante sur R donc
ne ne

1
Sup |fa(2)|=-—5=1 » 0

x€]0,+oo[ n—-+o0o

On en déduit que la suite de fonctions ( f,,) ne converge pas uniformément vers la fonction nulle

sur |0, +o0[, et donc| la série de fonctions ) f,, ne peut pas converger uniformément sur |0, +o0|.

7. Soit a > 0.
Vn € N* V€ [a,+oo] fu(x) = (—1)"e~*"™ donc f, est de classe C' sur [a, +-00[ avec

(=1)""'In(n)

n.’D

fi(x) = (=1)"(~ In(n))e~*1) =

In(n)

Pour x € [a,4o00[ lim |f/(x)] = lim = 0 par croissances comparées puisque

n—+4oo n—+oo N7
a>0.
. Int , .
La fonction g, : t — pr est dérivable sur [1, +oo[ avec

1 In(t) 1—xIn(¢)
gl’( ) e+l o xt:erl - te+l
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On en déduit que
Vt>es Vr€la,+oof 1—2zn(t) <1—aln(t) <0
et donc Vi > ex Vi € [a, 400 ¢.(t) <0, ce qui donne :
dng € N* (ng=1+ Leéj) Vo € [a, +00[ g, est décroissante sur [ng, +00]

et donc il existe ng € N* tel que Va € [o, +00[ la suite (|f/(x)]) est décroissante et de

limite nulle.
Alors par critere spécial des séries alternées, la série alternée > f/ () converge avec

Z f(x M

ne
k=n+1

n=ng

Vn = ny Vr € |a,+oo|

< @) < Ifu@)] <

+oo
La fonction R!, : z — Z fr(x) est donc bornée sur [a, +oo[, pour n > ny avec
k=n+1
Inn
0 <R = Sup |R ()] < —=
T€|a, 400 n
Inn

Or a > 0 donc lim —— = 0 par croissances comparées et par encadrement
n—+o0o N

lim ||R. |+l = 0.

n—-+o0o

La suite de fonctions (R)),en+ converge uniformément vers la fonction nulle sur [a, +00[, ce

qui signifie que | la série de fonctions Y f/ converge uniformément sur [o, +00].

On a vu :

e Vn € N* f, est de classe C' sur |0, +o0.

e La série de fonctions ) f,, converge simplement sur |0, +o0.

e La série de fonctions Y f! converge uniformément sur tous les intervalles [, +oo[ avec
a> 0.

Alors par le théoréme de classe C! pour les séries de fonctions, on sait que f est de classe C*
sur |0, +00| et que, pour tout réel = de |0, +oo]

o) = 3 o) = Sy

n=1 n
Pour tout entier naturel non nul n et tout réel x de |1, 400,
2n 2n 2n
1 1 1
PR D DI D D+
k=1 k=1,kpair k=1,kimpair

n n

1 1
B AR e

p=1

+o0 n
1 1 1 1
-_ — N __|_ -
e 2wp§;:pw Z 2p— 1)
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10. De méme pour tout entier naturel non nul n et tout réel z de |1, 400,
2

n _1k 2n _1k 2n _1k
SIS SR T S )

k=1 k=1,kpair k=1,kimpair

_ i(—l)Q”Jr ~ (-7t

= @pr -1

) DISUMNINE ol NI oS N
el 2 | (2p = 1)

+o0o n 2n k
—1 —1
11. Pour tout réel x de |1, +oo[ f(z) = g (=1 = lim g ( k:x) . Et d’apres les résultats
n=1

o
—
el
Il
—_
bl
Il
—
o
Il
—_

(=D"

/n,I

1
Puisque pour x > 1, la série de Riemann E — converge et la série alternée E
n

converge, on a par passage a la limite sur 1’égalité (x) :

im_ 32 D = omr () — (@) +27%¢(@) = (2% 27 — (@)

n—~+00 k= N

On a donc bien Vz €]1,+o0o] f(z) = (2% — 1){(x).

2
12. (a) On sait que e* = Lru+ % + o(u?) alors

u—
-z (1—) In(2) In* 2 2 2
27T —1=e -1 = —In@2)(z—-1)+ ——(—-1)"+o((z—1)%))
z—1t 2
. , 1
(b) On a vu en question 4(b)-(c) : lim (C(x) + ) = (1), alors
z—17t 1—2x
1
=1t (1) +o(1), or
+o0o
n=1
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o(1) = lim Z@—m(kﬂ)ﬂn(k))

et par le résultat admis en début d’énoncé

() = v
On en déduit que () = i 1 + v+ o(1) et par produit
fl) = (@27 =1)¢(x)
2
= —ln(2)—i—ln 2(x—1)—7(x—1)1n2+0(x—1)

On a donc f(x) =, = In(2) + 1r172 (In(2) = 29) (z — 1) + o(x — 1).

z—1

Puisque f est de classe C'! sur |0, +-00[, on sait que le développement limité & 'ordre 1 de f
est donné par :

fle) = fO)+ (D)@ —-1) +o(z—1)

z—1

In2
Et par unicité de ce développement limité on a donc f(1) = —In(2) et f'(1) = HT (In(2) — 27),

ce qui donne| —f(1) = $ =1n(2) et f'(1) = Z(—U"—lw = 1“72 (In(2) — 27)

Probléme 2 : Extrait de Centrale PSI 2013

Dans tout ce probleme, p désigne un entier naturel non nul.

R[X] est 'ensemble des polynomes a coefficients réels.

M, (R) est I'ensemble des matrices carrées d’ordre p a coefficients réels.

I, est la matrice identité de M,(R).

GL,(R) est 'ensemble des matrices inversibles de M, (R).

Si A est une matrice de M,(R), on note uy ’endomorphisme de R? canoniquement associé¢ a la
matrice A, et par abus de notation, Ker(A) = Ker(ua).

Si A est une matrice de M, (R) on définit, lorsque la limite existe,

n—-+00

E(A) = lim (Jp+%,4)
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14. Soit x réel,

T n
e si x = 0 alors Vn € N, <1—|——> = 1" = let e® = e = 1, par conséquent

n
0 n
lim (1 + —) = e,
n—-4o00 n

e sixz € R* alors lim <1+£):1>Oetdonc
n

n—-+00

e €N Vnzn, (142) =exp (nin(1+2))

Par développement limité de In(1 4 u) pour u au voisinage de 0, on peut écrire :

<1+:c>n B $2+ 1
n YH—%OeXp v 2n © n

On en déduit que : lim <1 + E> =e".

n—-+4oo n

Finalement | Vz € R, lim <1 + f) =e".

n—-4oo n

15. Soit D € M,(R) une matrice diagonale.

d
d (0) ) 1+ — (0)
(a) Notons D = , alors I, + ED = et par produit

(0) dp (0) 14 %

de matrices diagonales,

1 n
(1,, ; —D) _
n A"
0 1+ -2
) (1+%)
On sait qu’une suite de matrices (A,) converge vers une matrice A si et seulement si
toutes les suites des coefficients de A,, convergent respectivement vers les coefficients

de la matrice A, par conséquent, en utilisant le résultat de la question préliminaire,
E(D) existe et on a :

. di\"

(0) ) lim (1+%)n (0)

n—-+00

p
On en déduit que det(E(D) = H e #£ 0 donc la matrice E(D) est inversible.
k=1
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e (0)
E(D) = et E(D) € Gl,(R)
(0) e
d (0) dy (0)
(b) D = est une matrice diagonale, alors Vk € N DF =
(0) dy (0) d"
q
et pour tout polynome () = Z ap X", on aura
k=0
>
g g d (0) k=0
k=0 k=0 (0) dF q
P (0) > ady
k=0
Q(d1) (0)
Donc Q(D) = , on en déduit que @) est un polynome qui vérifie
(0) Q(dy)

E(D) = Q(D) si et seulement si Vk € [1,p], Q(dy) = .

lere méthode : Avec les polynomes d’interpolation de Lagrange

On sait d’apres le cours que si ay, ..., o, sont des réels distincts deux a deux, alors on
peut définir les polynomes de Lagrange Ly, . .., L, associés a ces réels et que (Ly, ..., L)

q—1
est une base de R,_;[X] avec VP € R,_1[X] P = Z P(ay) L.
k=1
Notons ¢ le nombre de coefficients diagonaux de D distincts deux a deux et notons ces

coefficients ay, ..., a,. On a ainsi :
1<g<petVie[l,p], 3je][lq] tel qued; = a;.

Notons alors Ly, . .., L, les polynomes de Lagrange associés aux réels distincts o, . . ., oy,
c’est-a-dire :

Vk€[lq), LiX)= ] X o

r=1,r#k X — Qr
. . 9 1 sik=j
On sait alors que : V(k,7) € [1,¢]*, Li(a;) =k = 0 sik#j

q
Le polynéme Q(X) = Z e Lj(X) vérifie donc Vj € [1,q], Q(o;) =e%.
k=1

On en déduit que

Vie[l,p], 35 €[l,q], di=a;etdoncQ(d;)=Q(a;)=e" =et
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ce qui entraine

Il existe donc un polynome @ € R[X] tel que Q(D) = E(D).

2nde méthode : Avec une matrice de Vandermonde

On cherche un polynéome Q € R[X] tel que Vk € [1,d] Q(dy) = e%. On cherche donc
un entier naturel r et des réels ao, ..., a, tels que

Vke[[l,pﬂ, a0+a1dk+a2di+...—|—ar Z_:edk

Ce qui nous donne un systeme linéaire d’inconnues ay, ..., a, qui s’écrit sous forme
matricielle :
ap €d1 1 dl d% el e daﬂ
ay €d2 1 d2 d% el e dg
AX=Y avecX=| .|, Y=] .|, A=
d 2 T
a, etr 1 d, dp cee dp

On remarque que A ressemble a une matrice de Vandermonde, mais elle n’est pas
forcément carrée. Pour qu’elle soit carrée on doit avoir » + 1 = p. Dans ce cas son
déterminant sera égal a H (d; — dj), qui est non nul si et seulement si tous les réels

1<i<j<p
dy,...,d, sont distincts deux a deux, ce qui n’est pas forcément le cas ici.

Notons alors ¢ le nombre de coefficients diagonaux de D distincts deux a deux et notons
ces coefficients a1, ..., 4. On a ainsi :
1<qg<petVie[l,p], 3WeI(l,q] tel qued; = ay et donc edi = .

Alors en prenant r = ¢ — 1, on aura

-1
e 1 ag of ... ... af
-1
, ) e 1 ag a2 ... ... af
AX =Y <« BX=Y" avec Y =| .|, B=
Qgq 2 q—1
e I ag af ... ... af

La matrice B est carrée d’ordre ¢ et est de déterminant de Vandermonde égal a

H (o — aj) # 0, B est donc inversible et

I<i<g<i<q

AX =Y <— BX =Y «— X = B Y’

il existe donc des réels ag, ...,a, (r =q—1) tels que Q = Zaka vérifie Q(D) = E(D).
k=0
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d1 (0) (05} (0) d1 + o (0)
(¢) SiD = et si A = alors D+A =
(0) dp (0) Qp (0) dp + oy
donc par le résultat de la question 15(a)
6d1+041 (0)
E(D+A) = :
(0) 6d1+041
et e (0)
(0) el e
e 0)) [e (0)
(0) e ) \(0) e

On a bien : E(D + A) = E(D).E(A)

16. Soit A € M,(R) une matrice diagonalisable.

(a) Puisque A est diagonalisable, on sait qu’il existe une matrice P € GL,(R) et une matrice

diagonale D telles que A = P.D.P~!, alors
1 1 1
I,+-A=PIL.P'+P-DP'=P ([p + —D) P!
n n n
et par récurrence on obtient :

1 \" 1 \"
Vk € N*, (Ip + —A) =P. (Ip + —D) P!
n n

1 " 1 "
donc (Ip + —A> =P (]p + —D) P
n n

D’apres les propriétés sur la convergence des suites de matrices dans M,(R) (vu en
exercice mais qui sera fait plus tard dans le cours), on sait que si (B, ),en est une suite
de matrices qui converge vers une matrice B alors la suite (PB,,),en converge vers P.B
et la suite de matrices (P.B,.P™!),en converge vers la matrice P.B.P~L.

1 n
La matrice D étant diagonale on sait que E(D) = lim (Ip + —D) existe alors F(A)
n

n—-+oo
existe et
N e (0)
E(A) = Jim (Ip + 5/1) =PED).P =P Pt
(0) et
avec Ay, ..., A\, les valeurs propres (non distinctes) de A.
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(b) Avec les résultats et notations de la question précédente, on a :

det(E(A))

det(E(A))

eM (0)
det | P. pt
(0) e
et (0)
det(P).det det (P71))
(0) e
e (0)
det
(0) e

p
[[e
k=1

exp (Z Ak>

A étant diagonalisable on obtient

6tr(A)

(c) Soit x € R, avec les notations et résultats de la question 16(a), on a :
(zl,+ A) = P.(xI,+ D).P~ avec zI, + D matrice diagonale, donc xI, + A est diago-
nalisable et d’apres 16(a) appliquée a 1, + A, E(zl, + A) existe et

E(zl, + A) = P.E(zI, + D).P™*

xl, et D sont diagonales alors par la question 15 : E(xl, + D) = E(xl,).E(D) et

e” (0)
E(zl,) = L
(0) e”

= €”1, ce qui donne avec 16(a) :

E(zl, + A) = Pe"E(D).P~' = ¢*(P.E(D).P~') = ¢"E(A)

17. Soient A et B dans M,,(R) deux matrices diagonalisables. On suppose que A et B commutent.

(a) A et B sont diagonalisables et commutent alors uy et up les endomorphismes de R?
canoniquement associés a ces matrices sont diagonalisables et commutent.

On sait que RP est égale a la somme directe des sous-espaces propres de uy4 :

"= P Ker(us— Mdgs)

AESP(A)
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notons E)(A) = Ker(ua — Mdgy).

up commute avec uy alors ug commute avec us — Al dgre, Ex\(A) est donc stable par
up qui induit un endomorphisme vg(A) sur E\(A). up est diagonalisable alors ’endo-
morphisme induit vp(A) est aussi diagonalisable, il existe donc une base By de E,(A)
formée de vecteurs propres de ug.

On en déduit que la juxtaposition des bases By, quand A varie dans Sp(A), forme une

base B de R? = @ E\(A), et que c’est une base de vecteurs propres de up.

AESP(A)
Comme chaque vecteur de cette base est dans un sous-espace propre de uy4, B est aussi
une base formée de vecteurs propres de u 4.

Si on note P la matrice de passage de la base canonique de R? a cette nouvelle base B
on aura :

e P71BP est une matrice diagonale puisque B est une base de vecteurs propres de
upg et

e P~ 1AP est une matrice diagonale puisque B est aussi une base de vecteurs propres
de u A-

(b) Notons alors Dy = P"'AP et Dg = P'BP, on aura A+ B = P.(Ds+ Dg).P~!, donc
A + B est diagonalisable et E(A + B) existe avec

E(A+B) = P.E(Ds+Dpg).P~" = P.E(DA)E(Dg).P~" = (P.E(D,).P~").(P.E(Dg).P™")

donc E(A + B) = E(A).E(B), et E(A+ B) = E(B + A) = E(B).E(A).

On a montré que F(A + B) existe avec E(A+ B) = E(A).E(B) = E(B).E(A)

Fin du corrigé



