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Problème 1 : Extrait de CNM PSI 2021

On admet qu’il existe γ ∈]0, 1[ tel que
n∑
k=1

1

k
= ln(n) + γ + o(1) lorsque n tend vers +∞.

Partie I - Fonction zêta de Riemann

On considère la fonction réelle ζ définie sur ]1,+∞[ par ζ(x) =
+∞∑
n=1

1

nx
.

Pour tout entier naturel non nul n, on définit sur ]0,+∞[ les fonctions réelles ϕn et ψn par :

ϕn(x) =
1

nx
−
∫ n+1

n

1

tx
dt et ψn(x) =

1

nx
− 1

(n+ 1)x

1. Soit n un entier naturel non nul et x un réel de ]0,+∞[, par décroissance de la fonction

continue t 7→ 1

tx
= e−x ln(t) sur [1,+∞[, on a :

∀t ∈ [n, n+ 1]
1

(n+ 1)x
6

1

tx
6

1

nx

et par intégration sur le segment [n, n+ 1] :∫ n+1

n

1

(n+ 1)x
dt 6

∫ n+1

n

1

tx
dt 6

∫ n+1

n

1

nx
dt

on multiplie par (−1) et on additionne
1

nx
pour obtenir :

0 6 ϕn(x) 6 ψn(x)

2. Pour x dans ]0,+∞[, lim
n→+∞

1

nx
= lim

n→+∞
e−x ln(n) = 0, donc la suite

(
1

nx

)
n∈N∗

converge. On

en déduit que la série télescopique
∑
n>1

ψn(x) converge.

Par comparaison la série à termes positifs
∑
n>1

ϕn(x) est convergente.

La série de fonctions
∑
n>1

ϕn converge donc simplement sur ]0,+∞[.

On note ainsi pour tout réel x de ]0,+∞[, ϕ(x) =
+∞∑
n=1

ϕn(x).

3. Pour montrer que ϕ est continue sur ]0,+∞[, on va utiliser le théorème de continuité de la
somme d’une série de fonctions, on va donc vérifier que ∀n ∈ N∗, ϕn est continue sur ]0,+∞[
et que la série de fonctions

∑
ϕn converge uniformément sur ]0,+∞[ ou sur tout segment

inclus dans ]0,+∞[.



PSI Un corrigé du D. M. n°04 2

• Étude de la continuité de ϕn

1ère méthode : par continuité de fonctions usuelles

ϕn(1) =
1

n
−
∫ n+1

n

1

t
dt =

1

n
− ln(n+ 1) + ln(n).

∀x ∈]0, 1[∪]1,+∞[, ϕn(x) =
1

nx
−
[
t1−x

1− x

]n+1

n

=
1

nx
− (n+ 1)1−x − n1−x

1− x

ϕn(x) =
1

nx
− e(1−x) ln(n+1) − e(1−x) ln(n)

1− x
On en déduit que ϕn est continue sur ]0, 1[ et sur ]1,+∞[ par somme, composées et quotient
de fonctions continues dont le dénominateur ne s’annule pas sur ces intervalles. De plus

e(1−x) ln(n+1) − e(1−x) ln(n)

1− x
=
x→1

1 + (1− x) ln(n+ 1)− 1− (1− x) ln(n) + o(1− x)

1− x

=
x→1

ln(n+ 1)− ln(n) + o(1)

On en déduit que lim
x→1

ϕn(x) =
1

n
− ln(n+ 1) + ln(n) = ϕn(1).

La fonction ϕn est donc continue sur ]0,+∞[ pour tout n ∈ N∗.

2nde méthode : avec les intégrales à paramètre

Soit n ∈ N∗, on pose u : (x, t) 7→ 1

tx
= e−x ln(t).

∀x ∈]0,+∞[ t 7→ u(x, t) est continue par morceaux sur le segment [n, n+ 1].

∀t ∈ [n, n+ 1] x 7→ 1

tx
est continue sur ]0,+∞[ .

∀x ∈]0,+∞[ ∀t ∈ [n, n + 1] |u(x, t)| = e−x ln(t) 6 1 et la fonction t 7→ 1 est intégrable sur
[n, n+ 1] puisque continue sur ce segment.

Par théorème de continuité pour une intégrale à paramètre, la fonction x 7→
∫ n+1

n

1

tx
dt est

continue sur ]0,+∞[.

Alors par différence de deux fonctions continues, la fonction ϕn : x 7→ 1

nx
−
∫ n+1

n

1

tx
dt est

continue sur ]0,+∞[.

• Étude de la convergence uniforme sur tout segment [a, b] ⊂]0,+∞[ de
∑
ϕn

Pour tout x ∈]0,+∞[ on a ∀n ∈ N∗ 0 6 ϕn(x) 6 ψn(x) et les séries numériques
∑
ϕn(x)

et
∑
ψn(x) convergent, alors

∀x ∈]0,+∞[ ∀n ∈ N∗ 0 6
+∞∑

k=n+1

ϕk(x) 6
+∞∑

k=n+1

ψk(x)
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Ce qui donne par télescopage

∀x ∈]0,+∞[ ∀n ∈ N∗

∣∣∣∣∣
+∞∑

k=n+1

ϕk(x)

∣∣∣∣∣ 6 1

(n+ 1)x

Soit [a, b] ⊂]0,+∞[, ∀x ∈ [a, b] ∀n ∈ N∗

∣∣∣∣∣
+∞∑

k=n+1

ϕk(x)

∣∣∣∣∣ 6 1

(n+ 1)a

En notant Rn : x 7→
+∞∑

k=n+1

ϕk(x), on obtient que la fonction Rn est bornée sur [a, b] et

0 6 ‖Rn‖[a,b]∞ = Sup
x∈[a,b]

|Rn(x)| 6 1

(n+ 1)a

Et par théorème d’encadrement, puisque a > 0, lim
n→+∞

‖Rn‖[a,b]∞ = 0.

On en déduit que la série de fonctions
∑
ϕn converge uniformément sur tout segment [a, b]

inclus dans ]0,+∞[.

Par théorème de continuité pour la somme d’une série de fonctions, on sait alors que

la fonction ϕ est continue sur ]0,+∞[.

4. On considère la fonction K définie sur ]1,+∞[ par K(x) = ζ(x) +
1

1− x
.

(a) Pour tout réel x de ]1,+∞[,

ϕ(x) =
+∞∑
n=1

ϕn(x)

=
+∞∑
n=1

(
1

nx
−
∫ n+1

n

1

tx
dt

)

par convergence des séries et intégrales de Riemann et relation de Chasles

ϕ(x) =
+∞∑
n=1

1

nx
−
∫ +∞

1

1

tx
dt

= ζ(x)−
[
t1−x

1− x

]+∞
1

or 1− x < 0 donc

ϕ(x) = ζ(x) +
1

1− x

On a bien ∀x ∈]1,+∞[ K(x) = ϕ(x).
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(b) La fonction ϕ étant continue sur ]0,+∞[, elle est particulièrement continue en 1, donc
lim
x→1+

K(x) = lim
x→1+

ϕ(x) = ϕ(1) ∈ R.

La fonction K admet une limite finie quand x tend vers 1 à droite.

(c) On déduit de ce qui précède que lim
x→1+

(
ζ(x) +

1

1− x

)
= ϕ(1). Or (1 − x)ϕ(1) −→

x→1+
0,

donc lim
x→1+

((1− x)ζ(x) + 1) = 0, ce qui donne

ζ(x) ∼
x→1+

1

x− 1
et donc lim

x→1+
ζ(x) = +∞

Partie II : Fonction zêta alternée

Pour tout entier naturel non nul n, on définit la fonction fn sur ]0,+∞[ par fn(x) =
(−1)n

nx
.

5. Pour x ∈]0,+∞[, la suite positive

(
1

nx

)
n∈N∗

est décroissante de limite nulle, donc par le

critère spécial des séries alternées, la série alternée
∑
fn(x) converge.

La série de fonctions
∑
n>1

fn converge simplement sur ]0,+∞[.

On définit ainsi la fonction f sur ]0,+∞[ par f(x) =
+∞∑
n=1

fn(x).

6. ∀x ∈]0,+∞[ |fn(x)| = 1

nx
et pour n ∈ N la fonction x 7→ 1

nx
est décroissante sur R donc

‖fn‖]0,+∞[
∞ = Sup

x∈]0,+∞[

|fn(x)| = 1

n0
= 1 9

n→+∞
0

On en déduit que la suite de fonctions (fn) ne converge pas uniformément vers la fonction nulle

sur ]0,+∞[, et donc la série de fonctions
∑
fn ne peut pas converger uniformément sur ]0,+∞[.

7. Soit α > 0.
∀n ∈ N∗ ∀x ∈ [α,+∞[ fn(x) = (−1)ne−x ln(n) donc fn est de classe C1 sur [α,+∞[ avec

f ′n(x) = (−1)n(− ln(n))e−x ln(n) =
(−1)n−1 ln(n)

nx

Pour x ∈ [α,+∞[ lim
n→+∞

|f ′n(x)| = lim
n→+∞

ln(n)

nx
= 0 par croissances comparées puisque

α > 0.

La fonction gx : t 7→ ln t

tx
est dérivable sur [1,+∞[ avec

g′x(t) =
1

tx+1
− x ln(t)

tx+1
=

1− x ln(t)

tx+1



PSI Un corrigé du D. M. n°04 5

On en déduit que

∀t > e
1
α ∀x ∈ [α,+∞[ 1− x ln(t) 6 1− α ln(t) 6 0

et donc ∀t > e
1
α ∀x ∈ [α,+∞[ g′x(t) 6 0, ce qui donne :

∃n0 ∈ N∗ (n0 = 1 + be
1
α c) ∀x ∈ [α,+∞[ gx est décroissante sur [n0,+∞[

et donc il existe n0 ∈ N∗ tel que ∀x ∈ [α,+∞[ la suite (|f ′n(x)|)n>n0
est décroissante et de

limite nulle.
Alors par critère spécial des séries alternées, la série alternée

∑
f ′n(x) converge avec

∀n > n0 ∀x ∈ [α,+∞[

∣∣∣∣∣
+∞∑

k=n+1

f ′n(x)

∣∣∣∣∣ 6 |f ′n+1(x)| 6 |f ′n(x)| 6 ln(n)

nα

La fonction R′n : x 7→
+∞∑

k=n+1

f ′k(x) est donc bornée sur [α,+∞[, pour n > n0 avec

0 6 ‖R′n‖[α,+∞[
∞ = Sup

x∈[α,+∞
|R′n(x)| 6 lnn

nα

Or α > 0 donc lim
n→+∞

lnn

nα
= 0 par croissances comparées et par encadrement

lim
n→+∞

‖R′n‖[α,+∞[
∞ = 0.

La suite de fonctions (R′n)n∈N∗ converge uniformément vers la fonction nulle sur [α,+∞[, ce

qui signifie que la série de fonctions
∑
f ′n converge uniformément sur [α,+∞[.

8. On a vu :

• ∀n ∈ N∗ fn est de classe C1 sur ]0,+∞[.
• La série de fonctions

∑
fn converge simplement sur ]0,+∞[.

• La série de fonctions
∑
f ′n converge uniformément sur tous les intervalles [α,+∞[ avec

α > 0.

Alors par le théorème de classe C1 pour les séries de fonctions, on sait que f est de classe C1

sur ]0,+∞[ et que, pour tout réel x de ]0,+∞[

f ′(x) =
+∞∑
n=1

f ′n(x) =
+∞∑
n=1

(−1)n−1
ln(n)

nx

9. Pour tout entier naturel non nul n et tout réel x de ]1,+∞[,

2n∑
k=1

1

kx
=

2n∑
k=1,kpair

1

kx
+

2n∑
k=1,kimpair

1

kx

=
n∑
p=1

1

(2p)x
+

n∑
p=1

1

(2p− 1)x

2n∑
k=1

1

kx
=

1

2x

+∞∑
p=1

1

px
+

n∑
p=1

1

(2p− 1)x
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10. De même pour tout entier naturel non nul n et tout réel x de ]1,+∞[,

2n∑
k=1

(−1)k

kx
=

2n∑
k=1,kpair

(−1)k

kx
+

2n∑
k=1,kimpair

(−1)k

kx

=
n∑
p=1

(−1)2p

(2p)x
+

n∑
p=1

(−1)2p−1

(2p− 1)x

2n∑
k=1

(−1)k

kx
=

1

2x

n∑
p=1

1

px
−

n∑
p=1

1

(2p− 1)x

11. Pour tout réel x de ]1,+∞[ f(x) =
+∞∑
n=1

(−1)n

nx
= lim

n→+∞

2n∑
k=1

(−1)k

kx
. Et d’après les résultats

des deux questions précédentes :

2n∑
k=1

(−1)k

kx
= 2−x

n∑
k=1

1

kx
−

(
2n∑
k=1

1

kx
− 2−x

n∑
k=1

1

kx

)

2n∑
k=1

(−1)k

kx
= 2−x

n∑
k=1

1

kx
−

2n∑
k=1

1

kx
+ 2−x

n∑
k=1

1

kx
(∗)

Puisque pour x > 1, la série de Riemann
∑ 1

nx
converge et la série alternée

∑ (−1)n

nx
converge, on a par passage à la limite sur l’égalité (∗) :

lim
n→+∞

2n∑
k=1

(−1)k

kx
= 2−xζ(x)− ζ(x) + 2−xζ(x) = (2× 2−x − 1)ζ(x)

On a donc bien ∀x ∈]1,+∞[ f(x) = (21−x − 1)ζ(x).

12. (a) On sait que eu =
u→0

1 + u+
u2

2
+ o(u2) alors

21−x − 1 = e(1−x) ln(2) − 1 =
x→1+

− ln(2)(x− 1) +
ln2 2

2
(x− 1)2 + o((x− 1)2))

(b) On a vu en question 4(b)-(c) : lim
x→1+

(
ζ(x) +

1

1− x

)
= ϕ(1), alors

ζ(x) =
x→1+

1

x− 1
+ ϕ(1) + o(1), or

ϕ(1) =
+∞∑
n=1

ϕn(1)

=
+∞∑
n=1

(
1

n
−
∫ n+1

n

1

t
dt

)
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ϕ(1) = lim
n→+∞

n∑
k=1

(
1

k
− ln(k + 1) + ln(k)

)

= lim
n→+∞

(
n∑
k=1

1

k
− ln(n+ 1)

)

et par le résultat admis en début d’énoncé

ϕ(1) = γ

On en déduit que ζ(x) =
x→1+

1

x− 1
+ γ + o(1) et par produit

f(x) = (21−x − 1)ζ(x)

=
x→1+

− ln(2) +
ln2 2

2
(x− 1)− γ(x− 1) ln 2 + o(x− 1)

On a donc f(x) =
x→1+

− ln(2) +
ln 2

2
(ln(2)− 2γ) (x− 1) + o(x− 1).

13. Puisque f est de classe C1 sur ]0,+∞[, on sait que le développement limité à l’ordre 1 de f
est donné par :

f(x) =
x→1

f(1) + f ′(1)(x− 1) + o(x− 1)

Et par unicité de ce développement limité on a donc f(1) = − ln(2) et f ′(1) =
ln 2

2
(ln(2)− 2γ),

ce qui donne −f(1) =
+∞∑
n=1

(−1)n−1

n
= ln(2) et f ′(1) =

+∞∑
n=1

(−1)n−1
ln(n)

n
=

ln 2

2
(ln(2)− 2γ)

Problème 2 : Extrait de Centrale PSI 2013

Dans tout ce problème, p désigne un entier naturel non nul.

R[X] est l’ensemble des polynômes à coefficients réels.
Mp(R) est l’ensemble des matrices carrées d’ordre p à coefficients réels.
Ip est la matrice identité de Mp(R).
GLp(R) est l’ensemble des matrices inversibles de Mp(R).
Si A est une matrice de Mp(R), on note uA l’endomorphisme de Rp canoniquement associé à la
matrice A, et par abus de notation, Ker(A) = Ker(uA).

Si A est une matrice de Mp(R) on définit, lorsque la limite existe,

E(A) = lim
n→+∞

(
Ip +

1

n
A

)n
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14. Soit x réel,

• si x = 0 alors ∀n ∈ N∗,
(

1 +
x

n

)n
= 1n = 1 et ex = e0 = 1, par conséquent

lim
n→+∞

(
1 +

0

n

)n
= e0,

• si x ∈ R∗ alors lim
n→+∞

(
1 +

x

n

)
= 1 > 0 et donc

∃n0 ∈ N∗ ∀n > n0,
(

1 +
x

n

)n
= exp

(
n ln(1 +

x

n
)
)

Par développement limité de ln(1 + u) pour u au voisinage de 0, on peut écrire :(
1 +

x

n

)n
=

n→+∞
exp

(
x− x2

2n
+ o

(
1

n

))
On en déduit que : lim

n→+∞

(
1 +

x

n

)n
= ex.

Finalement ∀x ∈ R, lim
n→+∞

(
1 +

x

n

)n
= ex.

15. Soit D ∈Mp(R) une matrice diagonale.

(a) Notons D =

 d1 (0)
. . .

(0) dp

, alors Ip +
1

n
D =


1 +

d1
n

(0)

. . .

(0) 1 +
dp
n

 et par produit

de matrices diagonales,

(
Ip +

1

n
D

)n
=



(
1 +

d1
n

)n
(0)

. . .

(0)

(
1 +

dp
n

)n


On sait qu’une suite de matrices (An) converge vers une matrice A si et seulement si
toutes les suites des coefficients de An convergent respectivement vers les coefficients
de la matrice A, par conséquent, en utilisant le résultat de la question préliminaire,
E(D) existe et on a :

E(D) = lim
n→+∞

(
Ip +

1

n
D

)n
=


lim

n→+∞

(
1 +

d1
n

)n
(0)

. . .

(0) lim
n→+∞

(
1 +

dp
n

)n
 =

e
d1 (0)

. . .

(0) edp



On en déduit que det(E(D) =

p∏
k=1

edk 6= 0 donc la matrice E(D) est inversible.
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E(D) =

e
d1 (0)

. . .

(0) edp

 et E(D) ∈ Glp(R)

(b) D =

 d1 (0)
. . .

(0) dp

 est une matrice diagonale, alors ∀k ∈ N Dk =

 dk1 (0)
. . .

(0) dkp


et pour tout polynôme Q =

q∑
k=0

akX
k, on aura

Q(D) =

q∑
k=0

akD
k =

q∑
k=0

ak

 dk1 (0)
. . .

(0) dkp

 =



q∑
k=0

akd
k
1 (0)

. . .

(0)

q∑
k=0

akd
k
p



Donc Q(D) =

Q(d1) (0)
. . .

(0) Q(dp)

, on en déduit que Q est un polynôme qui vérifie

E(D) = Q(D) si et seulement si ∀k ∈ [[1, p]], Q(dk) = edk .

1ère méthode : Avec les polynômes d’interpolation de Lagrange

On sait d’après le cours que si α1, . . . , αq sont des réels distincts deux à deux, alors on
peut définir les polynômes de Lagrange L1, . . . , Lq associés à ces réels et que (L1, . . . , Lq)

est une base de Rq−1[X] avec ∀P ∈ Rq−1[X] P =

q−1∑
k=1

P (αk)Lk.

Notons q le nombre de coefficients diagonaux de D distincts deux à deux et notons ces
coefficients α1, . . . , αq. On a ainsi :
1 6 q 6 p et ∀i ∈ [[1, p]], ∃!j ∈ [[1, q]] tel que di = αj.

Notons alors L1, . . . , Lq les polynômes de Lagrange associés aux réels distincts α1, . . . , αq,
c’est-à-dire :

∀k ∈ [[1, q]], Lk(X) =

q∏
r=1,r 6=k

X − αr
αk − αr

On sait alors que : ∀(k, j) ∈ [[1, q]]2, Lk(αj) = δkj =

{
1 si k = j
0 si k 6= j

.

Le polynôme Q(X) =

q∑
k=1

eαkLk(X) vérifie donc ∀j ∈ [[1, q]], Q(αj) = eαj .

On en déduit que

∀i ∈ [[1, p]], ∃!j ∈ [[1, q]], di = αj et donc Q(di) = Q(αj) = eαj = edi
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ce qui entraine

Q(D) =

Q(d1) (0)
. . .

(0) Q(dp)

 =

e
d1 (0)

. . .

(0) edp

 = E(D)

Il existe donc un polynôme Q ∈ R[X] tel que Q(D) = E(D).

2nde méthode : Avec une matrice de Vandermonde

On cherche un polynôme Q ∈ R[X] tel que ∀k ∈ [[1, d]] Q(dk) = edk . On cherche donc
un entier naturel r et des réels a0, . . . , ar tels que

∀k ∈ [[1, p]], a0 + a1dk + a2d
2
k + . . .+ ard

r
k = edk

Ce qui nous donne un système linéaire d’inconnues a0, . . . , ar qui s’écrit sous forme
matricielle :

A.X = Y avec X =


a0
a1
...
ar

 , Y =


ed1

ed2
...
edp

 , A =


1 d1 d21 . . . . . . dr1
1 d2 d22 . . . . . . dr2
...

...
...

1 dp d2p . . . . . . drp


On remarque que A ressemble à une matrice de Vandermonde, mais elle n’est pas
forcément carrée. Pour qu’elle soit carrée on doit avoir r + 1 = p. Dans ce cas son

déterminant sera égal à
∏

16i<j6p

(di − dj), qui est non nul si et seulement si tous les réels

d1, . . . , dp sont distincts deux à deux, ce qui n’est pas forcément le cas ici.

Notons alors q le nombre de coefficients diagonaux de D distincts deux à deux et notons
ces coefficients α1, . . . , αq. On a ainsi :
1 6 q 6 p et ∀i ∈ [[1, p]], ∃!` ∈ [[1, q]] tel que di = α` et donc edi = eα` .

Alors en prenant r = q − 1, on aura

AX = Y ⇐⇒ BX = Y ′ avec Y ′ =


eα1

eα2

...
eαq

 , B =


1 α1 α2

1 . . . . . . αq−11

1 α2 α2
2 . . . . . . αq−12

...
...

...
1 αq α2

q . . . . . . αq−1q


La matrice B est carrée d’ordre q et est de déterminant de Vandermonde égal à∏
16i<j6j6q

(αi − αj) 6= 0, B est donc inversible et

AX = Y ⇐⇒ BX = Y ′ ⇐⇒ X = B−1Y ′

il existe donc des réels a0, . . . , ar (r = q − 1) tels que Q =
r∑

k=0

akX
k vérifie Q(D) = E(D).
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(c) SiD =

 d1 (0)
. . .

(0) dp

 et si ∆ =

α1 (0)
. . .

(0) αp

 alorsD+∆ =

d1 + α1 (0)
. . .

(0) dp + αp


donc par le résultat de la question 15(a)

E(D + ∆) =

e
d1+α1 (0)

. . .

(0) ed1+α1



=

e
d1 .eα1 (0)

. . .

(0) edp .eαp



=

e
d1 (0)

. . .

(0) edp

 .

e
α1 (0)

. . .

(0) eαp



On a bien : E(D + ∆) = E(D).E(∆)

16. Soit A ∈Mp(R) une matrice diagonalisable.

(a) Puisque A est diagonalisable, on sait qu’il existe une matrice P ∈ GLp(R) et une matrice
diagonale D telles que A = P.D.P−1, alors

Ip +
1

n
A = P.Ip.P

−1 + P.
1

n
D.P−1 = P

(
Ip +

1

n
D

)
.P−1

et par récurrence on obtient :

∀k ∈ N∗,

(
Ip +

1

n
A

)k
= P.

(
Ip +

1

n
D

)k
.P−1

donc

(
Ip +

1

n
A

)n
= P.

(
Ip +

1

n
D

)n
.P−1.

D’après les propriétés sur la convergence des suites de matrices dans Mp(R) (vu en
exercice mais qui sera fait plus tard dans le cours), on sait que si (Bn)n∈N est une suite
de matrices qui converge vers une matrice B alors la suite (PBn)n∈N converge vers P.B
et la suite de matrices (P.Bn.P

−1)n∈N converge vers la matrice P.B.P−1.

La matrice D étant diagonale on sait que E(D) = lim
n→+∞

(
Ip +

1

n
D

)n
existe alors E(A)

existe et

E(A) = lim
n→+∞

(
Ip +

1

n
A

)n
= P.E(D).P−1 = P.

e
λ1 (0)

. . .

(0) eλp

 .P−1

avec λ1, . . . , λp les valeurs propres (non distinctes) de A.
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(b) Avec les résultats et notations de la question précédente, on a :

det(E(A)) = det

P.
e

λ1 (0)
. . .

(0) eλp

 .P−1



= det(P ).det

e
λ1 (0)

. . .

(0) eλp

 .det (P−1))

= det

e
λ1 (0)

. . .

(0) eλp


=

p∏
k=1

eλk

= exp

(
p∑

k=1

λk

)

A étant diagonalisable on obtient

det(E(A)) = etr(A)

(c) Soit x ∈ R, avec les notations et résultats de la question 16(a), on a :
(xIp + A) = P.(xIp +D).P−1 avec xIp +D matrice diagonale, donc xIp + A est diago-
nalisable et d’après 16(a) appliquée à xIp + A, E(xIp + A) existe et

E(xIp + A) = P.E(xIp +D).P−1

xIp et D sont diagonales alors par la question 15 : E(xIp + D) = E(xIp).E(D) et

E(xIp) =

 ex (0)
. . .

(0) ex

 = exIp ce qui donne avec 16(a) :

E(xIp + A) = P.exE(D).P−1 = ex(P.E(D).P−1) = exE(A)

17. Soient A etB dansMp(R) deux matrices diagonalisables. On suppose queA etB commutent.

(a) A et B sont diagonalisables et commutent alors uA et uB les endomorphismes de Rp

canoniquement associés à ces matrices sont diagonalisables et commutent.

On sait que Rp est égale à la somme directe des sous-espaces propres de uA :

Rp =
⊕

λ∈Sp(A)

Ker(uA − λIdRp)
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notons Eλ(A) = Ker(uA − λIdRp).

uB commute avec uA alors uB commute avec uA − λIdRp , Eλ(A) est donc stable par
uB qui induit un endomorphisme vB(λ) sur Eλ(A). uB est diagonalisable alors l’endo-
morphisme induit vB(λ) est aussi diagonalisable, il existe donc une base Bλ de Eλ(A)
formée de vecteurs propres de uB.

On en déduit que la juxtaposition des bases Bλ, quand λ varie dans Sp(A), forme une

base B de Rp =
⊕

λ∈Sp(A)

Eλ(A), et que c’est une base de vecteurs propres de uB.

Comme chaque vecteur de cette base est dans un sous-espace propre de uA, B est aussi
une base formée de vecteurs propres de uA.

Si on note P la matrice de passage de la base canonique de Rp à cette nouvelle base B
on aura :

• P−1BP est une matrice diagonale puisque B est une base de vecteurs propres de
uB et

• P−1AP est une matrice diagonale puisque B est aussi une base de vecteurs propres
de uA.

(b) Notons alors DA = P−1AP et DB = P−1BP , on aura A+B = P.(DA +DB).P−1, donc
A+B est diagonalisable et E(A+B) existe avec

E(A+B) = P.E(DA+DB).P−1 = P.E(DA)E(DB).P−1 = (P.E(DA).P−1).(P.E(DB).P−1)

donc E(A+B) = E(A).E(B), et E(A+B) = E(B + A) = E(B).E(A).

On a montré que E(A+B) existe avec E(A+B) = E(A).E(B) = E(B).E(A)

Fin du corrigé


