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Dans tout ce chapitre K désigne R ou C.

Série entière d’une variable complexe :

Soit (an) une suite de complexes.
On appelle série entière (de la variable complexe) associée à la suite (an) la série de fonctions

∑
fn

où ∀n ∈ N, fn :
C → C
z 7→ anz

n. On la note
∑
anz

n.

Série entière d’une variable réelle :

Soit (an) une suite d’éléments de K.
On appelle série entière (de la variable réelle) associée à la suite (an) la série de fonctions

∑
fn où

∀n ∈ N, fn :
R → K
x 7→ anx

n. On la note
∑
anx

n.

On définit de même les séries entières du type
∑
n>n0

anx
n.

Exemples :
∑
n>1

xn

n

∑ zn

n!

∑
zn

Pour une série entière
∑
anx

n ou
∑
anz

n les termes an sont appelés coefficients de la série entière.

1 Rayon de convergence

On cherche à définir un élément de [0,+∞] qui permette d’obtenir des informations sur la nature
de la série

∑
anz

n lorsque z, élément de C, est fixé.

1.1 Définition

Proposition 1.1 Lemme d’Abel

Soit
∑
anz

n une série entière.

S’il existe z0 ∈ C∗ tel que la suite (anz
n
0 )n∈N est bornée alors pour tout complexe z

tel que |z| < |z0|, la série numérique
∑
anz

n converge absolument.

Proposition 1.2

Soit
∑
anz

n une série entière.
L’ensemble I = {ρ > 0, (anρ

n) est bornée} est un intervalle, contenant 0, inclus dans R+.

Definition 1.1 Rayon de convergence

On appelle rayon de convergence de la série entière
∑
anz

n, l’élément de [0,+∞], noté R, défini
par :
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— R = SupI si I est majoré,
— R = +∞ si I n’est pas majoré .

En convenant que si I n’est pas majoré (I = [0,+∞[), alors I admet une borne supérieure dans
[0,+∞] égale à +∞, on peut définir le rayon de convergence R par :

R = Sup {ρ > 0, (anρ
n) est bornée} , R ∈ [0,+∞]

On a alors I = [0, R] ou I = [0, R[.

La définition ci-dessus ne fait intervenir que la suite (an), donc pour une série entière d’une variable
réelle

∑
anx

n, la définition de rayon de convergence est la même.

Convention : Lorsque R = +∞, on peut écrire ∀z ∈ C, |z| < R et ∀x ∈ R, |x| < R.

Proposition 1.3 Un cas particulier

Soit
∑
anz

n une série entière.

∑
anz

n et
∑
nanz

n ont même rayon de convergence.

De même
∑
anz

n et
∑
nanz

n−1 ont même rayon de convergence.

Proposition 1.4 Lien entre rayon de convergence et nature de la série entière

Soit
∑
anz

n une série entière de rayon de convergence R.

Pour z ∈ C,

• Si |z| < R alors
∑
anz

n converge absolument.

• Si |z| > R alors (anz
n) n’est pas bornée et donc

∑
anz

n diverge grossièrement.

• Si |z| = R alors il y a incertitude sur la nature de
∑
anz

n.

Cas extrêmes :
Si R = +∞ alors ∀z ∈ C,

∑
anz

n converge absolument.
Si R = 0 alors ∀z ∈ C,

∑
anz

n diverge grossièrement.

Les résultats précédents sont encore vrais pour une série entière d’une variable réelle, en remplaçant
z par x.

Definition 1.2 Disque ouvert de convergence, intervalle ouvert de convergence

1. Soit
∑
anz

n une série entière de rayon de convergence R.
On appelle disque ouvert de convergence, l’ensemble, noté D(O,R), défini par :
• D(O,R) = {z ∈ C, |z| < R} (disque ouvert de centre O et de rayon R), si R ∈ R+.
• D(O,R) = C si R = +∞.
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Interprétation graphique :

2. Soit
∑
anx

n une série entière de la variable réelle de rayon de convergence R. On appelle
intervalle ouvert de convergence, l’intervalle ]−R,R[.

Interprétation graphique :

Exemple 1.1

Cas des séries entières
∑

zn,
∑ zn

n!
,
∑

nnzn.

1.2 Détermination pratique du rayon de convergence

Proposition 1.5 Relations de comparaisons

Soit
∑
anz

n et
∑
bnz

n deux séries entières de rayon de convergence respectifs Ra et Rb.

• Si an = O(bn) alors Ra > Rb.

• Si an = o(bn) alors Ra > Rb.

• Si an ∼ bn alors Ra = Rb.

Exemple 1.2

Déterminer les rayons de convergence des séries entières
∑ zn

2n+ 1

∑
ln

(
1 +

1

n

)
zn

∑ zn

(2n)!
.

Proposition 1.6 Règle de d’Alembert pour une série entière

Soit
∑
anz

n une série entière de rayon de convergence R telle que an 6= 0 à partir d’un certain
rang n0.

S’il existe ` ∈ [0,+∞] tel que lim
n→+∞

|an+1|
|an|

= ` alors R =
1

`

Avec la convention R = +∞ si ` = 0 et R = 0 si ` = +∞.

C’est une méthode particulièrement adaptée lorsque an s’écrit à l’aide de produits, exponentielles,
factorielles.
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Exemple 1.3

• Déterminer le rayon de convergence des séries entières
∑

n!zn
∑ (−1)n

n2
zn

∑ 2n

n2
zn.

• ∀α ∈ R∗
∑
nαzn est de rayon de convergence égal à 1.

Remarque 1.1 Cas d’une série entière lacunaire

On dit que la série entière
∑
anz

n est lacunaire lorsque : ∀n ∈ N ∃k > n ak = 0

Exemple :
∑ z2n

4n + 1
est une série entière lacunaire, il s’agit de la série entière

∑
anz

n avec

a2n+1 = 0 et a2n =
1

4n + 1
.

Avec des séries entières lacunaires du type
∑
bnz

2n,
∑
bnz

3n+1, on peut essayer d’appliquer la règle
de d’Alembert à la série numérique

∑
un avec un = bnz

2n, un = bnz
3n+1. Application à l’exemple

précédent.

1.3 Rayon de convergence et opérations sur les séries

Definition 1.3

Soit
∑
anz

n et
∑
bnz

n deux séries entières et λ ∈ K.

• On appelle produit par λ de la série entière
∑
anz

n, la série entière
∑
λanz

n.

• On appelle somme des deux séries entières
∑
anz

n et
∑
bnz

n la série entière
∑

(an + bn)zn.

• On appelle produit de Cauchy des deux séries entières
∑
anz

n et
∑
bnz

n la série entière
∑
cnz

n

où cn =
n∑
k=0

akbn−k.

Proposition 1.7 Somme de deux séries entières

Soit
∑
anz

n et
∑
bnz

n deux séries entières de rayons de convergence respectifs Ra et Rb et λ ∈ K.

∑
λanz

n est de rayon de convergence Ra et ∀z ∈ C tel que |z| < Ra,

+∞∑
n=0

λanz
n = λ

+∞∑
n=0

anz
n.

En notant R le rayon de convergence de la série somme
∑

(an + bn)zn, on a :

• R > min(Ra, Rb)

• Si Ra 6= Rb alors R = min(Ra, Rb).

• ∀z ∈ C tel que |z| < min(Ra, Rb),
+∞∑
n=0

(an + bn)zn =
+∞∑
n=0

anz
n +

+∞∑
n=0

bnz
n
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Exemple 1.4

Rayon de convergence et somme de la série entière
∑ 3n+ 4

n!
zn.

Proposition 1.8 Rayon de convergence de la série produit de Cauchy

Soit
∑
anz

n et
∑
bnz

n deux séries entières de rayons de convergence respectifs Ra et Rb.

On note R le rayon de convergence de la série produit de Cauchy
∑
cnz

n avec cn =
n∑
k=0

akbn−k.

• R > min(Ra, Rb).

• ∀z ∈ C tel que |z| < min(Ra, Rb),
+∞∑
n=0

cnz
n =

(
+∞∑
n=0

anz
n

)(
+∞∑
n=0

bnz
n

)

2 Régularité de la somme d’une série entière d’une va-

riable réelle

Proposition 2.1 Convergence normale

Soit
∑
anx

n une série entière de la variable réelle de rayon de convergence R.

La série entière
∑
anx

n converge normalement sur tout segment [a, b] inclus dans ]−R,R[.

On en déduit qu’il y a aussi convergence uniforme sur tout segment inclus dans ]−R,R[.

2.1 Continuité

Soit
∑
anx

n, série entière de rayon de convergence R, notons f :

]−R,R[ → K

x 7→
+∞∑
n=0

anx
n sa

somme. f est continue sur ]−R,R[.

2.2 Primitivation de la somme d’une série entière

Soit
∑
anx

n une série entière de rayon de convergence R > 0, et soit f : t ∈]−R,R[ 7→
+∞∑
n=0

ant
n.

∀x ∈]−R,R[,

∫ x

0

f(t)dt =

∫ x

0

(
+∞∑
n=0

ant
n

)
dt =

+∞∑
n=0

an
xn+1

n+ 1
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La fonction x 7→
+∞∑
n=0

an
xn+1

n+ 1
est donc une primitive sur ]−R,R[ de f , cette primitive est obtenue

par intégration terme à terme.

Exemple 2.1

• ∀x ∈]− 1, 1[, ln(1− x) = −
+∞∑
n=1

xn

n
.

• ∀x ∈]− 1, 1[, Arctan(x) =
+∞∑
n=0

(−1)n

2n+ 1
x2n+1.

2.3 Dérivation terme à terme

Proposition 2.2 Classe C1

Soit une série entière
∑
anx

n de rayon de convergence R > 0.

Soit f : x ∈]−R,R[ 7→
+∞∑
n=0

anx
n, la somme de cette série entière.

f est de classe C1 sur ]−R,R[ et

∀x ∈]−R,R[, f ′(x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n

La dérivée est obtenue par dérivation terme à terme.

Exemple 2.2

La fonction x 7→
+∞∑
n=0

xn

n!
est de classe C1 sur R et vérifie l’équation différentielle y′ − y = 0 et la

condition initiale y(0) = 1.

2.4 Caractère C∞ de la somme d’une série entière

Proposition 2.3 Classe Ck

Soit une série entière
∑
anx

n de rayon de convergence R > 0.

Soit f : x ∈]−R,R[ 7→
+∞∑
n=0

anx
n, la somme de cette série entière.

f est de classe C∞ sur ]−R,R[ et

∀k ∈ N, ∀x ∈]−R,R[, f (k)(x) =
+∞∑
n=k

n(n− 1) · · · (n− k + 1)anx
n−k =

+∞∑
n=k

n!

(n− k)!
anx

n−k



PSI Chapitre 12 Séries entières 7

Les dérivées sont obtenues par dérivation terme à terme.
On peut aussi écrire

∀x ∈]−R,R[, f (k)(x) =
+∞∑
n=0

(n+ k)!

n!
an+kx

n =
+∞∑
n=0

(n+ k)(n+ k − 1) · · · (n+ 1)an+kx
n

Proposition 2.4 Expression des coefficients à l’aide des dérivées successives

Soit
∑
anx

n une série entière de rayon de convergence R > 0 et soit f : x ∈]−R,R[ 7→
+∞∑
n=0

anx
n.

∀n ∈ N, an =
f (n)(0)

n!
et donc ∀x ∈]−R,R[, f(x) =

+∞∑
n=0

f (n)(0)

n!
xn.

Corollaire 2.5 Unicité du développement en série entière

Soient
∑
anx

n et
∑
bnx

n deux séries entières de rayons de convergence respectifs Ra > 0 et Rb > 0.

S’il existe r > 0 tel que ∀x ∈]− r, r[,
+∞∑
n=0

anx
n =

+∞∑
n=0

bnx
n, alors ∀n ∈ N, an = bn.

Corollaire 2.6 Application aux fonctions paires ou impaires

Soit
∑
anx

n une série entière de rayon de convergence R > 0, et soit f : x ∈]−R,R[ 7→
+∞∑
n=0

anx
n.

• Si f est paire alors ∀n ∈ N, a2n+1 = 0.

• Si f est impaire alors ∀n ∈ N, a2n = 0.

3 Développement en série entière au voisinage de 0

Definition 3.1 DSE sur ]− r, r[

Soit r > 0 et soit f :
]− r, r[ → K
x 7→ f(x)

.

On dit que f est développable en série entière sur ] − r, r[, lorsque f est la somme d’une série
entière sur ]− r, r[.

C’est-à-dire lorsqu’il existe une série entière
∑
anx

n telle que ∀x ∈]− r, r[, f(x) =
+∞∑
n=0

anx
n.



PSI Chapitre 12 Séries entières 8

L’égalité ∀x ∈] − r, r[, f(x) =
+∞∑
n=0

anx
n s’appelle le développement en série entière de f sur

]− r, r[, et R le rayon de convergence de
∑
anx

n vérifie R > r.

Exemple 3.1

La fonction f : x 7→ ln(1 − x) est développable en série entière sur ] − 1, 1[ et son développement

en série entière est ∀x ∈]− 1, 1[, − ln(1− x) =
+∞∑
n=1

xn

n
.

Definition 3.2 DSE au voisinage de 0

Soit f : I → K tel que 0 soit un point intérieur à I (0 appartient à I et n’est pas une borne de I).

On dit que f est développable en série entière au voisinage de 0, lorsqu’il existe r > 0 tel que f
soit développable en série entière sur ]− r, r[.

Exemple 3.2

La fonction Arctangente est développable en série entière au voisinage de 0.

Proposition 3.1

Soit f :]− r, r[→ K avec r > 0.

Si f est développable en série entière sur ]− r, r[, alors f est de classe C∞ sur ]− r, r[.

De plus en notant
∑
anx

n une série entière telle que ∀x ∈] − r, r[, f(x) =
+∞∑
n=0

anx
n, on a :

∀n ∈ N, an =
f (n)(0)

n!
.

Si f est développable en série entière sur ]− r, r[, alors ∀x ∈]− r, r[, f(x) =
+∞∑
n=0

f (n)(0)

n!
xn.

Proposition 3.2 Unicité du développement en série entière

Soient f et g deux fonctions développables en série entière sur ] − r, r[,avec r > 0, telles que

∀x ∈]− r, r[, f(x) =
+∞∑
n=0

anx
n et g(x) =

+∞∑
n=0

bnx
n.

∀x ∈]− r, r[, f(x) = g(x)⇐⇒ ∀n ∈ N, an = bn

En particulier ∀x ∈]− r, r[,
+∞∑
n=0

anx
n = 0⇐⇒ ∀n ∈ N, an = 0.
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Definition 3.3 Série de Taylor

Soit f :]− r, r[→ K avec r > 0 une fonction de classe C∞.

On appelle série de Taylor de f (en 0 ) la série entière
∑ f (n)(0)

n!
xn.

Si f est développable en série entière sur ]−r, r[ alors f est somme de sa série de Taylor.

Proposition 3.3 Formule de Taylor avec reste intégral

Si f est une fonction de classe C∞ sur un intervalle I contenant 0 alors

∀n ∈ N∗ ∀x ∈ I f(x) = f(0) +
n∑
k=1

f (k)(0)
xk

k!
+

∫ x

0

(x− t)n

n!
f (n+1)(t)dt

4 Séries entières et équations différentielles linéaires

4.1 Recherche d’un développement en série entière d’une fonction

Pour montrer qu’une fonction est développable en série entière et/ou trouver son développement,
on peut utiliser des combinaisons linéaires, des produits, des primitives, des dérivées de fonctions
développables en série entière ou utiliser une équation différentielle :

Exemple 1 :

Trouver le développement en série entière de f : x 7→ x+ 2

x2 − 4x+ 3
.

Exemple 2 :

f : x 7→ (1 + x)α avec α ∈ R∗ vérifie le problème de Cauchy

{
(1 + x)y′ − αy = 0
y(0) = 1

.

Chercher une fonction développable en série entière S qui vérifie aussi ce problème de Cauchy sur
un intervalle ]− r, r[. Par unicité de la solution du problème de Cauchy, on aura f = S sur ]− r, r[.

4.2 Recherche d’une solution d’un certain type d’équation différentielle

On cherche à résoudre une équation différentielle du type :

a(x)y′′ + b(x)y′ + c(x)y = 0
ou

a(x)y′′ + b(x)y′ + c(x)y = d(x)

avec a, b, c des fonctions polynômiales et f développable en série entière avec d(x) =
+∞∑
n=0

bnx
n

(éventuellement certains bn sont nuls, voir tous à partir d’un certain rang).

Méthode générale : pour déterminer les solutions développables en séries entière

d’une équation différentielle, on procède par analyse-synthèse :
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• Analyse :

On suppose qu’il existe une série entière
∑
anx

n de rayon de convergence R > 0 telle que sa somme
f soit solution de l’équation (E).

Par définition ∀x ∈]−R,R[ f(x) =
+∞∑
n=0

anx
n et f est de classe C∞ sur ]−R,R[.

On sait que

f ′(x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
k=0

(k + 1)ak+1x
k et

f ′′(x) =
+∞∑
n=2

n(n− 1)anx
n−2 =

+∞∑
k=0

(k + 2)(k + 1)ak+2x
k

On écrit alors :
f est solution de l’équation différentielle ⇐⇒ · · · (on remplace dans l’équation différentielle
f(x), f ′(x), f ′′(x) par leurs expressions et on développe).

Après développement en plusieurs sommes de a(x)f ′′(x), b(x)f ′(x) et c(x)f(x), on effectue si besoin
un décalage d’indice pour se ramener dans chaque somme à un terme de la forme αnx

n avec
αn indépendant de x, dans le but d’obtenir une égalité du type :

f solution de (E) sur ]−R,R[ ⇐⇒ ∀x ∈]−R,R[,
+∞∑
n=0

cnx
n = 0

ou

f solution de (E ′) sur ]−R,R[ ⇐⇒ ∀x ∈]−R,R[,
+∞∑
n=0

cnx
n = d(x) =

+∞∑
n=0

bnx
n

On en déduit, par unicité d’un développement en série entière, que ∀n ∈ N, cn = 0, ou
∀n ∈ N, cn = bn, ce qui donne une relation entre les coefficients an, an+1, · · · .

Lorsque c’est possible, on exprime an en fonction de n à partir de la relation obtenue.

• Synthèse :

On introduit la série entière
∑
anx

n avec la relation entre an, an+1, · · · ou avec l’expression de an en
fonction de n trouvée précédemment, et on calcule le rayon de convergence R, soigneusement
(par exemple avec la règle de d’Alembert), pour vérifier que R > 0.

• Conclusion :

On peut alors écrire : Les calculs précédents ayant été faits par équivalence, on a montré que les

solutions de l’équation différentielle sont les fonctions : f : x 7→
+∞∑
n=0

anx
n.

Le cas échéant, on exprime f à l’aide de fonctions usuelles en reconnaissant des développements
en série entière classiques.

Exemple : Déterminer les solutions développables en série entière de l’équation différentielle :
x(x− 1)y′′ + 3xy′ + y = 0
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5 Développements en série entière des fonctions usuelles

∀x ∈]− 1, 1[,
1

1− x
=

+∞∑
n=0

xn

∀x ∈]− 1, 1[, ln(1− x) = −
+∞∑
n=1

xn

n

∀x ∈]− 1, 1[,
1

1 + x
=

+∞∑
n=0

(−1)nxn

∀x ∈]− 1, 1[, ln(1 + x) =
+∞∑
n=1

(−1)n−1

n
xn

∀x ∈]− 1, 1[, Arctan(x) =
+∞∑
n=0

(−1)n

2n+ 1
x2n+1

∀α ∈ R∗, ∀x ∈]− 1, 1[, (1 + x)α = 1 +
+∞∑
n=1

α(α− 1) . . . (α− n+ 1)
xn

n!

∀x ∈ R, ex =
+∞∑
n=0

xn

n!

∀x ∈ R, ch(x) =
ex + e−x

2
=

+∞∑
n=0

x2n

(2n)!

∀x ∈ R, sh(x) =
ex − e−x

2
=

+∞∑
n=0

x2n+1

(2n+ 1)!

∀x ∈ R, cos(x) =
+∞∑
n=0

(−1)n

(2n)!
x2n

∀x ∈ R, sin(x) =
+∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

∀z ∈ C, ez =
+∞∑
n=0

zn

n!

∀z ∈ C, |z| < 1 =⇒ 1

1− z
=

+∞∑
n=0

zn


