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Dans tout ce chapitre K désigne R ou C.

Série entiere d’une variable complexe :

Soit (a,) une suite de complexes.
On appelle série entiere (de la variable complexe) associée a la suite (a,,) la série de fonctions ) f,

CcC = C

ouVvVn e N : . On la note ) a,z2".
o o z = ap" 2 an

Série entiere d’une variable réelle :

Soit (a,) une suite d’éléments de K.
On appelle série entiere (de la variable réelle) associée a la suite (a,,) la série de fonctions ) f,, ou

VYneN, f.: 1; : aIi’V On la note Y a,z".

On définit de méme les séries entieres du type Z apx".

nzno

Exemples : Z %n Z Z—T; Z Z"

n=>1

Pour une série entiere »  a,z™ ou Y a,z" les termes a,, sont appelés coefficients de la série entiere.

1 Rayon de convergence

On cherche a définir un élément de [0, +o0o] qui permette d’obtenir des informations sur la nature
de la série > a,z" lorsque z, élément de C, est fixé.

1.1 Définition
Proposition 1.1 Lemme d’Abel

Soit Y a,z" une série entiere.

S’il existe zg € C* tel que la suite (a,z{)nen est bornée alors pour tout complexe z

tel que |z] < |z, la série numérique >  a,,z2" converge absolument.
01» n

Proposition 1.2

Soit Y a,z" une série entiere.
L’ensemble I = {p >0, (anp™) est bornée} est un intervalle, contenant 0, inclus dans R™.

Definition 1.1 Rayon de convergence

On appelle rayon de convergence de la série entiere Y a,2", 1'élément de [0, +00], noté R, défini
par :
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— R = Supl si I est majoré,
— R = +o00 si I n’est pas majoré .

En convenant que si I n’est pas majoré (I = [0, +o0[), alors I admet une borne supérieure dans
[0, +00] égale a +o0, on peut définir le rayon de convergence R par :

R=3Sup{p >0, (a,p"™) estbornée}, R € [0, 4]

On a alors I = [0, R] ou I = [0, R].

La définition ci-dessus ne fait intervenir que la suite (a,,), donc pour une série entiere d’une variable
réelle > a,x™, la définition de rayon de convergence est la méme.

Convention : Lorsque R = +o0, on peut écrire Vz € C, |z|] < RetVz € R, |z| <R.

Proposition 1.3 Un cas particulier

Soit Y a,z" une série entiere.

> anz™ et Y na,z"™ ont méme rayon de convergence.

De méme Y a,2" et Y na,z""! ont méme rayon de convergence.

Proposition 1.4 Lien entre rayon de convergence et nature de la série entiere

Soit Y a,z" une série entiere de rayon de convergence R.

Pour z € C,

e Si |z| < R alors ) a,z™ converge absolument.
e Si |z| > R alors (a,2") n’est pas bornée et donc > a,2" diverge grossierement.

e Si |z| = R alors il y a incertitude sur la nature de ) a,z".

Cas extrémes :
Si R =400 alors Vz € C, ) a,z" converge absolument.
Si R=0alors Vz € C, > a,z" diverge grossiérement.

Les résultats précédents sont encore vrais pour une série entiere d’une variable réelle, en remplagant
z par x.

Definition 1.2 Disque ouvert de convergence, intervalle ouvert de convergence

1. Soit > a,z™ une série entiere de rayon de convergence R.
On appelle disque ouvert de convergence, I’ensemble, noté D(O, R), défini par :
e D(O,R)={z€C, |z| <R} (disque ouvert de centre O et de rayon R), si R € R™.
e D(O,R) =C si R = +oc.
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Interprétation graphique :

2. Soit Y a,z™ une série entiere de la variable réelle de rayon de convergence R. On appelle
intervalle ouvert de convergence, 'intervalle | — R, R|.

Interprétation graphique :

Exemple 1.1

;. . z"
Cas des séries entieres E 2", E — E n"z".
n!

1.2 Détermination pratique du rayon de convergence

Proposition 1.5 Relations de comparaisons

Soit Y a,z" et Y b,2" deux séries entieres de rayon de convergence respectifs R, et Ry.

e Sia, = O(b,) alors R, > R,.
e Si a, = o(b,) alors R, > Ry.

e Sia, ~b, alors R, = Ry.

Exemple 1.2

ZTL n

w2 (H%) DY (zzn)!'

Déterminer les rayons de convergence des séries entieres E

Proposition 1.6 Regle de d’Alembert pour une série entiére

Soit Y a,z" une série entiere de rayon de convergence R telle que a, # 0 a partir d’'un certain
rang ng.

1
S'il existe £ € [0, +o00] tel que lim ] _ ( alors R = 7

n——+o0o |an’

Avec la convention R =400 si{ =0 et R =0 st { = +00.

C’est une méthode particulierement adaptée lorsque a,, s’écrit a ’aide de produits, exponentielles,
factorielles.
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Exemple 1.3

—1)" 2"
e Déterminer le rayon de convergence des séries entieres E nlz" E (=1 " E —z".

e Vae R* ) n®z" est de rayon de convergence égal a 1.

Remarque 1.1 Cas d’une série entiere lacunaire

On dit que la série entiere » a,2" est lacunaire lorsque : Vn € N Ik >n ap =0

2n
z s IRN . . . s . N
Exemple : E Y est une série entiere lacunaire, il s’agit de la série entiere > a,z" avec

agni1 = 0 et ag, = TR

Avec des séries entieres lacunaires du type >_ 0,22, >~ b,23"1 on peut essayer d’appliquer la regle
de d’Alembert & la série numérique > u,, avec u, = b,z>", u, = b,z>" 1. Application a I’exemple
précédent.

1.3 Rayon de convergence et opérations sur les séries

Definition 1.3
Soit Y a,z" et Y b,z" deux séries entieres et A € K.

e On appelle produit par A de la série entiere Y a, 2", la série entiere »  Aa,z".
e On appelle somme des deux séries entieres Y a,2" et Y b, 2" la série entiere > (a, + b,)2".
e On appelle produit de Cauchy des deux séries entieres > a,2" et Y b,z" la série entiere » ¢, 2"

ou ¢, = E arby_.
k=0

Proposition 1.7 Somme de deux séries entiéres

Soit Y a,z" et Y b,z" deux séries entieres de rayons de convergence respectifs R, et R, et A € K.

+oo “+o0o
> Aa,z" est de rayon de convergence R, et Vz € C tel que |z] < R,, Z Aa,z" =\ Z anz".
n=0 n=0

En notant R le rayon de convergence de la série somme »_(a, + b,)z", on a :
e R > min(R,, Ry)

e Si R, # Ry, alors R = min(R,, Ry).

+o00 +o00 +o0
e Vz € C tel que |z| < min(R,, Ry), Z(an +b,)2" = Zanzn + anzn
n=0 n=0

n=0
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Exemple 1.4
3n+4

2",
n!

Rayon de convergence et somme de la série entiere E

Proposition 1.8 Rayon de convergence de la série produit de Cauchy

Soit > anz™ et > b,z" deux séries entieres de rayons de convergence respectifs R, et R,.

n
On note R le rayon de convergence de la série produit de Cauchy > ¢,2" avec | ¢, = Z bk
k=0

o R > min(R,, Ry).

+0oo +o0o +oo
o V2 € C tel que |z| < min(Rq,, Ry), chz” = (Z anz”> (Z bnz”)
n=0

n=0 n=0

2 Régularité de la somme d’une série entiere d’une va-
riable réelle

Proposition 2.1 Convergence normale

Soit Y a,x™ une série entiere de la variable réelle de rayon de convergence R.

La série entiere Y a,z" converge normalement sur tout segment [a, b] inclus dans | — R, R|.

On en déduit qu’il y a aussi convergence uniforme sur tout segment inclus dans | — R, R].

2.1 Continuité

Soit a,x"™, série entiere de rayon de convergence R, notons : sa
Z nd Yy g ) f T — Z anwn
n=0

somme. f est continue sur | — R, R].

2.2 Primitivation de la somme d’une série entiére
—+o00

Soit Y a,x™ une série entiere de rayon de convergence R > 0, et soit f : ¢t €] — R, R[— Z ant™.
n=0

+oo xn—i—l

T T —+o0
Vz €l — R. R H)dt = A dt = .
rel - R.R|, /0f<> /(Z ) > ot
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n+1
1 est donc une primitive sur | — R, R[ de f, cette primitive est obtenue

La fonction z > Z an,
n
=0

par intégration terme a terme.

Exemple 2.1

eVzel—1,1[, In(l—2x) Z—

+oo
—1)n
oVre]—1,1], Arctan(z) = E %m%“.
n
n=0

2.3 Dérivation terme a terme

Proposition 2.2 Classe C!

Soit une série entiere Y a,x™ de rayon de convergence R > 0.
+o0

Soit f:z €] — R, R|— Z a,z", la somme de cette série entiere.
n=0
[ est de classe C! sur | — R, R] et
+0o0
Vee|—-R,R[, f'(z Znanx = Z(n + Day2”
n=0

La dérivée est obtenue par dérivation terme a terme.

Exemple 2.2
oo n

x
La fonction z +— Z — est de classe C' sur R et vérifie I’équation différentielle 3/ —y = 0 et la
n!

n=0
condition initiale y(0) = 1.

2.4 Caractere C* de la somme d’une série entiere

Proposition 2.3 Classe C*

Soit une série entiere Y  a,x™ de rayon de convergence R > 0.
+oo

Soit f:x €] — R, R[— Z apz", la somme de cette série entiere.
n=0

f est de classe C sur | — R, R| et

+oo +oo ]
VkeN, Vzel-R R, fH()= Zn(n ~1)--(n—k+ Da,a"F = Z (Lanx"_k
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Les dérivées sont obtenues par dérivation terme a terme.
On peut aussi écrire

+00 oo

+ k)!

Vo €] - R, R[, f®¥(z)= E mn—‘)amkx" = E m+k)(n+k—=1)-(n+ 1)a,pxz"
n=0 ’ n=0

Proposition 2.4 Fxpression des coefficients a l'aide des dérivées successives

Soit Y a,x™ une série entiere de rayon de convergence R > 0 et soit f : x €] Z 4T
(n) oo e
VYneN, a,= f '(0) et donc| Vr €] — R, R[, f(x)= f n'( )In
" n=0

Corollaire 2.5 Unicité du développement en série entiere

Soient Y a,x" et Y b,x"™ deux séries entieres de rayons de convergence respectifs R, > 0 et Ry, > 0.

+oo
S’il existe r > 0 tel que Vx €] — r, 7], Zan = Z b,x", alors Vn € N, a, = b,.
n=0

Corollaire 2.6 Application aux fonctions paires ou impaires

+oo
Soit > a,x™ une série entiere de rayon de convergence R > 0, et soit f: x €] — R, R[— Z anx".
n=0
e Si f est paire alors Vn € N, ag,+1 = 0.
e Si f est impaire alors Vn € N, as, = 0.
3 Développement en série entiere au voisinage de 0
Definition 3.1 DSE sur] —r,r|
: : — K
801tr>Oet801tf:] i = )
z = f(2)
On dit que f est développable en série entiere sur | — r,r[, lorsque f est la somme d’une série
entiere sur | — r, r|.
+o0o

C’est-a-dire | lorsqu’il existe une série entiere > a,z™ telle que Vo €] —r,r[, f(x) = Z anx".

n=0
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+oo
L’égalité Vo €] —rr[, f(z) = Zanx” s’appelle le développement en série entiere de f sur

n=0
| —r,7], et R le rayon de convergence de > a,x™ vérifie R > r.

Exemple 3.1
La fonction f : x — In(1 — ) est développable en série entiere sur | — 1, 1] et son développement
+oo
x
en série entiere est Vz €| — 1,1|, —In(l —2z) = —.
ik men =327

Definition 3.2 DSFE au voisinage de 0

Soit f: I — K tel que 0 soit un point intérieur a I (0 appartient a I et n’est pas une borne de I).

On dit que f est développable en série entiere au voisinage de 0, lorsqu’il existe r > 0 tel que f
soit développable en série entiere sur | — r, r|.

Exemple 3.2

La fonction Arctangente est développable en série entiere au voisinage de 0.

Proposition 3.1
Soit f :] —r,r[— K avec r > 0.

Si f est développable en série entiere sur | — r,r[, alors f est de classe C* sur | — r,r].

De plus en notant »_ a,z" une série entiere telle que Vo €] — rr[, f(z) = Zanx”, on a :
n=0
M) (0
vneN, a,= f0)
n!
<~ /()
Si f est développable en série entiere sur | — r,r[, alors Vo €] —r,r[, f(z) = .
—~ nl
Proposition 3.2 Unicité du développement en série entiere
Soient f et g deux fonctions développables en série entiere sur | — r,r[,avec r > 0, telles que
+oo +oo
Veel—nrr], f(z)= Zanxn et g(z) = anx".
n=0 n=0

Ve el —nrrl, f(z)=g(x)<=VYneN, a,=b,

+oo
En particulier Vx €] — r, 7], Z a2 =0<=VYneN, a,=0.

n=0
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Definition 3.3 Série de Taylor

Soit f :] —r,r[— K avec r > 0 une fonction de classe C>°.

0)

n!

On appelle série de Taylor de f (en 0) la série entiere Z

Si f est développable en série entiére sur |—r, r[ alors f est somme de sa série de Taylor.

Proposition 3.3 Formule de Taylor avec reste intégral

Si f est une fonction de classe C'*° sur un intervalle I contenant 0 alors

n k T __+\n
VneN* Veel f(z)=f(0)+ ;f(’”(O)% +/O %ﬂ“l)(t)dt

4 Séries entieres et équations différentielles linéaires

4.1 Recherche d’un développement en série entiere d’une fonction

Pour montrer qu’une fonction est développable en série entiere et/ou trouver son développement,
on peut utiliser des combinaisons linéaires, des produits, des primitives, des dérivées de fonctions
développables en série entiere ou utiliser une équation différentielle :

Exemple 1 :
T+ 2

Trouver le développement en série entiere de f : x +— ————.
2?2 —4x+3

Exemple 2 :

(I+z)y —ay=0

y(0)=1 '

Chercher une fonction développable en série entiere S qui vérifie aussi ce probleme de Cauchy sur
un intervalle | — r, r[. Par unicité de la solution du probléeme de Cauchy, on aura f = S sur | —r,7].

fix— (14 2)* avec a € R* vérifie le probleme de Cauchy {

4.2 Recherche d’une solution d’un certain type d’équation différentielle

On cherche a résoudre une équation différentielle du type :
a(z)y” +b(x)y + c(z)y =0
ou
a(x)y” + b(x)y' + c(x)y = d(z)

+oo
avec a,b,c des fonctions polynomiales et f développable en série entiere avec d(x) = anx”
n=0

(éventuellement certains b,, sont nuls, voir tous & partir d'un certain rang).

Méthode générale : | pour déterminer les solutions développables en séries entiere

d’une équation différentielle, on procede par analyse-synthese :
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e Analyse :

On suppose qu’il existe une série entieére > a,z" de rayon de convergence R > 0 telle que sa somme
f soit solution de 'équation (E).

+oo
Par définition Va €] — R, R[ f(z) = Z a,x" et f est de classe C*° sur | — R, R|.

n=0
On sait que
+oo +00
fl(z) = Znana:”_l = Z(k‘ + 1 ajp12" et
+o0 =t k:J?oo
f1(@) = n(n—Dagz"? = (k+2)(k + agsoz"
n=2 k=0

On écrit alors :
f est solution de I'équation différentielle <= --- (on remplace dans I'équation différentielle
f(z), f'(x), f"(x) par leurs expressions et on développe).

Apres développement en plusieurs sommes de a(z) f”(z), b(x) f'(x) et ¢(x) f(x), on effectue si besoin
un décalage d’indice pour se ramener dans chaque somme a un terme de la forme o, 2" avec
«,, indépendant de z, dans le but d’obtenir une égalité du type :

“+oo
f solution de (E) sur | — R,R| <= Vx €| —R,R|, Z e =0
n=0

ou
+oo +oo
f solution de (E') sur | = R,R[ «=Vx €] - R.R[, Y cua"=d(x)=) bu"
n=0 n=0

On en déduit, par unicité d’un développement en série entiere, que Vn € N, ¢, = 0, ou
Vn € N, ¢, =b,, ce qui donne une relation entre les coefficients a,, a, 1, - -.

Lorsque c’est possible, on exprime a,, en fonction de n a partir de la relation obtenue.
e Synthese :

On introduit la série entiere > a,z™ avec la relation entre a,, a,41, - - - ou avec 'expression de a,, en
fonction de n trouvée précédemment, et on calcule le rayon de convergence R, soigneusement
(par exemple avec la regle de d’Alembert), pour vérifier que R > 0.

e Conclusion :

On peut alors écrire : Les calculs précédents ayant été faits par équivalence, on a montré que les
+oo

solutions de I’équation différentielle sont les fonctions : f : x — Z apx"”.

n=0
Le cas échéant, on exprime f a ’aide de fonctions usuelles en reconnaissant des développements

en série entiere classiques.

Exemple : Déterminer les solutions développables en série entiere de 1’équation différentielle :
z(z—1)y" +32y +y=0
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5 Développements en série entiere des fonctions usuelles

1 X
—-1,1 = "
Vo €] —1,1], T ;x
+00 "
Vee]—-1,1, In(l—=z)=— -
n=1
1 X
v -1,1 = —1)"z"
rel =Ll =3
~— (_1>n—1 n
Vo el —1,1], ln(1+x)zz P
n=1
+00 n
Vz €] —1,1[, Arctan(z) = (=1) gt
Y = 2n+1
+00 "
VYa € R*, Vre]—1,1] (1—}—:10)0‘:1—I—Za(a—1)...(a—n+1)g
L.
Vere R, €= —
n!
n=0
x —x +oo 2n
e’ +e z
\ R h(z) = =
r€R, chx) 5 2 (o))
T - +oo 2n+1
e’ —e x
R h(z) = =
Ve € R, sh(z) 2 2n+ 1)

Ve e R, cos(z)= x
“— (2n)!
+00 n
v R . o (_1> 2n+1
r€R, sin(x)= Z 2n 31 1)!33
+00 o
Vz € C, e = —'
“— nl




