PSI Chapitre 14 Variables aléatoires discretes 1

Dans tout ce chapitre (2, .27, P) désigne un espace probabilisé.
E désigne un ensemble. On se limitera ici a £ = R ou £ = RP.

1 Généralités sur les variables aléatoires discretes

Definition 1.1

On appelle variable aléatoire discrete X sur (€2,.27) toute application X : S:Xi(?w) telle que :

o X(02) ={X(w),w € N} est au plus dénombrable.

oVre X(Q), X '({z})={weQ, Xw) =z}ed.

Lorsque X (£2) est fini, on dit que X est une variable aléatoire discrete finie.
Lorsque X (£2) est dénombrable on dit que X est variable aléatoire discrete infinie.

e Si £ =R, X est dite variable aléatoire réelle discrete et on peut noter X (Q) = {z;, i€ I}, les
x; étant deux a deux distincts, avec I = [1,n] ou I = N suivant que X (2) est fini ou dénombrable.

e Si = RP, X est appelé vecteur aléatoire réel discret.

Remarque 1.1

vV BCX(Q) XY B)={we, X(w)e€ B} estun événement.

Notations :
e L’événement X ~!(B) sous la forme (X € B) ou {X € B},
e en particulier pour z € X (), I'événement X! ({z}) se notera (X = ) ou {X = x}.

e Lorsque X est & valeurs réelles, (X <) =X"1(]—o00,z]) ={weQ, X(w)<uz}

Exemple 1.1

2—R
e Si A est un évenement, 14 : " { Osiwég A est une variable aléatoire discrete sur
lsiwe A

(Q, o7, P) telle que 14(2) = {0, 1}.

e On lance un dé 2 fois de suite. Soit X le couple (plus petit numéro obtenu, somme des
numéros obtenus), X est un vecteur aléatoire discret fini.

e On répete une infinité de fois une expérience de Bernoulli (expérience a deux issues : succes
ou échec), soit X la variable aléatoire correspondant au nombre d’échecs obtenus avant le
premier succes.
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Décrire Q, X () et (X =n) pour n € X ().

Definition 1.2 Fonction d’une variable aléatoire

Soit X : Q — E une variable aléatoire discrete sur (€2, 47), et soit f: X(2) C E — F.

O— F
w = f(X(w))

f o X, notée f(X), est une variable aléatoire discrete sur (2, «7).

On peut définir la composée fo X :

Definition 1.3 Couple de variables aléatoires
Soient X : Q — E et Y : Q — F deux variables aléatoires discretes définies sur (£, .o7).

@— ExF () notée Z = (X,Y), est une variable aléatoire discrete sur

L’application Z : W (X (@), Y (w

(Q, o) telle que :

e Z(02) C X(02) x Y(9), donc Z(£2) est fini ou dénombrable,

o= (1,y)€Z(Q), Z=2)=(X=x)N(Y =y) e

La variable aléatoire Z = (X,Y) est appelée couple des variables aléatoires X et Y.

Notation : L’événement (Z = (z,y)) = (X = x) N (Y = y) sera, en général, noté (X =z,Y =vy).

Remarque 1.2 Opérations algébriques
Soient X : 2 - R et Y :  — R deux variables aléatoires réelles discretes sur (€2, .o7).

Si A€ R, alors| AX, X +Y, XY sont des variables aléatoires réelles discretes sur (€2, «7) |.

Definition 1.4 FEztension a un n-uplet de variables aléatoires

SiX,:Q— FEq, ..., X, :Q— FE,sont des variables aléatoires discretes définies sur le méme espace
Q - Eix...xE,

probabilisé (2, &7, P), alors on dispose du vecteur aléatoire Z = (X, ..., X,,) : W o (X (W) X, (w))
1 PEREECECEEY n

qui vérifie :

o 7(Q) C X1(Q) x -+ x X,,(22), donc Z(2) est fini ou dénombrable,

o V(z1,.. . ) € Z(Q), Z7 {(x1,-an)}) = X7 ) N N X ({an)) € o

Tout n-uplet de variables aléatoires discretes est une variable aléatoire discrete.

Notation : L'événement (Z = (z1,...,2,)) = (X1 = x1) N--- N (X,, = z,,) sera, en général, noté
(Xl = 1’1,...,Xn = J]n)
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2 Loi de probabilité d’une variable aléatoire discrete

Definition 2.1 Loi d’une variable aléatoire discrete

Si X est une variable aléatoire discrete sur (2, &7, P),

on appelle loi de probabilité de X, I'application Py :

Py est une probabilité sur (X (Q), P(X(Q)).

La loi de X est déterminée par la distribution de probablités (P(X = x)),c y(q), ¢’est pourquoi on
appellera plutot

loi de X la donnée de X (€2) et des probabilités P(X = x) pour x € X (€2).

Remarque 2.1

e Si X est une variable aléatoire discrete sur (2,27, P) telle que X (Q) = {z;,i € I}, les z; deux a
deux distincts et I = N ou I = [1,n], alors :

({X = x,}),.; est un systeme complet d’événements

et
Y P(X=umz)=1
icl
e Si X est une variable aléatoire discréte sur (2, .27, P) et f est une application définie sur X (€2),

alors la loi de Y = f(X) est donnée par Y (Q2) = f(X(Q)) et

VyeY(Q), PY=y)= >  PX=uz)
zeX(Q),f(z)=y

e Lorsque deux variables aléatoires X et Y ont méme loi, on note X ~ Y.

Et si X ~ Y alors f(X) ~ f(Y) pour toute fonction f définie sur X (Q2) =Y (Q).

Definition 2.2 Loi conditionnelle de X sachant A

Soit A un événement tel que P(A) # 0 et X une variable aléatoire.

On appelle loi conditionnelle de X sachant A, la loi de X relativement a la probabilité Py
X(Q) — [0, 1]
‘est-a-dire I’ icati P(AN(X =
cest-a-dire 'application o PaX =) = ( P((A) r)).

Exemple 2.1

On lance une infinité de fois une piece non équilibrée qui amene Pile avec la probabilité p €]0, 1.
On note X la variable aléatoire égale au rang du second Pile et A I’événement : le premier Pile est
obtenu au second lancer. Déterminer la loi conditionnelle de X sachant A.
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3 Lois discrétes usuelles

3.1 Loi uniforme

Soient X une variable aléatoire sur €2 et £ un ensemble fini non vide.

On dit que X suit la loi uniforme sur F, et on note X ~ U(FE) lorsque X(Q2) = E et

1

La loi uniforme est la loi pour laquelle les événements (X = x), x décrivant E, sont équiprobables.

Modele : Résultat du lancer d'un dé non pipé.
Résultat d'un tirage d’une boule dans une urne contenant n boules numérotées de 1 a n.

3.2 Loi de Bernoulli de parametre p

On dit qu'une variable aléatoire X suit une loi de Bernoulli de parametre p €]0, 1] lorsque
X(Q)={0,1} avec P(X=1)=p (etdonc P(X=0)=1-p)

On note X ~ B(p) ou X ~ B(1,p).

Modele : On réalise une expérience ayant deux issues possibles succes-échec (Epreuve de Ber-
noulli), le succes étant obtenu avec une probabilité égale & p. On note (X = 1) I’événement ”avoir

obtenu un succes” et (X =0) = (X =1).

Par exemple : on effectue le tirage d’'une boule dans une urne contenant des boules blanches en
proportion p et des boules noires. On note (X = 1) I'événement ” on a obtenu une boule blanche”.

Remarque 3.1
Q — {0,1}
Si A est un événement, la variable aléatoire 1,4 : . 1siwé€e A suit une loi de Bernoulli
Osiwég A
de parametre p = P(A).

3.3 Loi binomiale de parameétre (n,p)

Soit X une variable aléatoire définie sur €2, p €]0,1[ et n € N*.
On dit que X suit la loi binomiale de parametre (n,p) si :

X(Q)=1[0,n], etVke[0,n] P(X=k) = <”) pP(1—p)n*
On note X ~ B(n,p).

Modele : On réalise, de facon indépendante , n fois la méme épreuve de Bernoulli de parametre
p, et X est le nombre de succes obtenus au bout de ces n épreuves.
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3.4 Loi géométrique de parametre p

Soit p €]0, 1], soit (€2, 27, P) un espace probabilisé et X : 2 — R une variable aléatoire discrete.
On dit que X suit la loi géométrique de parametre p lorsque

X(Q)=N'et VkeN" P(X=k)=pl—pr!
On note : X ~ G(p).

Modele : Nombre d’épreuves de Bernoulli mutuellement indépendantes nécessaires a I’obtention
du premier succes.

Exemple : Une urne contient des boules de couleurs différentes dont des boules blanches en pro-

portion p. On effectue des tirages successifs avec remise et on considere X la variable aléatoire
égale au nombre de tirages nécessaires pour obtenir pour la premiere fois une boule blanche.

Proposition 3.1

X ~G(p) alors Vk € N*, P (X > k)= (1—p)*.

3.5 Loi de Poisson

Soit X : Q2 — R une variable aléatoire discréte.
Soit A > 0.

On dit que X suit la loi de Poisson de parametre A > 0 lorsque

)\k
X(Q)=Net VkeN PX=k) :e_’\ﬁ

On note X ~ P(\).

Interprétation en termes d’événements rares

4 Couples de variables aléatoires, indépendance de variables
aléatoires

Dans tout ce paragraphe X : Q@ — E et Y : Q — F désignent des variables aléatoires discretes
réelles définies sur (€2, <7).

Q—FExF

Onnote Z = (X,Y), cestadive Z: vy y(y)
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4.1 Loi conjointe, lois marginales, lois conditionnelles

Definition 4.1 Loi conjointe - Lois marginales

e On appelle loi conjointe de X et de Y, la loi de Z = (X,Y).
Elle est donnée par la famille (P(X = z,Y =y)), ,jex@)xv (@)

e On appelle lois marginales du couple (X,Y), les lois de X et de Y, données par la formule des
probabilités totales :

eVreX(Q), PX=12)= > PX=zY=y)
)

yeY (2

eVyeY(Q), PY=y)= ) PX=zY=y)

Definition 4.2 Loi conditionnelle de Y sachant (X = x)
Soit € X () tel que P(X =z) # 0.

On appelle loi conditionnelle de Y sachant (X = z), la loi de Y relativement a la probabilité P x_,
Y(Q) — [0,1]
P(X =z,Y =y) .
P(X =x)

¢’est-a~dire I'application

Yy Px—p)(Y =y) =

On peut de méme définir la loi conditionnelle de X sachant (Y = y) pour tout y € Y ().

Remarque 4.1 FEztension a un n-uplet de variables alétaoires

Si Xy, ..., X, sont n variables aléatoires discretes définies sur le méme espace probabilisé (2, &7, P),
alors la loi de Z = (X3, ..., X,,) est donnée par X;(2) x --- x X,(Q2) et

V(z,1,...,2,) € X1(Q) x -+ x X,(Q) P(Z =(x1,...,2,)) = P(Xy=21,..., X, = 1)
La loi marginale de X; est donnée par X;(2) et

Vo € Xi(Q) P(Xi =) = > P(X_21, Xo = @3,..., X, = @)

(22,0 ,n) EX2(Q) XX X0 ()

De méme pour la loi marginale de X; pour tout ¢ € [2,n].

4.2 Indépendance de variables aléatoires

Definition 4.3 Indépendance de deux variables aléatoires

Soit X : Q) —= FetY :Q — F deux variables aléatoires discretes.

On dit que X et Y sont indépendantes lorsque
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VAC X(Q2), VBCY(Q), P(Xe€eAYeB)=PXeA).PY €Db)

De fagon équivalente, la distribution de probabilités de (X,Y") est donnée par :
V(z,y) € X(Q) xY (), PX==zY=y =PX=2z).PY=y)

On note alors X 1L Y.

Definition 4.4 Suite i.1.d.

e Soient X7,..., X, n variables aléatoires définies sur le méme espace probabilisé (02, <7, P).

On dit que Xq,..., X, sont mutuellement indépendantes lorsque :
Vo, € X1(Q),...,Vx, € X,(Q)

P(Xy =1, , Xy =2,) = P (ﬂ(Xk = m) =[[P(Xi =)
k=1

k=1

e On appelle suite de variables aléatoires indépendantes, toute suite (X, ),en de variables
aléatoires définies sur (2, o7, P) telle que Vn € N Xy, ..., X, sont des variables aléatoires
indépendantes.

e On appelle suite de variables aléatoires indépendantes identiquement distribuées, notée suite
i.i.d., toute suite (X, ),en de variables aléatoires indépendantes telle que Vi # j X, ~ Xj.

Proposition 4.1 Fonctions de variables indépendantes

e Si X 1LY alors f(X) 1L g(Y), avec f et g des fonctions respectivement définies sur X (£2)
et Y (Q).

e Lemme des coalitions
si Xq,...,X, sont des variables aléatoires indépendantes alors

Vke[[lan_lﬂ f(Xla"'7Xk’)J-|—g(Xk+17"'7X7L)

On peut étendre au cas de plus de deux coalitions.

5 Espérance, variance et covariance

Dans ce paragraphe, toutes les variables aléatoires sont discretes et définies sur le méme espace
probabilisé (€2, <7, P).

5.1 Espérance d’une variable aléatoire réelle ou complexe

Definition 5.1 Espérance d’une v.a. a valeurs dans [0, +00]
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Si X est une variable aléatoire a valeurs dans [0, +00], on définit son espérance par :

E(X)= Y aP(X =uz)

z€X(Q)

avec la convention xP(X = z) = 0 lorsque = = +o00 avec P(X = z) = 0.

Exemple 5.1

Déterminer 'espérance d’une variable aléatoire suivant une des lois usuelles discretes.

Definition 5.2 Variable aléatoire d’espérance finie

Si X est une variable aléatoire a valeurs réelles ou complexes, on dit que X est d’espérance finie
lorsque la famille (xP(X = x))zex(q) est sommable.

Dans ce cas, la somme de cette famille est ’espérance de X : E(X) = Z rP(X = ).
z€X(Q)

Remarque 5.1

Lorsque X est d’espérance finie avec X (Q2) = {x,,n € N}, on peut écrire

+o0o
Z r, P(X = x,)
n=0

> P(X =)

prises par X, chaque valeur Stant pondérée par la probabilité que X prenne cette valeur.

, donc F(X) est la moyenne pondérée des valeurs

E(X) =Y 2,P(X =u,) =

Exemple 5.2

e Une variable aléatoire constante est d’espérance égale a cette constante.

e Une variable aléatoire discrete suivant une des lois usuelles est d’espérance finie.

Proposition 5.1 Cas d’une variable aléatoire a valeurs dans N U {400}
Soit X : Q — R telle que X(Q) C N U {+o0}.

E(X) :fp(xm) :§P<X>n)

Proposition 5.2 Positivité de [’espérance

Si X(©2) c RT alors E(X) > 0.
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Proposition 5.3 Théoréeme du transfert

Soit X une variable aléatoire discrete et soit f : X (2) — K une application, avec K = R ou C.

La variable aléatoire f(X) est d’espérance finie ssi la famille (f(2)P(X = )),cx () est sommable;

et dans ce cas :

Ce qui permet de calculer I'espérance de f(X) a partir de la loi de X, sans connaitre celle de f(X).

Corollaire 5.4 Linéarité
Soit X : Q2 — K et Y : Q — K deux variables aléatoires discretes sur (€, «7) et soit (A, ) € K2.

Si X et Y sont d’espérance finie alors X + Y, AX, AX + p et AX + pY sont d’espérance finie avec

E(X+Y)=EX)+ E(®Y)
E(\X) = \E(X) EAX +p) = E(X) + 1

E(AX + pY) = AE(X) + pE(Y)

Généralisation :
Si Xi,...,X, sont n variables aléatoires définies sur (2, .o/, P) et sont chacune d’espérance finie
alors V(Aq,...,\,) € K™, Z A X est d’espérance finie et F (Z )\ka> = Z ME(XE).

k=1 k=1 k=1

Definition 5.3 Variable aléatoire centrée
Soit X : Q0 — K.

e On dit que X est une variable aléatoire centrée lorsque X est d’espérance finie avec F(X) = 0.

e Si X est d’espérance finie, alors Y = X — E(X) est une variable aléatoire centrée.

Proposition 5.5 Croissance
Soit X : Q2 — R et Y : Q — R deux variables aléatoires discretes sur (€2, .27).

1. | Si|X| <Y etsiY est despérance finie, alors X est d’espérance finie et |E(X)| < E(|X]) < E(Y).

2. Soit X et Y d’espérance finie,

Si X <Y alors E(X) < E(Y) (Croissance de l’espérance)
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Proposition 5.6 Espérance du produit de deux variables aléatoires

Soit X : Q@ - R et Y : Q — R deux variables aléatoires discretes sur (€2, o7).

Si X et Y sont indépendantes et d’espérance finie, alors XY est d’espérance finie et

E(XY) = E(X).E(Y).

On peut étendre le résultat au cas de n variables aléatoires indépendantes.

5.2 Variance d’une variable aléatoire discrete et écart-type

Dans ce paragraphe, toutes les variables aléatoires sont définies sur le méme espace probabilisé
(Q, o7, P), sont discretes et a valeurs réelles.

Definition 5.4 Moment d’ordre k

Soit X : Q2 — R une variable aléatoire discrete.

On dit que X admet un moment d’ordre k, k € N*, lorsque X* est d’espérance finie. Et on appelle
moment d’ordre k de X le nombre F(X*).

Proposition 5.7

Si X? est d’espérance finie alors X est d’espérance finie ainsi que (X — E(X))%.

Proposition 5.8 Inégalité de Cauchy-Schwarz

Si X2 et Y2 sont d’espérance finie, alors XY l'est aussi et

E(XY)? < E(X?).E(Y?)

Avec égalité si, et seulement si, X et Y sont presque strement colinéaires.

Definition 5.5 Variance et écart-type

Soit X admettant un moment d’ordre 2.

On appelle

variance de X le réel noté V(X), défini par : V(X) = F (X — E(X))?),

écart-type de X le réel noté o(X), défini par : o(X) = /V(X).
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De plus :

V(X)=FE (X - E(X))?) = E(X? — E(X)? (Formule de Koenig-Huygens)

Tableau récapitulatif pour les lois usuelles

Loi Probabilités Espérance Variance
VEk € [1,n]
1 n+1 n?—1
X~Up |PX =)= B =" | V() ="
X~Blp) |PX=1)=p EX)=p V(X)=p(1-p)
VEk € [0,n]
X~ Bnp) | PX = K) = (1) o=t | B =mp | VIX) =1 =)
Vk € N*
1 1-—
X~G) | POX=k) =p(1—p) B(X)=—  |V(X)=—5"
Vk € N
k
X ~P(N) P(X =k)= e‘A% E(X)=2A\ V(X)=A

Proposition 5.9

Soit X admettant un moment d’ordre 2.

Si (a,b) € R? alors

e X admet une variance avec V(aX) = a*V(X) et  o(aX) =|a|o(X).

e aX + b admet une variance et V(aX +b) = a?V(X) et o(aX +0b) = |alo(X).

Definition 5.6 Variable aléatoire centrée réduite

Soit X admettant un moment d’ordre 2.

e On dit que X est une variable aléatoire réduite lorsque V(X) = 1.

e Si X admet une variance non nulle, alors Y = X est une variable aléatoire réduite.

1
o(X)
X—-m

e Si X admet une variance non nulle, alors Y = ,oum = E(X) et 0 = 0(X), est une

variable aléatoire centrée réduite.
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5.3 Covariance de deux variables aléatoires discretes

Dans ce paragraphe, toutes les variables aléatoires sont définies sur le méme espace probabilisé
(Q, o7, P), sont discretes et a valeurs réelles.

Definition 5.7

Si X et Y admettent un moment d’ordre 2 alors (X — E(X)).(Y — E(Y)) est d’espérance finie et
on appelle covariance de X et Y le réel, noté cov(X,Y'), défini par

cou(X,Y) = E((X — E(X))(Y — E(Y))) = B(XY) — E(X)E(Y)

Remarque 5.2 Covariance de deux variables indépendantes

Si X et Y sont indépendantes alors cov(X,Y) = 0.

Proposition 5.10 Lien avec la variance

Soient X et Y admettant un moment d’ordre 2.

o V(X)=cov(X,X).

e X +Y admet une variance et | V(X +Y) =V (X)+V(Y) +2Cov(X,Y)

o (énéralisation :
n

Si Xi,...,X, admettent chacune une variance, alors 5 X}, admet une variance et :
k=1

VX1 + X+ 4+ X)) =) ) Cou(X;, X;) =) V(Xp)+2 Y Cov(X;, X;)
k=1

i=1 j=1 1<i<j<n

e Cas particulier : Si X1, ..., X, sont indépendantes alors V' (Z Xk> = Z V(Xk)
k=1 k=1

6 Inégalités probabilistes

Proposition 6.1 Inégalité de Markov

Soit X : Q — R une variable aléatoire réelle discrete.

Si X est a valeurs positive alors

Va >0, P(X >a)< Inégalité de Markov
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Proposition 6.2 [négalité de Bienaymeé-Tchebychev

Soit X : 2 — R une variable aléatoire réelle discréte.

Si X admet un moment d’ordre 2 alors

V(X)

Ve >0, P(X-B(X)|>e) <5

Inégalité de Bieanymé-Techbychev

Exemple 6.1

On peut appliquer le résultat précédent pour montrer que toute variable aléatoire réelle discrete
de variance nulle est presque siirement constante.

Proposition 6.3 Lo: faible des grands nombres

Si (X,,)n>1 est une suite i.i.d. de variables aléatoires admettant un moment d’ordre 2, alors,

en notant S,, = ZXk et m = E(X;)
k=1

on a .

n—-+o00

1
Ve >0 lim P(‘—Sn—m'>€)20
n

7 Fonction génératrice

Dans ce paragraphe, toutes les variables aléatoires sont définies sur le méme espace probabilisé,
sont discretes et a valeurs dans N.

Quelques remarques :

On suppose connue la loi de X, c’est-a-dire les nombres P(X = n) avec n € N.

La série entiere Z P(X = n)t" est de rayon de convergence au moins égal a 1.

De plus les séries Z P(X =n) et Z P(X = n)(—1)"convergent.

On en déduit que la fonction ¢ — Jio P(X = n)t" est définie au moins sur [—1, 1].
n=0

Definition 7.1 Fonction génératrice

On appelle fonction génératrice de X, la fonction notée Gy, définie au moins sur [—1, 1] par :

Gx(t) = io P(X =n)t" = E(t¥)
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+o00
On aura donc Gx(1) = ZP(X =n)=1.
n=0

Si X () est fini, alors Gx est une fonction polynomiale, définie sur R.

Cas des variables aléatoires discretes de lois usuelles

Loi Fonction génératrice

X ~ u[[l,n]] GX(t) =

X ~ B(p) Gx(t) =

X ~ B(”vp) GX@) =

Proposition 7.1 Régularité

Soit X : @ — N et Gx sa fonction génératrice définie au moins sur [—1, 1].
e Gy est continue sur [—1, 1].

e Gx est de classe C* au moins sur | — 1, 1] avec

aP(0)

n!

VneN, P(X =n)=
Par conséquent la loi de X est caractérisée par sa fonction génératrice.
e Si X et Y sont telles que X (2) = Y (Q) alors,
X~Y —=Vite [—1,1], Gx(t) :Gy(t)

Proposition 7.2 Fonction génératrice d’une somme de v.a. indépendantes

Si X et Y sont indépendantes alors

Vi E] —1, 1[, GX-l—Y(t) = Gx(t)Gy(t)

ou Gx, Gy, Gxy désignent respectivement la fonction génératrice de X,Y et X + Y.
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Plus généralement : Si Xq,...,X, sont mutuellement indépendantes et a valeurs dans N alors
n

Vt e [-1,1] Gxporx, (t) =[] Gx.(b).
k=1

Exemple 7.1 Application

On considere deux variables aléatoires réelles indépendantes définies sur le méme espace probabilisé
(Q, o7, P). Déterminer la loi de X 4+ Y lorsque :

1. X ~ B(n,p) et Y ~ B(m,p).
2. X ~ P\ et Y ~ Plp).

Proposition 7.3 Fonction génératrice, espérance et variance

e X est d’espérance finie ssi sa fonction génératrice G'x est dérivable en 1.

Et dans ce cas, E(X) = G'x(1).

e X admet un moment d’ordre 2 ssi sa fonction génératrice Gx est deux fois dérivable en 1 .

Dans ce cas, G%(1) = E(X(X — 1))
et

V(X) = G (1) + Gy (1) — (G (1))".




