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Dans tout ce chapitre (Ω,A , P ) désigne un espace probabilisé.
E désigne un ensemble. On se limitera ici à E = R ou E = Rp.

1 Généralités sur les variables aléatoires discrètes

Definition 1.1

On appelle variable aléatoire discrète X sur (Ω,A ) toute application X :
Ω −→ E
ω 7→ X(ω)

telle que :

• X(Ω) = {X(ω), ω ∈ Ω} est au plus dénombrable.

• ∀x ∈ X(Ω), X−1 ({x}) = {ω ∈ Ω, X(ω) = x} ∈ A .

Lorsque X(Ω) est fini, on dit que X est une variable aléatoire discrète finie.
Lorsque X(Ω) est dénombrable on dit que X est variable aléatoire discrète infinie.

• Si E = R, X est dite variable aléatoire réelle discrète et on peut noter X(Ω) = {xi, i ∈ I}, les
xi étant deux à deux distincts, avec I = [[1, n]] ou I = N suivant que X(Ω) est fini ou dénombrable.

• Si E = Rp, X est appelé vecteur aléatoire réel discret.

Remarque 1.1

∀ B ⊂ X(Ω) X−1(B) = {ω ∈ Ω, X(ω) ∈ B} est un événement.

Notations :

• L’événement X−1(B) sous la forme (X ∈ B) ou {X ∈ B},

• en particulier pour x ∈ X(Ω), l’événement X−1 ({x}) se notera (X = x) ou {X = x}.

• Lorsque X est à valeurs réelles, (X 6 x) = X−1 (]−∞, x]) = {ω ∈ Ω, X(ω) 6 x}.

Exemple 1.1

• Si A est un évènement, 1A :
Ω −→ R

ω 7→
{

0 si ω /∈ A
1 si ω ∈ A

est une variable aléatoire discrète sur

(Ω,A , P ) telle que 1A(Ω) = {0, 1}.

• On lance un dé 2 fois de suite. Soit X le couple (plus petit numéro obtenu, somme des
numéros obtenus), X est un vecteur aléatoire discret fini.

• On répète une infinité de fois une expérience de Bernoulli (expérience à deux issues : succès
ou échec), soit X la variable aléatoire correspondant au nombre d’échecs obtenus avant le
premier succès.
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Décrire Ω, X(Ω) et (X = n) pour n ∈ X(Ω).

Definition 1.2 Fonction d’une variable aléatoire

Soit X : Ω→ E une variable aléatoire discrète sur (Ω,A ), et soit f : X(Ω) ⊂ E → F .

On peut définir la composée f ◦X :
Ω −→ F
ω 7→ f(X(ω))

.

f ◦X, notée f(X), est une variable aléatoire discrète sur (Ω,A ).

Definition 1.3 Couple de variables aléatoires

Soient X : Ω→ E et Y : Ω→ F deux variables aléatoires discrètes définies sur (Ω,A ).

L’application Z :
Ω −→ E × F
ω 7→ (X(ω), Y (ω))

, notée Z = (X, Y ), est une variable aléatoire discrète sur

(Ω,A ) telle que :

• Z(Ω) ⊂ X(Ω)× Y (Ω), donc Z(Ω) est fini ou dénombrable,

• ∀z = (x, y) ∈ Z(Ω), (Z = z) = (X = x) ∩ (Y = y) ∈ A

La variable aléatoire Z = (X, Y ) est appelée couple des variables aléatoires X et Y .

Notation : L’événement (Z = (x, y)) = (X = x) ∩ (Y = y) sera, en général, noté (X = x, Y = y).

Remarque 1.2 Opérations algébriques

Soient X : Ω→ R et Y : Ω→ R deux variables aléatoires réelles discrètes sur (Ω,A ).

Si λ ∈ R, alors λX, X + Y , XY sont des variables aléatoires réelles discrètes sur (Ω,A ) .

Definition 1.4 Extension à un n-uplet de variables aléatoires

Si X1 : Ω→ E1, . . . , Xn : Ω→ En sont des variables aléatoires discrètes définies sur le même espace

probabilisé (Ω,A , P ), alors on dispose du vecteur aléatoire Z = (X1, . . . , Xn) :
Ω → E1 × . . .× En
ω 7→ (X1(ω), . . . , Xn(ω))

qui vérifie :

• Z(Ω) ⊂ X1(Ω)× · · · ×Xn(Ω), donc Z(Ω) est fini ou dénombrable,

• ∀(x1, . . . , xn) ∈ Z(Ω), Z−1 ({(x1, . . . , xn)}) = X−1
1 ({x1}) ∩ · · · ∩X−1

n ({xn}) ∈ A

Tout n-uplet de variables aléatoires discrètes est une variable aléatoire discrète.

Notation : L’événement (Z = (x1, . . . , xn)) = (X1 = x1) ∩ · · · ∩ (Xn = xn) sera, en général, noté
(X1 = x1, . . . , Xn = xn).
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2 Loi de probabilité d’une variable aléatoire discrète

Definition 2.1 Loi d’une variable aléatoire discrète

Si X est une variable aléatoire discrète sur (Ω,A , P ),

on appelle loi de probabilité de X, l’application PX :
P(X(Ω)) → [0, 1]

B 7→ P (X ∈ B)
.

PX est une probabilité sur (X(Ω),P(X(Ω)).

La loi de X est déterminée par la distribution de probablités (P (X = x))x∈X(Ω), c’est pourquoi on
appellera plutôt

loi de X la donnée de X(Ω) et des probabilités P (X = x) pour x ∈ X(Ω).

Remarque 2.1

• Si X est une variable aléatoire discrète sur (Ω,A , P ) telle que X(Ω) = {xi, i ∈ I}, les xi deux à
deux distincts et I = N ou I = [[1, n]], alors :

({X = xi})i∈I est un système complet d’événements
et∑

i∈I

P (X = xi) = 1.

• Si X est une variable aléatoire discrète sur (Ω,A , P ) et f est une application définie sur X(Ω),
alors la loi de Y = f(X) est donnée par Y (Ω) = f(X(Ω)) et

∀y ∈ Y (Ω), P (Y = y) =
∑

x∈X(Ω),f(x)=y

P (X = x)

• Lorsque deux variables aléatoires X et Y ont même loi, on note X ∼ Y .

Et si X ∼ Y alors f(X) ∼ f(Y ) pour toute fonction f définie sur X(Ω) = Y (Ω).

Definition 2.2 Loi conditionnelle de X sachant A

Soit A un événement tel que P (A) 6= 0 et X une variable aléatoire.

On appelle loi conditionnelle de X sachant A, la loi de X relativement à la probabilité PA

c’est-à-dire l’application
X(Ω) −→ [0, 1]

x 7→ PA(X = x) =
P (A ∩ (X = x))

P (A)

.

Exemple 2.1

On lance une infinité de fois une pièce non équilibrée qui amène Pile avec la probabilité p ∈]0, 1[.
On note X la variable aléatoire égale au rang du second Pile et A l’événement : le premier Pile est
obtenu au second lancer. Déterminer la loi conditionnelle de X sachant A.
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3 Lois discrètes usuelles

3.1 Loi uniforme

Soient X une variable aléatoire sur Ω et E un ensemble fini non vide.

On dit que X suit la loi uniforme sur E, et on note X ∼ U(E) lorsque X(Ω) = E et

∀x ∈ E, P (X = x) =
1

card(E)

La loi uniforme est la loi pour laquelle les événements (X = x), x décrivant E, sont équiprobables.

Modèle : Résultat du lancer d’un dé non pipé.
Résultat d’un tirage d’une boule dans une urne contenant n boules numérotées de 1 à n.

3.2 Loi de Bernoulli de paramètre p

On dit qu’une variable aléatoire X suit une loi de Bernoulli de paramètre p ∈]0, 1[ lorsque

X(Ω) = {0, 1} avec P (X = 1) = p (et donc P (X = 0) = 1− p)

On note X ∼ B(p) ou X ∼ B(1, p).

Modèle : On réalise une expérience ayant deux issues possibles succès-échec (Epreuve de Ber-
noulli), le succès étant obtenu avec une probabilité égale à p. On note (X = 1) l’événement ”avoir
obtenu un succès” et (X = 0) = (X = 1).

Par exemple : on effectue le tirage d’une boule dans une urne contenant des boules blanches en
proportion p et des boules noires. On note (X = 1) l’événement ” on a obtenu une boule blanche”.

Remarque 3.1

Si A est un événement, la variable aléatoire 1A :
Ω → {0, 1}

ω 7→
{

1 si ω ∈ A
0 si ω /∈ A

suit une loi de Bernoulli

de paramètre p = P (A).

3.3 Loi binomiale de paramètre (n,p)

Soit X une variable aléatoire définie sur Ω, p ∈]0, 1[ et n ∈ N∗.

On dit que X suit la loi binomiale de paramètre (n, p) si :

X(Ω) = [[0, n]], et ∀k ∈ [[0, n]] P (X = k) =

(
n
k

)
pk(1− p)n−k

On note X ∼ B(n, p).

Modèle : On réalise, de façon indépendante , n fois la même épreuve de Bernoulli de paramètre
p, et X est le nombre de succès obtenus au bout de ces n épreuves.
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3.4 Loi géométrique de paramètre p

Soit p ∈]0, 1[, soit (Ω,A , P ) un espace probabilisé et X : Ω→ R une variable aléatoire discrète.

On dit que X suit la loi géométrique de paramètre p lorsque

X(Ω) = N∗ et ∀k ∈ N∗ P (X = k) = p(1− p)k−1

On note : X ∼ G(p).

Modèle : Nombre d’épreuves de Bernoulli mutuellement indépendantes nécessaires à l’obtention
du premier succès.

Exemple : Une urne contient des boules de couleurs différentes dont des boules blanches en pro-
portion p. On effectue des tirages successifs avec remise et on considère X la variable aléatoire
égale au nombre de tirages nécessaires pour obtenir pour la première fois une boule blanche.

Proposition 3.1

X ∼ G(p) alors ∀k ∈ N∗, P (X > k) = (1− p)k.

3.5 Loi de Poisson

Soit X : Ω→ R une variable aléatoire discrète.
Soit λ > 0.

On dit que X suit la loi de Poisson de paramètre λ > 0 lorsque

X(Ω) = N et ∀k ∈ N P (X = k) = e−λ
λk

k!

On note X ∼ P(λ).

Interprétation en termes d’événements rares

4 Couples de variables aléatoires, indépendance de variables

aléatoires

Dans tout ce paragraphe X : Ω → E et Y : Ω → F désignent des variables aléatoires discrètes
réelles définies sur (Ω,A ).

On note Z = (X, Y ), c’est-à-dire Z :
Ω −→ E × F
ω 7→ (X(ω), Y (ω)
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4.1 Loi conjointe, lois marginales, lois conditionnelles

Definition 4.1 Loi conjointe - Lois marginales

• On appelle loi conjointe de X et de Y , la loi de Z = (X, Y ).
Elle est donnée par la famille (P (X = x, Y = y))(x,y)∈X(Ω)×Y (Ω).

• On appelle lois marginales du couple (X, Y ), les lois de X et de Y , données par la formule des
probabilités totales :

• ∀x ∈ X(Ω), P (X = x) =
∑

y∈Y (Ω)

P (X = x, Y = y)

• ∀y ∈ Y (Ω), P (Y = y) =
∑

x∈X(Ω)

P (X = x, Y = y).

Definition 4.2 Loi conditionnelle de Y sachant (X = x)

Soit x ∈ X(Ω) tel que P (X = x) 6= 0.

On appelle loi conditionnelle de Y sachant (X = x), la loi de Y relativement à la probabilité P(X=x)

c’est-à-dire l’application
Y (Ω) −→ [0, 1]

y 7→ P(X=x)(Y = y) =
P (X = x, Y = y)

P (X = x)

.

On peut de même définir la loi conditionnelle de X sachant (Y = y) pour tout y ∈ Y (Ω).

Remarque 4.1 Extension à un n-uplet de variables alétaoires

Si X1, . . . , Xn sont n variables aléatoires discrètes définies sur le même espace probabilisé (Ω,A , P ),
alors la loi de Z = (X1, . . . , Xn) est donnée par X1(Ω)× · · · ×Xn(Ω) et

∀(x, 1, . . . , xn) ∈ X1(Ω)× · · · ×Xn(Ω) P (Z = (x1, . . . , xn)) = P (X1 = x1, . . . , Xn = xn)

La loi marginale de X1 est donnée par X1(Ω) et

∀x1 ∈ X1(Ω) P (X1 = x1) =
∑

(x2,...,xn)∈X2(Ω)×···×Xn(Ω)

P (X=x1, X2 = x2, . . . , Xn = xn)

De même pour la loi marginale de Xi pour tout i ∈ [[2, n]].

4.2 Indépendance de variables aléatoires

Definition 4.3 Indépendance de deux variables aléatoires

Soit X : Ω→ E et Y : Ω→ F deux variables aléatoires discrètes.

On dit que X et Y sont indépendantes lorsque
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∀A ⊂ X(Ω), ∀B ⊂ Y (Ω), P (X ∈ A, Y ∈ B) = P (X ∈ A).P (Y ∈ B)

De façon équivalente, la distribution de probabilités de (X, Y ) est donnée par :

∀(x, y) ∈ X(Ω)× Y (Ω), P (X = x, Y = y) = P (X = x).P (Y = y)

On note alors X ⊥⊥Y .

Definition 4.4 Suite i.i.d.

• Soient X1, . . . , Xn n variables aléatoires définies sur le même espace probabilisé (Ω,A , P ).

On dit que X1, . . . , Xn sont mutuellement indépendantes lorsque :
∀x1 ∈ X1(Ω), . . . ,∀xn ∈ Xn(Ω)

P (X1 = x1, · · · , Xn = xn) = P

(
n⋂
k=1

(Xk = xk)

)
=

n∏
k=1

P (Xk = xk)

• On appelle suite de variables aléatoires indépendantes, toute suite (Xn)n∈N de variables
aléatoires définies sur (Ω,A , P ) telle que ∀n ∈ N X0, . . . , Xn sont des variables aléatoires
indépendantes.

• On appelle suite de variables aléatoires indépendantes identiquement distribuées, notée suite
i.i.d., toute suite (Xn)n∈N de variables aléatoires indépendantes telle que ∀i 6= j Xi ∼ Xj.

Proposition 4.1 Fonctions de variables indépendantes

• Si X ⊥⊥Y alors f(X)⊥⊥ g(Y ), avec f et g des fonctions respectivement définies sur X(Ω)
et Y (Ω).

• Lemme des coalitions
si X1, . . . , Xn sont des variables aléatoires indépendantes alors

∀k ∈ [[1, n− 1]] f(X1, . . . , Xk)⊥⊥ g(Xk+1, . . . , Xn)

On peut étendre au cas de plus de deux coalitions.

5 Espérance, variance et covariance

Dans ce paragraphe, toutes les variables aléatoires sont discrètes et définies sur le même espace
probabilisé (Ω,A , P ).

5.1 Espérance d’une variable aléatoire réelle ou complexe

Definition 5.1 Espérance d’une v.a. à valeurs dans [0,+∞]
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Si X est une variable aléatoire à valeurs dans [0,+∞], on définit son espérance par :

E(X) =
∑

x∈X(Ω)

xP (X = x)

avec la convention xP (X = x) = 0 lorsque x = +∞ avec P (X = x) = 0.

Exemple 5.1

Déterminer l’espérance d’une variable aléatoire suivant une des lois usuelles discrètes.

Definition 5.2 Variable aléatoire d’espérance finie

Si X est une variable aléatoire à valeurs réelles ou complexes, on dit que X est d’espérance finie
lorsque la famille (xP (X = x))x∈X(Ω) est sommable.

Dans ce cas, la somme de cette famille est l’espérance de X : E(X) =
∑

x∈X(Ω)

xP (X = x).

Remarque 5.1

Lorsque X est d’espérance finie avec X(Ω) = {xn, n ∈ N}, on peut écrire

E(X) =
+∞∑
n=0

xnP (X = xn) =

+∞∑
n=0

xnP (X = xn)

+∞∑
n=0

P (X = xn)

, donc E(X) est la moyenne pondérée des valeurs

prises par X, chaque valeur étant pondérée par la probabilité que X prenne cette valeur.

Exemple 5.2

• Une variable aléatoire constante est d’espérance égale à cette constante.

• Une variable aléatoire discrète suivant une des lois usuelles est d’espérance finie.

Proposition 5.1 Cas d’une variable aléatoire à valeurs dans N ∪ {+∞}
Soit X : Ω→ R telle que X(Ω) ⊂ N ∪ {+∞}.

E(X) =
+∞∑
n=1

P (X > n) =
+∞∑
n=0

P (X > n)

Proposition 5.2 Positivité de l’espérance

Si X(Ω) ⊂ R+ alors E(X) > 0.
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Proposition 5.3 Théorème du transfert

Soit X une variable aléatoire discrète et soit f : X(Ω) −→ K une application, avec K = R ou C.

La variable aléatoire f(X) est d’espérance finie ssi la famille (f(x)P (X = x))x∈X(Ω) est sommable ;

et dans ce cas :

E(f(X)) =
∑

x∈X(Ω)

f(x)P (X = x)

Ce qui permet de calculer l’espérance de f(X) à partir de la loi de X, sans connâıtre celle de f(X).

Corollaire 5.4 Linéarité

Soit X : Ω→ K et Y : Ω→ K deux variables aléatoires discrètes sur (Ω,A ) et soit (λ, µ) ∈ K2.

Si X et Y sont d’espérance finie alors X + Y , λX, λX + µ et λX + µY sont d’espérance finie avec

E(X + Y ) = E(X) + E(Y )

E(λX) = λE(X) E(λX + µ) = λE(X) + µ

E(λX + µY ) = λE(X) + µE(Y )

Généralisation :

Si X1, . . . , Xn sont n variables aléatoires définies sur (Ω,A , P ) et sont chacune d’espérance finie

alors ∀(λ1, . . . , λn) ∈ Kn,
n∑
k=1

λkXk est d’espérance finie et E

(
n∑
k=1

λkXk

)
=

n∑
k=1

λkE(Xk).

Definition 5.3 Variable aléatoire centrée

Soit X : Ω→ K.

• On dit que X est une variable aléatoire centrée lorsque X est d’espérance finie avec E(X) = 0.

• Si X est d’espérance finie, alors Y = X − E(X) est une variable aléatoire centrée.

Proposition 5.5 Croissance

Soit X : Ω→ R et Y : Ω→ R deux variables aléatoires discrètes sur (Ω,A ).

1. Si |X| 6 Y et si Y est d’espérance finie, alors X est d’espérance finie et |E(X)| 6 E(|X|) 6 E(Y ).

2. Soit X et Y d’espérance finie,

Si X 6 Y alors E(X) 6 E(Y ) (Croissance de l’espérance)
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Proposition 5.6 Espérance du produit de deux variables aléatoires

Soit X : Ω→ R et Y : Ω→ R deux variables aléatoires discrètes sur (Ω,A ).

Si X et Y sont indépendantes et d’espérance finie, alors XY est d’espérance finie et

E(XY ) = E(X).E(Y ).

On peut étendre le résultat au cas de n variables aléatoires indépendantes.

5.2 Variance d’une variable aléatoire discrète et écart-type

Dans ce paragraphe, toutes les variables aléatoires sont définies sur le même espace probabilisé
(Ω,A , P ), sont discrètes et à valeurs réelles.

Definition 5.4 Moment d’ordre k

Soit X : Ω→ R une variable aléatoire discrète.

On dit que X admet un moment d’ordre k, k ∈ N∗, lorsque Xk est d’espérance finie. Et on appelle
moment d’ordre k de X le nombre E(Xk).

Proposition 5.7

Si X2 est d’espérance finie alors X est d’espérance finie ainsi que (X − E(X))2.

Proposition 5.8 Inégalité de Cauchy-Schwarz

Si X2 et Y 2 sont d’espérance finie, alors XY l’est aussi et

E(XY )2 6 E(X2).E(Y 2)

Avec égalité si, et seulement si, X et Y sont presque sûrement colinéaires.

Definition 5.5 Variance et écart-type

Soit X admettant un moment d’ordre 2.

On appelle

variance de X le réel noté V (X), défini par : V (X) = E ((X − E(X))2),

écart-type de X le réel noté σ(X), défini par : σ(X) =
√
V (X).
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De plus :

V (X) = E ((X − E(X))2) = E(X2)− E(X)2 (Formule de Koenig-Huygens)

Tableau récapitulatif pour les lois usuelles

Loi Probabilités Espérance Variance
∀k ∈ [[1, n]]

X ∼ U[[1,n]] P (X = k) =
1

n
E(X) =

n+ 1

2
V (X) =

n2 − 1

12

X ∼ B(p) P (X = 1) = p E(X) = p V (X) = p(1− p)
∀k ∈ [[0, n]]

X ∼ B(n, p) P (X = k) =

(
n
k

)
pk(1− p)n−k E(X) = np V (X) = np(1− p)

∀k ∈ N∗

X ∼ G(p) P (X = k) = p(1− p)k−1 E(X) =
1

p
V (X) =

1− p
p2

∀k ∈ N

X ∼ P(λ) P (X = k) = e−λ
λk

k!
E(X) = λ V (X) = λ

Proposition 5.9

Soit X admettant un moment d’ordre 2.
Si (a, b) ∈ R2 alors

• aX admet une variance avec V (aX) = a2V (X) et σ(aX) = |a|σ(X).

• aX + b admet une variance et V (aX + b) = a2V (X) et σ(aX + b) = |a|σ(X).

Definition 5.6 Variable aléatoire centrée réduite

Soit X admettant un moment d’ordre 2.

• On dit que X est une variable aléatoire réduite lorsque V (X) = 1.

• Si X admet une variance non nulle, alors Y =
1

σ(X)
X est une variable aléatoire réduite.

• Si X admet une variance non nulle, alors Y =
X −m
σ

, où m = E(X) et σ = σ(X), est une

variable aléatoire centrée réduite.
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5.3 Covariance de deux variables aléatoires discrètes

Dans ce paragraphe, toutes les variables aléatoires sont définies sur le même espace probabilisé
(Ω,A , P ), sont discrètes et à valeurs réelles.

Definition 5.7

Si X et Y admettent un moment d’ordre 2 alors (X − E(X)).(Y − E(Y )) est d’espérance finie et
on appelle covariance de X et Y le réel, noté cov(X, Y ), défini par

cov(X, Y ) = E ((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y )

Remarque 5.2 Covariance de deux variables indépendantes

Si X et Y sont indépendantes alors cov(X, Y ) = 0.

Proposition 5.10 Lien avec la variance

Soient X et Y admettant un moment d’ordre 2.

• V (X) = cov(X,X).

• X + Y admet une variance et V (X + Y ) = V (X) + V (Y ) + 2Cov(X, Y )

• Généralisation :

Si X1, . . . , Xn admettent chacune une variance, alors
n∑
k=1

Xk admet une variance et :

V (X1 +X2 + . . .+Xn) =
n∑
i=1

n∑
j=1

Cov(Xi, Xj) =
n∑
k=1

V (Xk) + 2
∑

16i<j6n

Cov(Xi, Xj)

• Cas particulier : Si X1, . . . , Xn sont indépendantes alors V

(
n∑
k=1

Xk

)
=

n∑
k=1

V (Xk)

6 Inégalités probabilistes

Proposition 6.1 Inégalité de Markov

Soit X : Ω→ R une variable aléatoire réelle discrète.

Si X est à valeurs positive alors

∀a > 0, P (X > a) 6
E(X)

a
Inégalité de Markov
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Proposition 6.2 Inégalité de Bienaymé-Tchebychev

Soit X : Ω→ R une variable aléatoire réelle discrète.

Si X admet un moment d’ordre 2 alors

∀ε > 0, P (|X − E(X)| > ε) 6
V (X)

ε2
Inégalité de Bieanymé-Techbychev

Exemple 6.1

On peut appliquer le résultat précédent pour montrer que toute variable aléatoire réelle discrète
de variance nulle est presque sûrement constante.

Proposition 6.3 Loi faible des grands nombres

Si (Xn)n>1 est une suite i.i.d. de variables aléatoires admettant un moment d’ordre 2, alors,

en notant Sn =
n∑
k=1

Xk et m = E(X1)

on a :

∀ε > 0 lim
n→+∞

P

(∣∣∣∣ 1nSn −m
∣∣∣∣ > ε

)
= 0

7 Fonction génératrice

Dans ce paragraphe, toutes les variables aléatoires sont définies sur le même espace probabilisé,
sont discrètes et à valeurs dans N.

Quelques remarques :

On suppose connue la loi de X, c’est-à-dire les nombres P (X = n) avec n ∈ N.

La série entière
∑

P (X = n)tn est de rayon de convergence au moins égal à 1.

De plus les séries
∑

P (X = n) et
∑

P (X = n)(−1)nconvergent.

On en déduit que la fonction t 7→
+∞∑
n=0

P (X = n)tn est définie au moins sur [−1, 1].

Definition 7.1 Fonction génératrice

On appelle fonction génératrice de X, la fonction notée GX , définie au moins sur [−1, 1] par :

GX(t) =
+∞∑
n=0

P (X = n)tn = E(tX)
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On aura donc GX(1) =
+∞∑
n=0

P (X = n) = 1.

Si X(Ω) est fini, alors GX est une fonction polynômiale, définie sur R.

Cas des variables aléatoires discrètes de lois usuelles

Loi Fonction génératrice

X ∼ U[[1,n]] GX(t) =

X ∼ B(p) GX(t) =

X ∼ B(n, p) GX(t) =

X ∼ G(p) GX(t) =

X ∼ P(λ) GX(t) =

Proposition 7.1 Régularité

Soit X : Ω→ N et GX sa fonction génératrice définie au moins sur [−1, 1].

• GX est continue sur [−1, 1].

• GX est de classe C∞ au moins sur ]− 1, 1[ avec

∀n ∈ N, P (X = n) =
G

(n)
X (0)

n!

Par conséquent la loi de X est caractérisée par sa fonction génératrice.

• Si X et Y sont telles que X(Ω) = Y (Ω) alors,

X ∼ Y ⇐⇒ ∀t ∈ [−1, 1], GX(t) = GY (t)

Proposition 7.2 Fonction génératrice d’une somme de v.a. indépendantes

Si X et Y sont indépendantes alors

∀t ∈]− 1, 1[, GX+Y (t) = GX(t).GY (t)

où GX , GY , GX+Y désignent respectivement la fonction génératrice de X, Y et X + Y .



PSI Chapitre 14 Variables aléatoires discrètes 15

Plus généralement : Si X1, . . . , Xn sont mutuellement indépendantes et à valeurs dans N alors

∀t ∈ [−1, 1] GX1+···+Xn(t) =
n∏
k=1

GXk
(t).

Exemple 7.1 Application

On considère deux variables aléatoires réelles indépendantes définies sur le même espace probabilisé
(Ω,A , P ). Déterminer la loi de X + Y lorsque :

1. X ∼ B(n, p) et Y ∼ B(m, p).

2. X ∼ P(λ) et Y ∼ P(µ).

Proposition 7.3 Fonction génératrice, espérance et variance

• X est d’espérance finie ssi sa fonction génératrice GX est dérivable en 1.

Et dans ce cas, E(X) = G′X(1).

• X admet un moment d’ordre 2 ssi sa fonction génératrice GX est deux fois dérivable en 1 .

Dans ce cas, G′′X(1) = E(X(X − 1))

et

V (X) = G′′X(1) +G′X(1)− (G′X(1))2.


