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PSI Un corrigé du D.S. n°05 (un vieux sujet Mines-Ponts PSI)

Étant donné un réel µ (µ ∈ R), soit (Eµ) l'équation di�érentielle ci-dessous :

(Eµ) 16(x2 − x)y′′ + (16x− 8)y′ − µy = 0

Étant donné un intervalle I de R, il est admis que l'ensemble des solutions de l'équation
di�érentielle (Eµ) sur cet intervalle I, est un espace vectoriel Eµ(I).

Première partie

1 . Intervalles de dé�nition des solutions

On sait que l'ensemble des solutions d'une équation di�érentielle linéaire homogène d'ordre
deux de la forme : y′′+a(x)y′+b(x)y = 0 avec a, b des fonctions continues sur un intervalle
I est un espace vectoriel de dimension deux.

On note I1 =]−∞, 0[, I2 =]0, 1[ et I3 =]1,+∞[

Sur chacun de ces intervalles, l'équation (Eµ) devient

y′′ + a(x)y′ + b(x) = 0 avec a(x) =
16x− 8

16x(x− 1)
et b(x) =

−µ
16x(x− 1)

Les fonctions a et b étant continues sur I1, I2, I3 par quotient de fonctions continues dont
le dénominateur ne s'annule pas, les espaces vectoriels Eµ(I1), Eµ(I2) et Eµ(I3) sont de
dimension 2 avec I1, I2, I3 disjoints les plus grands possibles.

2 . Solutions de (Eµ) développables en série entière dans un intervalle de centre 0

Soit y une fonction inconnue, égale à la somme d'une série entière
∑
n>0

anx
n, de rayon de

convergence R supposé strictement positif :

y(x) =
+∞∑
n=0

anx
n

(a) On sait que y est de classe C∞ sur ] − R,R[ avec ses dérivées qui s'obtiennent par
dérivation terme à terme

y′(x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
k=0

(k + 1)ak+1x
k (k = n− 1)

y′′(x) =
+∞∑
n=2

n(n− 1)anx
n−2 =

+∞∑
k=1

(k + 1)kak+1x
k−1 (k = n− 1)
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On en déduit que pour x ∈]−R,R[

16(x2 − x)y′′(x) = 16x2y′′(x)− 16xy′′(x)

=
+∞∑
n=2

n(n− 1)anx
n − 16

+∞∑
n=1

n(n+ 1)an+1x
n

= 16
+∞∑
n=0

n(n− 1)anx
n − 16

+∞∑
n=0

n(n+ 1)an+1x
n

16(x2 − x)y′′(x) =
+∞∑
n=0

(16n(n− 1)an − 16n(n+ 1)an+1)x
n

On a aussi :

(16x− 8)y′(x) = 16xy′(x)− 8y′(x)

= 16
+∞∑
n=1

nanx
n − 8

+∞∑
n=0

(n+ 1)an+1x
n

= 16
+∞∑
n=0

nanx
n − 8

+∞∑
n=0

(n+ 1)an+1x
n

(16x− 8)y′(x) =
+∞∑
n=0

(16nan − 8(n+ 1)an+1)x
n

Par conséquent 16(x2 − x)y′′(x) + (16x− 8)y′(x)− µy(x) =
+∞∑
n=0

bnx
n avec

bn = 16n(n− 1)an − 16n(n+ 1)an+1 + 16nan − 8(n+ 1)an+1 − µan

bn = (16n2 − µ)an − 8(n+ 1)(2n+ 1)an+1

Par unicité du développement en série entière de la fonction nulle, on obtient :

16(x2−x)y′′(x)+(16x−8)y′(x)−µy(x) = 0⇐⇒
+∞∑
n=0

bnx
n = 0⇐⇒ ∀n ∈ N bn = 0

y est solution de (Eµ) sur ]−R,R[ si et seulement si ∀n ∈ N an+1 =
16n2 − µ

8(n+ 1)(2n+ 1)
an

On peut aussi écrire an+1 =
16n2 − µ

4(2n+ 2)(2n+ 1)
an (∗).
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Au brouillon pour obtenir la conjecture de la formule de an, on écrit :

an =
16(n− 1)2 − µ
4(2n)(2n− 1)

an−1 =
16(n− 1)2 − µ
4(2n)(2n− 1)

× 16(n− 2)2 − µ
4(2n− 2)(2n− 3)

an−2

En continuant ainsi, a-priori, on �nit avec le dernier terme en a0 comme suit :

an =
16(n− 1)2 − µ
4(2n)(2n− 1)

× 16(n− 2)2 − µ
4(2n− 2)(2n− 3)

· · · 16× 02 − µ
4× (2× 1)

a0

Montrons par récurrence que : ∀n ∈ N∗ an =
a0

4n(2n)!

n−1∏
k=0

(16k2 − µ) :

Par la relation (∗), on sait que a1 =
16× 02 − µ

4× 2× (2× 0 + 1)
a0 =

16× 02 − µ
23

a0, or

41.(2× 1)! = 23, donc an =
a0

4n(2n)!

n−1∏
k=0

(16k2 − µ) est vraie pour n = 1.

Soit n ∈ N∗ tel que an =
a0

4n(2n)!

n−1∏
k=0

(16k2 − µ). On obtient alors

an+1 =
16n2 − µ

4(2n+ 2)(2n+ 1)
an

=
16n2 − µ

4(2n+ 2) + 1)(2n+ 1)
× a0

4n(2n)!

n−1∏
k=0

(16k2 − µ)

=
a0

4n+1(2n+ 2)(2n+ 1)(2n)!

n∏
k=0

(16k2 − µ)

an+1 =
a0

4n+1(2n+ 2)!

(n+1)−1∏
k=0

(16k2 − µ)

Ce qui était la relation attendue.

Or 4 = 22 donc : ∀n ∈ N∗ an =
a0

22n(2n)!

n−1∏
k=0

(16k2 − µ)

(b) Le réel a0 est supposé di�érent de 0.

• Si ∀k ∈ N µ 6= 16k2 alors par la formule précédente ∀n ∈ N∗ an 6= 0 et on peut
appliquer la règle de d'Alembert pour trouver le rayon de convergence de

∑
anx

n

avec la relation an+1 =
16n2 − µ

4(2n+ 2)(2n+ 1)
an :

∀n ∈ N
|an+1|
|an|

=
16n2 − µ

4(2n+ 2)(2n+ 1)
=

16n2 − µ

16n2

(
1 +

1

n

)(
1 +

1

2n

) −→
n→+∞

1



4

Alors R =
1

1
= 1.

• S'il existe p ∈ N tel que µ = 16p2 alors ∀n ≥ p + 1 an = 0, et donc la série∑
anx

n converge pour tout réel x avec
+∞∑
n=0

anx
n =

p∑
n=0

anx
n (polynôme). Dans ce cas

R = +∞.

Si µ = 0 alors ∀n ∈ N∗ an = 0.

Si µ = 16p2 avec p ∈ N∗ alors ∀n ∈ [[1, p]] an =
a0

22n(2n)!

n−1∏
k=0

(16k2 − 16p2)

an =
16na0

22n(2n)!

n−1∏
k=0

(k − p)(k + p)

=
22na0
(2n)!

n−1∏
k=0

(k + p)×
n−1∏
k=0

(k − p)

par les changements d'indices i = k + p et j = p− k

=
22na0
(2n)!

n−1+p∏
i=p

i×
p∏

j=p−n+1

(−j)

=
(−4)na0

(2n)!
× (p+ n− 1)!

(p− 1)!
× p!

(p− n)!

an = (−4)na0 ×
p

p+ n
× (p+ n)!

(2n)!(p− n)!

Et �nalement ∀n ∈ [[1, p]] an =
(−4)np

n+ p

(
p+ n
p− n

)
a0.

Dans les questions 3) et 4) les réels a0 et µ sont égaux à 1 : a0 = 1, µ = 1.

Soit ϕ la fonction dé�nie au moins sur l'intervalle ]−R,R[ par la relation :

ϕ(x) =
+∞∑
n=0

anx
n

3 . Étude de la fonction ϕ

(a) µ = 1 donc ∀k ∈ N2 µ 6= 16k2. Le rayon de convergence de la série entière
∑
anx

n

est donc R = 1.



5

Montrons par récurrence que ∀n ∈ N an =
−1

24n(4n− 1)

(
4n
2n

)
.

• −1

24×0(4× 0− 1)

(
4× 0
2× 0

)
= 1 = a0.

• Soit n ∈ N tel que an =
−1

24n(4n− 1)

(
4n
2n

)
.

On sait que an+1 =
16n2 − µ

22(2n+ 2)(2n+ 1)
an, alors

an+1 =
(4n− 1)(4n+ 1)

4(2n+ 2)(2n+ 1)
× −1

24n(4n− 1)

(
4n
2n

)
= − (4n+ 1)(4n)!

24n+2(2n+ 2)(2n+ 1)(2n)!(2n)!

an+1 = − (4n+ 1)!

24n+2(2n+ 2)!(2n)!

= − (4n+ 4)!

24n+2(2n+ 2)!(2n)!(4n+ 2)(4n+ 3)(4n+ 4)

= − (4n+ 4)!

24n+4(2n+ 2)!(2n)!(2n+ 1)(2n+ 2)(4n+ 3)

= − (4n+ 4)!

24n+4)(4n+ 3)(2n+ 2)!(2n+ 2)!

an+1 =
−1

24(n+1)(4(n+ 1)− 1)

(
4(n+ 1)
2(n+ 1)

)
Ce qui termine la récurrence.

D'après la formule de stirling, on sait que (4n)! ∼
n→+∞

(
4n

e

)4n√
2π × 4n et

(2n)! ∼
n→+∞

(
2n

e

)2n√
2π × 2n, alors avec an = − (4n)!

24n(4n− 1)(2n)!(2n)!
on a :

an ∼
n→+∞

−1

24n × 4n
×
(

4n

e

)4n√
2π × 4n×

( e

2n

)4n 1

2π × 2n

an ∼
n→+∞

−1

2n
√

4n
√

2π

On en déduit que an ∼
n→+∞

k

nα
avec k =

−1

4
√

2π
et α =

3

2
.

(b) ϕ est la somme d'une série entière de rayon de convergence R = 1.

Pour n ∈ N∗, notons fn la fonction continue x 7→ anx
n.
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∀n ∈ N∗ ∀x ∈ [−1, 1] |fn(x)| 6 |an| alors ‖fn‖[−R,R]
∞ 6 |an| avec

‖fn‖[−R,R]
∞ = Sup

x∈[−R,R]

|fn(x)|.

D'après l'équivalent trouvé précédemment, on a : |an| ∼
n→+∞

1

4
√

2π
× 1

n3/2
.

Puisque
3

2
> 1, par comparaison avec le terme général d'une série de Riemann on

obtient la convergence de la série à termes positifs
∑
|an| et donc la convergence

normale donc uniforme sur [−R,R] de la série de fonctions
∑
fn.

Par théorème de continuité, ϕ =
+∞∑
n=0

fn est continue sur [−R,R] = [−1, 1].

(c) • En tant que somme d'une série entière de rayon de convergence R = 1, on sait que
ϕ est de classe C1 sur l'intervalle ouvert ]−R,R[=]− 1, 1[ avec

∀x ∈]−R,R[ ϕ′(x) =
+∞∑
n=1

nanx
n−1

• Pour x ∈]−R, 0], on peut écrire x = −|x| et alors ϕ′(x) =
+∞∑
n=1

un(x) avec

un(x) = (−1)n−1an|xn−1|.

Pour obtenir la limite à droite en −R = −1 de ϕ′, on va appliquer le théorème de la
double limite.

•• ∀n ∈ N∗ lim
x→−1

un(x) = (−1)n−1nan ∈ R.

•• Montrons que la série de fonctions
∑
n≥1

un converge uniformément sur ]− 1, 0] :

On sait que ∀n ∈ N∗ an =
−1

24n(4n− 1)

(
4n
2n

)
< 0, alors la série

∑
un(x) est une

série alternée.

D'après l'équivalent trouvé en question 3(a), on a pour x 6= 0 :

|un(x)| ∼
n→+∞

n
|k|

(n)3/2
× |x|n−1 ∼

n→+∞

k√
n
|x|n−1

Alors pour x ∈]−R, 0] =]− 1, 0] on a lim
n→+∞

|un(x)| = 0.

∀n ∈ N∗ ∀x ∈]−R, 0], puisque an+1 =
16n2 − 1

8(n+ 1)(2n+ 1)
an :
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|un+1(x)| − |un(x)| = |(n+ 1)an+1x
n| − |nanxn−1|

= |anxn−1|
(

16n2 − 1

8(2n+ 1)
|x| − n

)

=
|anxn−1|

8(2n+ 1)
((16n2 − 1)|x| − (16n2 + 8n))

|un+1(x)| − |un(x)| =
|anxn−1|

8(2n+ 1)
(16n2(|x| − 1)− |x| − 8n)

Et puisque 0 ≤ |x| < 1 on obtient

|un+1(x)| − |un(x)| ≤ 0

La série alternée
∑
un(x) véri�e le critère spécial des séries alternées pour tout

x ∈]− 1, 0], alors on sait que ∣∣∣∣∣
+∞∑

k=n+1

un(x)

∣∣∣∣∣ 6 |un+1(x)|

Or ∀x ∈]− 1, 0] |un+1(x)| = |(n+ 1)an+1x
n| 6 (n+ 1)|an+1|, alors

∀x ∈]− 1, 0] ∀n ∈ N∗

∣∣∣∣∣
+∞∑

k=n+1

uk(x)

∣∣∣∣∣ 6 (n+ 1)|an+1|

En notant Rn : x 7→
+∞∑

k=n+1

uk(x), on obtient

‖Rn‖]−R,0]∞ = Sup
x∈]−1,0]

|Rn(x)| 6 (n+ 1)|an+1|

Or avec l'équivalent de la question 3(a) lim
n→+∞

nan = 0 , donc lim
n→+∞

‖Rn‖]−1,0]∞ = 0.

On a ainsi obtenu la convergence uniforme sur ]−1, 0] de la série de fonctions
∑
n≥1

un.

Par théorème de la double limite, ϕ′ : x 7→
+∞∑
n=1

nanx
n−1 admet une limite �nie à droite en

−R = −1 qui vaut
+∞∑
n=1

nan(−1)n−1

La fonction ϕ est continue sur le segment [−R,R], de classe C1 sur ]−R,R[ et sa dérivée
ϕ′ admet une limite �nie à droite en −R alors par théorème de la limite de la dérivée,
ϕ est de classe C1 sur [−R,R[.
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4 . Étude de la dérivée ϕ′ lorsque le réel x tend vers 1

(a) Un résultat préparatoire : soit une suite réelle positive (bn)n∈N telle que la série
entière

∑
bnx

n ait un rayon de convergence égal à 1. Soit g(x) la somme de cette

série : g(x) =
+∞∑
n=0

bnx
n.

On suppose que la fonction g est majorée sur [0, 1[, il existe donc M > 0 tel que
∀x ∈ [0, 1[ g(x) 6M .

• Par hypothèse ∀n ∈ N bn > 0, alors la suite des sommes partielles

(
N∑
n=0

bn

)
N∈N

de la série
∑
bn est croissante.

• Montrons que la suite

(
N∑
n=0

bn

)
N∈N

est majorée :

∀n ∈ N lim
x→1

bnx
n = bn, alors par somme �nie

∀N ∈ N
N∑
n=0

bn = lim
x→1

N∑
n=0

bnx
n

De plus ∀x ∈ [0, 1[ bnx
n > 0 alors

∀N ∈ N ∀x ∈ [0, 1[
N∑
n=0

bnx
n 6

+∞∑
n=0

bnx
n 6M

On a donc ∀N ∈ N ∀x ∈ [0, 1[
N∑
n=0

bnx
n 6 M et par passage à la limite sur une

inégalité

∀N ∈ N
N∑
n=0

bn 6M

La suite des sommes partielles de la série
∑
bn étant croissante et majorée, elle

converge. La série
∑
bn est donc convergente.

(b) • ∀n ∈ N∗ an =
−1

24n(4n− 1)

(
4n
2n

)
< 0.

On a vu en question 3(a) : an ∼
n→+∞

k

n3/2
avec k =

−1

4
√

2π
, donc nan ∼

n→+∞

k√
n
.

1

2
6 1 donc la série de Riemann

∑ 1√
n
diverge, par comparaison la série à termes

négatifs
∑
nan diverge.
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• On a an < 0 et la fonction x 7→ xn−1 est croissante sur [0, 1[, alors la fonction

ϕ′ : x 7→
+∞∑
n=1

nanx
n−1 est décroissante sur [0, 1[.

ϕ′ admet donc une limite en 1 qui vaut −∞ ou qui est �nie.

Supposons que cette limite soit �nie, ϕ′ est alors minorée et donc −ϕ′ est majorée.

En appliquant le résultat préparatoire à la série
∑
bn avec bn = −nan, on obtient la

convergence de la série
∑
bn, ce qui est en contradiction avec

∑
nan diverge.

Par un raisonnement par l'absurde on a obtenu : lim
x→1

ϕ′(x) = −∞.

Deuxième partie

Dans cette partie le réel µ est égal à 1 ; le but est de résoudre l'équation di�érentielle (E1)
sur l'intervalle I =]0, 1[. Il pourra être utile de poser :

E1(y)(x) = 16(x2 − x)y′′(x) + (16x− 8)y′(x)− y(x)

Soit θ la fonction t 7→ x =
1

2
(1 + cos(t)), dé�nie sur l'intervalle ]0, π[.

5 . La fonction cosinus est une bijection de classe C∞ de ]0, π[ sur ]− 1, 1[, alors la fonc-

tion θ est une bijection de classe C∞ de ]0, π[ sur ]0, 1[ avec ∀t ∈]0, π[ θ′(t) = −sin(t)

2
6= 0.

On en déduit que y est une fonction dérivable deux fois sur ]0, 1[ si et seulement si la
fonction z = y ◦ θ est deux fois dérivable sur ]0, π[ ( y = z ◦ θ−1).

∀t ∈]0, π[, z′(t) = θ′(t)y′(θ(t)) = −sin(t)

2
y′(θ(t)) z′′(t) = −cos(t)

2
y′(θ(t))+

(
−sin(t)

2

)2

y′′(θ(t))

Ce qui donne z′′(t) =
sin2(t)

4
y′′(θ(t))− cos(t)

2
y′(θ(t)).

Avec x =
1 + cos(t)

2
, on a :

16(x2 − x) = 16x(x− 1) = 16× 1 + cos(t)

2
× cos(t)− 1

2
= 16× cos2(t)− 1

4
= −16

sin2(t)

4

16x− 8 = 8(1 + cos(t))− 8 = 8 cos(t)

Alors 16x(x− 1)y′′(x) + (16x− 8)y′(x)− y(x) = −16z′′(t)− z(t)
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E1(y)(x) = 0⇐⇒ 16z′′(t) + z(t) = 0

y est solution de (E1) sur ]0, 1[ si et seulement si z = y ◦ θ est solution sur ]0, π[ de 16z′′ + z = 0.

6 . L'équation di�érentielle (F ) 16z′′ + z = 0 est une équation di�érentielle linéaire
d'ordre 2 homogène à coe�cients constants dont l'équation caractéristique est 16r2+1 = 0.

Cette équation caractéristique admet les deux solutions complexes conjuguées − i
4
et

i

4
,

alors on sait que les solutions de (F ) sur ]0, π[ sont les fonctions

z : t 7→ α cos

(
t

4

)
+ β sin

(
t

4

)
avec (α, β) ∈ R2.

On déduit de la question 5 et des égalités données par l'énoncé, que les solutions de (E1)

sur ]0, 1[ sont les fonctions y : x 7→ α

√
1

2
+

1

2

√
x+ β

√
1

2
− 1

2

√
x avec (α, β) ∈ R2.

Les fonctions y1 : x 7→
√

1

2
+

1

2

√
x et y2 : x 7→

√
1

2
− 1

2

√
x ne sont clairement pas coli-

néaires et, d'après ce qui précède, elles forment une famille génératrice de l'ensemble des
solutions de (E1) sur l'intervalle I.

Une base de l'espace vectoriel des solutions de l'équation di�érentielle (E1) dans l'intervalle I

est la famille (y1, y2) avec y1 : x 7→
√

1

2
+

1

2

√
x et y2 : x 7→

√
1

2
− 1

2

√
x .

7 . D'après les questions 3 et 4, on sait que ϕ est une solution de (E1) sur [0, 1[ avec
ϕ(0) = lim

x→0
ϕ(x) = a0 = 1 et lim

x→0
ϕ′(x) = ϕ′(0) = a1 ∈ R.

Il existe donc deux réels α et β tels que ∀x ∈]0, 1[ ϕ(x) = α

√
1

2
+

1

2

√
x+ β

√
1

2
− 1

2

√
x.

En faisant tendre x vers 0 on obtient
α√
2

+
β√
2

= ϕ(0) = 1.

Par dérivation ∀x ∈]0, 1[ ϕ′(x) =
1

4
√

2x

(
α√

1 +
√
x
− β√

1−
√
x

)
.

Si α− β 6= 0 alors la limite en 0 n'est pas �nie, on en déduit que α− β = 0.

Les réels α et β véri�ent le système

{
α + β =

√
2

α− β = 0
donc α = β =

1√
2
.

On en déduit que ∀x ∈]0, 1[ ϕ(x) =
+∞∑
n=0

anx
n =

1

2

(√
1 +
√
x+

√
1−
√
x

)
.
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Troisième partie

Soit C l'espace vectoriel des fonctions réelles, dé�nies et de classe C∞ sur l'intervalle
I = [0, 1]. Soit D l'endomorphisme de C qui fait correspondre à une fonction f son image
D(f) dé�nie par la relation :

D(f) : x 7→ 16(x2 − x)f ′′(x) + (16x− 8)f ′(x)

8 . L'espace préhilbertien réel (C, (.|.))

Étant donné deux fonctions f et g appartenant à l'espace vectoriel C, la fonction

h : x 7→ f(x)g(x)√
x(1− x)

est continue sur l'intervalle I par produit et quotient de fonctions

continues dont le dénominateur ne s'annule pas sur cet intervalle.

De plus f et g sont continue sur le segment Ī = [0, 1], alors elles y sont bornées et leur
produit est borné, il existe donc M > 0 tel que

∀x ∈]0, 1[ |h(x)| 6 M√
x(1− x)

La fonction ψ : x 7→ 1√
x(1− x)

est continue sur ]0, 1[ avec

ψ(x) ∼
0

1√
x
et ψ(x) ∼

1

1√
1− x

1

2
< 1 alors d'après les intégrales de Riemann généralisées la fonction x 7→ 1√

x
est inté-

grable en 0 et la fonction x 7→ 1√
1− x

est intégrable en 1. Par comparaisons la fonction

ψ est intégrable sur ]0, 1[ ainsi que la fonction h.

La fonction x 7→ f(x)g(x)√
x(1− x)

est intégrable sur I =]0, 1[.

1ère remarque : On peut être tenté d'écrire
f(x)g(x)√
x(1− x)

∼
x→0

f(0)g(0)√
x

puisque f et g sont

continues en 0, mais on ne peut pas écrire cet équivalent lorsque f(0) = 0 ou g(0) = 0 !
De même pour l'équivalent au voisinage de 1.

2nde remarque : Si on sait ce que donne une combinaison linéaire de fonctions inté-
grables sur un intervalle I, on ne sait absolument rien sur le produit ou le quotient de
telles fonctions ! ! !

Par convention : pour deux fonctions f et g de l'espace C, le symbole (f |g) désigne la

valeur de l'intégrale
∫ 1

0

f(x)g(x)√
x(1− x)

dx.
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Il est admis dans la suite que l'application (f, g) 7→ (f |g) de C × C dans R est un produit
scalaire. Ainsi C muni de ce produit scalaire est un espace préhilbertien réel.

9 . Une propriété de l'endomorphisme D

Pour f et g dans C, on fournit : D(f)(x) = −16u′(x)
√
x− x2 avec u(x) = f ′(x)

√
x− x2

alors :

(D(f)|g) =

∫ 1

0

D(f)(x)g(x)√
x(1− x)

dx = −16

∫ 1

0

u′(x)g(x)dx

Les fonctions u et g sont de classe C1 sur ]0, 1[ avec lim
x→0

u(x)g(x) = 0 = lim
x→1

u(x)g(x),

alors par intégration par parties on obtient :

(D(f)|g) = −16 [u(x)g(x)]10 + 16

∫ 1

0

u(x)g′(x)dx = 16

∫ 1

0

f ′(x)g′(x)
√
x(1− x)dx

Et par symétrie (f |D(g)) = (D(g)|f) = 16

∫ 1

0

g′(x)f ′(x)
√
x(1− x)dx = (D(f)|g).

On a donc pour f et g dans C, (D(f)|g) = (f |D(g)) = 16

∫ 1

0

f ′(x)g′(x)
√
x(1− x)dx

10 . Valeurs propres et sous-espaces propres

(a) Soit λ une valeur propre de l'endomorphisme D. Soit f un vecteur propre de D
associé à cette valeur propre λ alors D(f) = λf et avec l'égalité vue en question 9
on a :

(D(f)|f) = (λf |f) = λ(f |f) et (D(f)|f) = 16

∫ 1

0

f ′(x)f ′(x)
√
x(1− x)dx

La fonction x 7→ (f ′(x))2
√
x(1− x) est positive et intégrable sur ]0, 1[ alors∫ 1

0

f ′(x)f ′(x)
√
x(1− x)dx > 0, ce qui donne λ(f |f) > 0.

f 6= 0 puisque f est un vecteur propre alors (f |f) > 0 et donc λ ≥ 0.

(b) Soient λ et µ deux valeurs propres distinctes,on note Gλ et Gµ les sous-espaces
propres associés.

Soit f ∈ Gλ et g ∈ Gµ, on a :

λ(f |g) = (λf |g) = (D(f)|g) = (f |D(g)) = (f |µg) = µ(f |g)
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On en déduit que (λ− µ)(f |g) = 0, or λ 6= µ donc (f |g) = 0.

Les sous-espaces propres Gλ et Gµ sont orthogonaux dans l'espace préhilbertien réel C.

11 . Noyau et image de l'endomorphisme D

(a) 1ère méthode :

Si f est un élément du noyau de D alors D(f) = 0 et avec le résultat vu dans la
preuve de la question 9 :

(D(f)|f) = 0 = 16

∫ 1

0

(f ′(x))2
√
x(1− x)dx

La fonction x 7→ (f ′(x))2
√
x(1− x) étant continue et positive sur ]0, 1[, on obtient

∀x ∈]0, 1[ (f ′(x))2
√
x(1− x) = 0 et donc ∀x ∈]0, 1[ f ′(x) = 0.

Si f est dans le noyau de D alors f est constante sur [0, 1] (f est continue).

Réciproquement on obtient par dé�nition de D(f) que si f est constante alors
D(f) = 0.

2nde méthode :

Par dé�nition le noyau de D est {f ∈ C, D(f) = 0}.

Soit f ∈ C, alors f est de classe C∞ sur [0, 1] et

∀x ∈ [0, 1] D(f)(x) = 16(x2 − x)f ′′(x) + (16x− 8)f ′(x) = 0

On a donc

D(f) = 0⇐⇒ f ′ est de classe C∞, f ′(0) = 0 = f ′(1) et ∀x ∈]0, 1[ f ′′(x)+
2x− 1

2(x2 − x)
f ′(x) = 0

D(f) = 0 ⇐⇒ f ′ véri�e sur ]0, 1[ l'équation di�érentielle linéaire du premier ordre

homogène y′ + a(x)y = 0 avec a(x) =
2x− 1

2(x2 − x)
=

u′(x)

2u(x)
et f ′ est de classe C∞ sur

[0, 1] avec f ′(0) = 0 = f ′(1).

On en déduit qu'il existe α ∈ R ∀x ∈]0, 1[ f ′(x) = αe−A(x) avec A une primitive

de a, ce qui donne ∀x ∈]0, 1[ f ′(x) = αe−
1
2
ln |x2−x| =

α√
x(1− x)

. Par continuité de

f ′ en 0 et en 1, avec f ′(0) = f ′(1) = 0 il vient α = 0 et donc f est une fonction
constante.

Réciproquement si f est constante alors D(f) = 0.
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3ème méthode :

Avec l'indication écrite en question 9, on sait que pour f ∈ C,D(f)(x) = −16u′(x)
√
x− x2

avec u(x) = f ′(x)
√
x− x2.

On a donc D(f) = 0⇐⇒ ∀x ∈]0, 1[ u′(x) = 0⇐⇒ ∃α ∈ R ∀x ∈]0, 1[ u(x) = α.

On retombe sur f ′(x) =
α√
x− x2

avec α ∈ R plus rapidement que dans la méthode

précédente et par continuité de f ′ en 0 et en 1 on a α = 0.

Le noyau de D est donc l'ensemble des fonctions constantes sur [0, 1].

(b) Soit h un élément de l'espace image de D, alors il existe f ∈ C telle que h = D(f),
et

(h|1) = (D(f)|1) = (f |D(1)) = (f |0) = 0

Toute fonction h de l'image de D est orthogonale à la fonction constante égale à 1 : (h|1) = 0.

12 . Dimension d'un sous-espace propre Gµ associé à une valeur propre µ

Soit µ une valeur propre de l'endomorphisme D, Gµ le sous-espace propre associé.

(a) f ∈ Gλ si et seulement si f ∈ C et D(f) − µf = 0, ce qui donne f ∈ C et f véri�e
l'équation di�érentielle (Eµ) sur Ī = [0, 1]. On en déduit que Gµ est inclus dans
Eµ(I), espace vectoriel des solutions de (Eµ) sur I =]0, 1[.

Par le résultat de la question 1, on sait que dimEµ(I) = 2 donc dimGµ 6 2.

(b) Étant données deux fonctions y1 et y2 appartenant àGµ, soitW : x 7→ det

(
y1(x) y2(x)
y′1(x) y′2(x)

)
.

Par dé�nition ∀x ∈ [0, 1] W (x) = y1(x)y′2(x) − y′1(x)y2(x), donc W est de classe
C∞sur [0, 1] par produit et combinaison linéaire de fonctions de classe C∞ sur [0, 1].

∀x ∈ [0, 1] W ′(x) = y′1(x)y′2(x) + y1(x)y′′2(x)− y′′1(x)y2(x)− y′1(x)y′2(x)

∀x ∈ [0, 1] W ′(x) = y1(x)y′′2(x)− y′′1(x)y2(x)

On en déduit que

16(x2 − x)W ′(x) = y1(x) (µy2(x)− (16x− 8)y′2(x))− (µy1(x)− (16x− 8)y′1(x)) y2(x)

16(x2 − x)W ′(x) = −(16x− 8)W (x)
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La fonction W est donc solution sur ]0, 1[ de l'équation di�érentielle linéaire du pre-

mier ordre h′ + a(x)h = 0 avec a : x 7→ 2x− 1

2(x2 − x)
qui est continue sur ]0, 1[.

On sait alors qu'il existe α ∈ R tel que ∀x ∈]0, 1[ W (x) = α exp (−A(x)) avec A
une primitive de la fonction a sur ]0, 1[.

Il existe donc α ∈ R tel que ∀x ∈]0, 1[ W (x) = αe−
1
2
ln |x2−x| =

α√
x(1− x)

. La

fonction W étant de classe C∞ sur [0, 1], on a α = 0.

Finalement W : x 7→ det

(
y1(x) y2(x)
y′1(x) y′2(x)

)
est la fonction nulle.

Supposons que la fonction y2 ne soit pas la fonction nulle alors ∀x ∈ [0, 1] ∃α(x) ∈ R

tel que

(
y1(x)
y′1(x)

)
= α(x)

(
y2(x)
y′2(x)

)
. La fonction α ainsi dé�nie est alors dérivable sur

un intervalle non vide inclus dans [0, 1] sur lequel la fonction y2 ne s'annule pas or
y1(x) = α(x)y2(x) et y′1(x) = α(x)y′2(x) donc α′(x) = 0 et la fonction α est constante.

Donc : ∃α ∈ R ∀x ∈ [0, 1] y1(x) = αy2(x).

Finalement pour tout couple (y1, y2) d'éléments de Gµ, la famille (y1, y2) est liée.
On en déduit que Gµ est de dimension strictement inférieure à 2, or Gµ est un sous-

espace propre donc Gµ est un sous-espace vectoriel de dimension 1.

13 . Élements propres de l'application ∆

Soit P le sous-espace vectoriel de C des restrictions des fonctions polynomiales à l'inter-
valle Ī.

(a) On sait que P est un sous-espace vectoriel stable par dérivation, donc si P est un
élément de P alors P ′ et P ′′ sont dans P , de plus P est aussi stable par produit
et les fonctions x 7→ 16(x2 − x) et x 7→ 16x − 8 sont dans P alors par produit et
combinaison linéaire, D(P ) ∈ P .

P est bien stable par D.

On note ∆ l'endomorphisme de P induit par D.

(b) • µ ∈ R est une valeur propre de ∆ si et seulement si il existe f ∈ P , f 6= 0, telle
que ∆(f) = D(f) = µf , ce qui revient à f ∈ P , f 6= 0 et f est solution de l'équation
di�érentielle (Eµ).
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On a vu en question 2(b) que les solutions non nulles de (Eµ) sont des fonctions
polynômiales si et seulement si ∃q ∈ N tel que µ = 16q2.

On en déduit que la suite croissante (λq)q∈N des valeurs propres de l'endomorphisme

∆ est la suite (16q2)q∈N.

• Pour q ∈ N, on sait par la question 12(b) que le sous-espace propre associé à la
valeur propre λq = 16q2 est de dimension égale à 1. Par le résultat de la question

3(b) c'est l'ensemble

{
q∑

n=0

anx
n, an =

(−4)nq

n+ q

(
n+ q
q − n

)
a0 avec a0 ∈ R

}
.

• Avec les résultats de la question 2(b) la fonction polynomiale Tq véri�ant (E16q2)

avec Tq(0) = a0 = 1 est
Tq : x 7→

q∑
n=0

anx
n avec an =

(−4)nq

n+ q

(
n+ q
q − n

)
et

Tq est de degré q.

(c) Par le résultat de la question 11(b), on sait que l'espace image de l'application ∆ est
inclus dans l'espace vectoriel des éléments h de P qui véri�ent (h|1) = 0.

Réciproquement, on considère h ∈ P une fonction polynômiale non nulle qui véri�e
(h|1) = 0. Notons p le degré de h.

La famille (Tq)q∈[[0,p]] est une famille de polynômes échelonnée en degré, alors elle est
libre et c'est une base de l'espace vectoriel Pp des fonctions polynomiales de degré
inférieur ou égal à p.

On en déduit qu'il existe (α0, . . . , αp) ∈ Rp+1 tel que h =

p∑
q=0

αqTq et alors

(h|1) =

p∑
q=0

αq(Tq|1).

Pour q 6= 0 (Tq|1) =
1

16q2
(∆(Tq)|1) =

1

16q2
(D(Tq)|1) =

1

16q2
(Tq|D)(1) = 0. On en

déduit que 0 = (h|1) = α0 et h =

p∑
q=1

αqTq =

p∑
q=1

αq
16q2

∆(Tq) est dans Im(∆).

L'image de ∆ est l'ensemble des fonctions h de P qui véri�ent (h|1).

14 . Valeurs propres de l'endomorphisme D

On admet que pour toute fonction f de C, il existe une suite (Pn)n∈N d'éléments de P
qui converge uniformément vers f sur l'intervalle Ī = [0, 1].
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(a) Soit g une fonction de C supposée orthogonale au sous-espace vectoriel P .
D'après le résultat admis ci-dessus il existe une suite (Pn)n∈N d'éléments de P qui
converge uniformément vers f sur l'intervalle Ī = [0, 1].
On a donc lim

n→+∞
‖g − Pn‖∞ = 0 avec ‖g − Pn‖∞ = Sup

x∈[0,1]
|g(x)− Pn(x)|.

On veut montrer que g est nulle, on va montrer que (g|g) = 0 :

On sait que ∀n ∈ N (g|Pn), alors

∀n ∈ N (g|g) = (g|g − Pn + Pn) = (g|g − Pn) + (g|Pn) = (g|g − Pn)

Par inégalité triangulaire, les intégrales étant convergentes, on a :

0 6 (g|g) 6
∫ 1

0

|g(x)|√
x− x2

|g(x)− Pn(x)| dx

Or ∀n ∈ N ∀x ∈ [0, 1] |g(x)− Pn(x)| 6 ‖g − Pn|∞, donc

∀n ∈ N ∀x ∈]0, 1[
|g(x)|√
x− x2

|g(x)− Pn(x)| 6 |g(x)|√
x− x2

‖g(x)− Pn(x)‖∞

Par croissance de l'intégrale et linéarité, puisque les intégrales convergent on obtient :

∀n ∈ N 0 6 (g|g) 6 ‖g − Pn‖∞
∫ 1

0

|g(x)|√
x− x2

dx

Par théorème d'encadrement puisque lim
n→+∞

‖g − Pn‖∞ = 0, on obtient :

lim
n→+∞

(g|g) = 0, ce qui donne

(g|g) = 0

et par le caractère dé�ni-positif du produit scalaire on a g = 0.

On a donc prouvé que si g ∈ C est orthogonale à P alors g est la fonction nulle.

(b) • On sait par le résultat de la question 13(b) que les réels λq = 16q2 avec q ∈ N sont
des valeurs propres de ∆ donc de D.

• Suppposons qu'il existe une autre valeur propre µ de D, alors Gµ le sous-espace
propre de D associé à µ est, par dé�nition, inclus dans C et, par la question 10(b), Gµ

est orthogonal aux sous-espaces propres Gq associés aux valeurs propres λq = 16q2

pour q ∈ N.

Gµ 6= {0} par dé�nition de sous-espace propre, il existe donc g ∈ Gµ telle que g 6= 0.
On a vu en question 13(b) que Gq = V ect(Tq), alors g et Tq sont orthogonaux pour
tout q dans N :

∀q ∈ N (g|Tq) = 0

On sait aussi que ∀q ∈ N Tq est de degré q, alors la famille (Tq)q∈N est une famille
de fonctions polynômiales échelonnées en degré qui engendre toutes les fonctions po-
lynômiales donc P = V ect(Tq, q ∈ N).
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On en déduit que g est une fonction de C qui est orthogonale au sous-espace vectoriel
P . Le résultat de la question 14(a) entraine g = 0 ce qui est absurde.

On en déduit que D n'a pas d'autres valeurs propres que les réels λq = 16q2 avec
q ∈ N.

Les valeurs propres de D sont exactement les réels 16q2 avec q ∈ N.

FIN DU PROBLÈME


