PSI Un corrigé du D.S. n°05 (un vieux sujet Mines-Ponts PSI)

Etant donné un réel p (1 € R), soit (E,) 'équation différentielle ci-dessous :
(Ep) 16(2* — x)y" + (162 — 8)y' — py = 0

Etant donné un intervalle I de R, il est admis que I’ensemble des solutions de I’équation
différentielle (E,) sur cet intervalle I, est un espace vectoriel E,,(I).

Premiére partie

1 > Intervalles de définition des solutions

On sait que I’ensemble des solutions d’une équation différentielle linéaire homogéne d’ordre
deux de la forme : v +a(x)y’ +b(x)y = 0 avec a, b des fonctions continues sur un intervalle
I est un espace vectoriel de dimension deux.

On note I} =| — 00,0[, Iy =]0, 1] et I3 =|1,+00]

Sur chacun de ces intervalles, ’équation (E,) devient

162 — 8 —

y// + a(x)y’ + b(x) = ( avec CL(I) = m et b<$) = m

Les fonctions a et b étant continues sur I, I, I3 par quotient de fonctions continues dont
le dénominateur ne s’annule pas, les espaces vectoriels E, ([1), E,(I2) et E,(I3) sont de
dimension 2 avec [y, I, I3 disjoints les plus grands possibles.

2 > Solutions de (E,) développables en série entiére dans un intervalle de centre 0

Soit y une fonction inconnue, égale a la somme d’une série entiére E apx", de rayon de

n=0
convergence R supposé strictement positif :

+00
y(xr) = Z anx"
n=0

(a) On sait que y est de classe C* sur | — R, R| avec ses dérivées qui s’obtiennent par
dérivation terme a terme

+oo +00

y'(xr) = Znanxnfl = Z(k‘ + Dagpiz® (k=n—1)
n=1 k=0
+o00 —+o0

y'(x) = Zn(n —1a,z" % = Z(k’ + Dkapp2™' (k=n—-1)

n=2 k=1



On en déduit que pour x €] — R, R|

16(2® — x)y"(x) = 162%y"(z) — 16xy" ()

+o0 +oo
= Zn(n — Dayz" — 16Zn(n + Dayq2"
n=2 n=1
+oo +oo
= 162n(n — Dayz" — 162n(n + Dayq2”
n=0 n=0
+o0
16(z* — z)y"(z) = Z (16n(n — 1)a, — 16n(n + 1)a,1) 2"
n=0

On a aussi :

(162 —8)y'(z) = 16zy'(z) — 8y'(x)

+oo +oo
= 16 Z na,r" — 8 Z(n + Dayq2”
n=1 n=0

“+00 400
= 16 Z na,x" — 8 Z(n + Day 2"
n=0 n=0

+00

(16 — 8)y/(x) = Z (16na, — 8(n + 1)ay41) 2"

+o00
Par conséquent 16(z? — 2)y”(z) + (162 — 8)y/(z) — py(z) = Z b,z" avec
n=0

b, = 16n(n—1)a, — 16n(n+ 1)a,y1 + 16na, — 8(n + 1)a,1 — pay,
b, = (16n* — pa, —8(n+1)(2n + 1)a,:

Par unicité du développement en série entiére de la fonction nulle, on obtient :

+o0
16(2? —2)y" (z) + (162 — 8)y/ () — py(x) = 0 <= anx” =0«<=WneN b,=0

n=0

16n% — u
8(n+1)(2n+1)

y est solution de (E,) sur | — R, R[ si et seulement si Vn € N a,4; = an

16n% — u
42n +2)(2n + 1)

a, (%).

On peut aussi écrire a,1 =



Au brouillon pour obtenir la conjecture de la formule de a,, on écrit :

. _16(n—1)2—ua _16(71—1)2—/1>< 16(n —2)? — p .
"TAn)@2n—1) T 4@n)2n—1) T 42n—2)(2n—3) "’

En continuant ainsi, a-priori, on finit avec le dernier terme en ag comme suit :

16(n—1)* —p 16(n —2)% — p 16 x 0% — u
T e @2n—1) “a2n—2)2n—3) dx(2x1) "

n—1
Montrons par récurrence que : Vn € N* q, = 4n<a20n)! kl_[[)(lﬁk2 — W)
16 x 0% — 16 x 0% —
Par la relation (x), on sait que a; = IX2x(@x 0,u+ 1)a0 = T'uao, or

n—1
a

41.(2 x 1)! = 23, donc a,, = 4”(2071)! g(lez — 1) est vraie pour n = 1.

n—1

Soit n € N* tel que a,, = % kl;[[)(16k2 — ). On obtient alors

16n% — u
Ay, n
i 42n+2)(2n + 1)
16n% — p a
= X [J6k> —p)
n !
42n+2)+1)(2n+1)  4*(2n)! 2
_ do ﬁ(16k2 — 1)
41 (2n + 2)(2n + 1)(2n)! -4
a (n+1)—1
0 2
n —_— 16k~ —
Gny1 471(2n 1 2)! kl_[O ( 1)
Ce qui était la relation attendue.
a n—1
_ 92 . * _ 0 2
Or 4 =2%donc:VneN an—mg(lmﬂ — 1)

Le réel ag est supposé différent de 0.

e SiVk € N p # 16k? alors par la formule précédente Vn € N*  a,, # 0 et on peut
appliquer la régle de d’Alembert pour trouver le rayon de convergence de Y a,z"

, 16n% — u
avec la relation a, 1 = ap :
42n+2)(2n + 1)
n 16n? — 16n2 —
vn € N |a +1| _ n H — n I 1

B 1 1\ no+too
|| 4(2n+2)(2n + 1) 1602 <1+_> (1+_) -+
n 2n



1
Alors R = 1 =1.

e S’il existe p € N tel que u = 16p* alors Vn > p +1 a, = 0, et donc la série

+oo
Z Gnl' converge pour tout réel x avec E Clnl’ = E Ay L polynome) Dans ce cas
n=0 n=0

R = +o0.

Sip =0 alors Vn € N* a, =0.

n—1

Si u = 16p* avec p € N* alors Vn € [1,p] a, = % ’g(16k2 — 16p?)

o = g L= P +7)
S (CRROR D (CRY

par les changements d’indices i =k +pet j =p—Fk

- & Hzx 1 )

(~4)ra (p4n—11_ pl

T @) ST -0t S p—n)
a4y = (—4)"ag x —2 b+ n)!

ptn @n)lp—n)l

_4)n
Et finalement Vn € [1,p] a, = (=) (p—l— n) ao.
n+p \p—n

Dans les questions 3) et 4) les réels ag et pu sont égaux a1 :a9=1, p=1.

Soit ¢ la fonction définie au moins sur l'intervalle | — R, R[ par la relation :

+oo

o(x) = Z anx"

n=0

3 > Etude de la fonction ¢

(a) u=1donc Vk € N? 1 # 16k%. Le rayon de convergence de la série entiére > a,z"
est donc R = 1.



-1
Montrons par récurrence que Vn € N a,, = m (;LZ)

. -1 4x0 -
250(4x 0—1) \2x0) %

. —1 in
e Soit n € N tel que a,, = m (2n>
, 16n% — u
On sait que a, 11 = 220+ 2)(2n + 1)an, alors
(4n —1)(4n + 1) " -1 4n (4n + 1)(4n)!
an = = —
AR+ 2)2n+1) T 2% (4n —1) \2n 24n+2(2p, + 2)(2n + 1)(2n)!(2n)!
(4n 4+ 1)!

Il = Tome2(2n 1 2)1(2n)!

(4n +4)!
294220 4 2)1(2n)!(4n + 2) (4n + 3)(4n + 4)

(4n +4)!
2020 4 2)1(2n)1(2n 4 1) (2n + 2)(4n + 3)

(4n +4)!
249 (4n 4+ 3)(2n + 2)!(2n + 2)!

B —1 (4(n + 1))
Any1 = 24(n+1)(4(n + 1) _ 1) Q(n + 1)

Ce qui termine la récurrence.

4n

4n,
) IR T et

2n\ " 4n)!
(2n)!  ~ (_n) V21 x 2n, alors avec a,, = ~ o (4n) on a:

n—+oo \ € (4n —1)(2n)!(2n)!

D’aprés la formule de stirling, on sait que (4n)! ~ (

n—-+0o e

1
21T X 2n

-1 4n\ " e \4n
an, — X | — V21 X 4n X (—)

Y
n—+too 247 x 4n e 2n

—1

an ~ _—
n—+oo  2n/4An\/ 2T

On en déduit que a, ~ — avec k=

3
n—+oo N 427 2

(b) ¢ est la somme d’une série entiére de rayon de convergence R = 1.

Pour n € N*, notons f,, la fonction continue x — a,z".



Vn e N* Vo e [-1,1] [fu(z)| < |an| alors || £, |55 < |a,| avec
£ IS5 = Sup | fa(2)].

z€[—R,R]
1

n—>+oo 4\ /9 n3/2 )

. 3 . .
Puisque 3 > 1, par comparaison avec le terme général d’'une série de Riemann on

D’aprés I’équivalent trouvé précédemment, on a : |a,|

obtient la convergence de la série & termes positifs Y |a,| et donc la convergence
normale donc uniforme sur [—R, R] de la série de fonctions > f,..

+oo
Par théoréme de continuité, p = Z fn est continue sur [—R, R] = [—1,1].
n=0

e [In tant que somme d’une série entiére de rayon de convergence R = 1, on sait que
¢ est de classe C'! sur l'intervalle ouvert | — R, R[=] — 1, 1] avec

Ve €] — R, R ¢'(z) = Znan:p"—l

e Pour z €] — R, 0], on peut écrire z = —|z| et alors ¢'( Zun avec

un(z) = (=1)"ta,a" Y.

Pour obtenir la limite a droite en —R = —1 de ¢/, on va appliquer le théoréme de la
double limite.

ee Vn € N*  lim u,(x) = (-1)""'na, € R.

z——1
ee Montrons que la série de fonctions Z u,, converge uniformément sur | — 1,0] :
n>1
On sait que Yn € N* q, = 1 (4n < 0, alors la série > u,(x) est une
4 "= Qim(an — 1) \2n ’ "

série alternée.

D’aprés I’équivalent trouvé en question 3(a), on a pour z # 0 :

| ‘ n—1 k n—1
@)l npy < 1ol el
Alors pour z €] — R,0] =] — 1,0] on a 11r+n |un(x)] = 0.
n—-+0o0o
16n? — 1

Vn € N* Vz €] — R, 0], puisque a, 1 =

ShtHnt1) ™



i1 ()] = Jun (@) = [(n+ 1)an12"| — [nanz™ |
[ 160 —1
= |ap2" | ——=z| —n
8(2n+1)
|anxn71| 2 2
—((1 -1 — (1
320 T 1) ((16n )|z| — (16n* + 8n))
|anxn71| 2
|[Unt1(2)| = [un ()] 82nt1) (16n°(|z| — 1) — [z| — 8n)

Et puisque 0 < |z| < 1 on obtient

[t 41(2)] = |un(2)] <0
La série alternée > wu,(z) vérifie le critére spécial des séries alternées pour tout
x €] — 1,0], alors on sait que

—+o00

k=n+1

< Jtnp1(2)]

OrVz €] —1,0] |up1(x)] = |(n+ 1Dapp12™ < (n+1)|ant1], alors

+o0o

k=n+1

Vre|—1,0] Vne N* < (n+1)|ant]

+oo
En notant R, : x — Z ug(x), on obtient
k=n+1

Rl = S]YU%UOJRn(:E)‘ < (n+ 1Dan |
ze|—1,

Or avec équivalent de la question 3(a) lim na, =0, donc lim |[|R,|'c*% = 0.
n—-+00 n—-+oo

On a ainsi obtenu la convergence uniforme sur | — 1, 0] de la série de fonctions E Un,.-
n>1

—+o00
Par théoréme de la double limite, ¢’ :  +—> Z na,r" ' admet une limite finie & droite en
n=1
+o0
—R = —1 qui vaut Znan(—l)"_l
n=1

La fonction ¢ est continue sur le segment [— R, R], de classe C' sur | — R, R[ et sa dérivée
¢ admet une limite finie & droite en —R alors par théoréme de la limite de la dérivée,
¢ est de classe C' sur [—R, R|.




4 > Etude de la dérivée ¢ lorsque le réel = tend vers 1

(a)

Un résultat préparatoire : soit une suite réelle positive (b, ),en telle que la série
entiére Y b,x" ait un rayon de convergence égal & 1. Soit g(x) la somme de cette

+oo
série : g(x) = Z byx™.
n=0

On suppose que la fonction g est majorée sur [0, 1], il existe donc M > 0 tel que
Ve e [0,1] g(z) < M.

N
e Par hypothése Vn € N b, > 0, alors la suite des sommes partielles <Z bn>

n=0 NeN
de la série > b, est croissante.

N

e Montrons que la suite (Z bn> est majorée :
n=0 NeN

Vn e N linq b,x" = b, alors par somme finie
Tr—r

N N
VN € N an:nm by

rz—1
n=0 n=0

De plus Vz € [0,1] b,z™ > 0 alors

N —+o00
VNEN Vre[0,1] Y ba" <) bua" <M
n=0 n=0
N

On a donc VN € N Vz € [0,1] Z b,x" < M et par passage a la limite sur une

. . n:0
inégalité

N
VYN € N angM
n=0

La suite des sommes partielles de la série > b, étant croissante et majorée, elle

converge. | La série Y b, est donc convergente.

. -1 4n
On a vu en question 3(a) : a, et 71 avec k = 4_— o donc na, et %

1
S < , = div .
5 < 1 donc la série de Riemann NG diverge, par comparaison la série a termes
n

négatifs | > na, diverge.




e On a a, < 0 et la fonction v — 2" !
o Z na,z" ' est décroissante sur [0, 1].

n=1
¢ admet donc une limite en 1 qui vaut —oo ou qui est finie.

est croissante sur [0, 1], alors la fonction

Supposons que cette limite soit finie, ¢’ est alors minorée et donc —¢’ est majorée.

En appliquant le résultat préparatoire a la série Y _ b, avec b, = —na,, on obtient la

convergence de la série ) b, ce qui est en contradiction avec ) na, diverge.

Par un raisonnement par ’absurde on a obtenu : lim ¢'(z) = —o0.
z—1

Deuxiéme partie

Dans cette partie le réel p est égal a 1; le but est de résoudre I'équation différentielle (E)

sur lintervalle I =|0, 1[. Il pourra étre utile de poser :
Ei(y)(z) = 16(2* — 2)y"(2) + (162 — 8)y'(x) — y(2)

1
Soit 6 la fonction t — x = 5(1 + cos(t)), définie sur 'intervalle |0, 7[.

5 > La fonction cosinus est une bijection de classe C* de |0, 7[ sur | — 1, 1], alors la fonc-

tion 0 est une bijection de classe C* de |0, 7 sur |0, 1[ avec Vt €]0, 7] 6'(t) =

_sin(?)

2

£ 0.

On en déduit que y est une fonction dérivable deux fois sur |0, 1] si et seulement si la

fonction 2z = y o 0 est deux fois dérivable sur |0, 7| (y = 2z0671).

veloal, ) =00y oem) = -y 2w =Sy em)
Ce qui donne 2"(t) = #y”w(t)) - COSQ(t) y'(6(t))
Avecx:1+c—()s<t),ona:
2
16(2% — 2) = 162(z — 1) = 16 x 0B sl =1 e COSQ(? 146

162 — 8 = 8(1 + cos(t)) — 8 = 8cos(t)
Alors 16x(z — 1)y"(z) + (162 — 8)y/(z) — y(z) = —162"(t) — 2(t)
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Ei(y)(z) =0<=162"(t) + 2(t) =0

y est solution de (Ej) sur |0, 1] si et seulement si z = y o 6 est solution sur |0, 7| de 162" + z = 0.

6 > L’équation différentielle (F') 162" + z = 0 est une équation différentielle linéaire
d’ordre 2 homogéne a coefficients constants dont ’équation caractéristique est 167‘2471 = 0.

i 1
Cette équation caractéristique admet les deux solutions complexes conjuguées 1 et 7
alors on sait que les solutions de (F) sur |0, 7| sont les fonctions

z:t— acos (%) + Bsin (%) avec (o, ) € R%.

On déduit de la question 5 et des égalités données par l’énoncé, que les solutions de (E})

1
sur](),l[sontlesfonctionsy:xl—>a1/—+ \/_—i-ﬁ\/——— T avec (o, ) € R?.

1 1
Les fonctions y; : z +— 3 + 5\/5 et Yo 1 x — 573 x ne sont clairement pas coli-

néaires et, d’aprés ce qui précéde, elles forment une famille génératrice de 'ensemble des
solutions de (E7) sur l'intervalle I.

Une base de I'espace vectoriel des Solutlons de I’équation différentielle (E;) dans l'intervalle [

est la famille (y1, y2) avecyl.x»—ul——l— \/Eet Y : x»—u/———\/_

7 > D’apreés les questions 3 et 4, on sait que ¢ est une solution de (E;) sur [0, 1] avec
©0(0) = lir% o(x) =a9=1cet lirrcl] O'(x) = ¢'(0) =a; € R.
Tr—r T—>

1 1 1 1
Il existe donc deux réels « et (8 tels que Va €]0,1] ¢(z) = a\/§ + 5\/§+ﬂ\/§ = 5\/5

4P
En faisant tendre x vers 0 on obtient — =p(0)=1
\/_ V2
o 1 « 15}
Par dérivation Vz €]0, 1 "(x) = — )
0.1 ¢t=) 4\/21‘(\/1—1—\/5 \/1—\/5>

Si o — 8 # 0 alors la limite en 0 n’est pas finie, on en déduit que o« — = 0.

= 1
ztng doncazﬁzﬁ.

Les réels a et 3 vérifient le systéme {

“+o0

L1 1
On en déduit que Vz €]0,1] Zanx —5(\/14—\/_—1—\/1— )
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Troisiéme partie

Soit C lespace vectoriel des fonctions réelles, définies et de classe C'°° sur lintervalle
I =10,1]. Soit D ’endomorphisme de C qui fait correspondre & une fonction f son image
D(f) définie par la relation :

D(f) : x> 16(2* — ) f"(z) + (162 — 8) f'(x)

8 > L’espace préhilbertien réel (C, (.|.))

Etant donné deux fonctions f et ¢ appartenant a I'espace vectoriel C, la fonction

Lo J@)

xr T est continue sur l'intervalle I par produit et quotient de fonctions
x(l—x
continues dont le dénominateur ne s’annule pas sur cet intervalle.

De plus f et g sont continue sur le segment I = [0, 1], alors elles y sont bornées et leur
produit est borné, il existe donc M > 0 tel que

M
va €0 1[ |h(@)] < e
(1l —x)
La fonction ) : x +— T est continue sur |0, 1[ avec
z(l—x
1

b(@) ~ —= et ¥(z) ~

0 x 1 4/1—x

1 1
5 < 1 alors d’apreés les intégrales de Riemann généralisées la fonction x — —= est inté-

NG

est intégrable en 1. Par comparaisons la fonction

1
rable en 0 et la fonction z —
& vV1—=x

Y est intégrable sur |0, 1] ainsi que la fonction h.

f(x)g(x)

z(1—x)

La fonction z — est intégrable sur I =]0, 1[.

f@)g(z) f(0)g(0)
(1 —z) =20  /x
continues en 0, mais on ne peut pas écrire cet équivalent lorsque f(0) = 0 ou g(0) = 0!

De méme pour 'équivalent au voisinage de 1.

1ére remarque : On peut étre tenté d’écrire puisque f et g sont

2nde remarque : Si on sait ce que donne une combinaison linéaire de fonctions inté-
grables sur un intervalle I, on ne sait absolument rien sur le produit ou le quotient de
telles fonctions!!!

Par convention : pour deux fonctions f et g de I'espace C, le symbole (f|g) désigne la
1

valeur de l’intégrale/ f(@)g(x) dz.
0

Va(l—z)
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Il est admis dans la suite que 'application (f,g) — (f|g) de C x C dans R est un produit
scalaire. Ainsi C muni de ce produit scalaire est un espace préhilbertien réel.

9 > Une propriété de I'endomorphisme D

Pour f et g dans C, on fournit : D(f)(z) = —16u/(x)vVx — 22 avec u(z) = f'(x)vVz — 22

alors :
D@,
)= [ =y e =16 | gt

Les fonctions u et g sont de classe C! sur ]0, 1] avec 1irr(1] u(x)g(z) =0 = hnri u(x)g(z),
T—r Tr—r

alors par intégration par parties on obtient :

(D(f)lg) = —16 [u(x)g(x)]: +16/ u() dx—16/ F(2)g (2)v/2(0 = 2)da

Et par symétrie (f|D(g)) = (D(g)|f) = 16 / §(@)f (@)y/2(I = 2)de = (D

On a donc pour f et g dans C, (D(f)|g) = (f|D(g) —16/ f(2)d (x)\/z(1 — x)dx

10 > Valeurs propres et sous-espaces propres

(a) Soit A une valeur propre de I'endomorphisme D. Soit f un vecteur propre de D
associé & cette valeur propre A alors D(f) = \f et avec I’égalité vue en question 9
on a :

(DOI) = AFIF) = AF1F) et (D(HIF) = 16/0 f'(@) f () a(l — z)dz

La fonction = — (f'(x))?*y/z(1 — z) est positive et intégrable sur 0, 1] alors
1

/ f(2)f'(x)\/x(1 —z)dz > 0, ce qui donne \(f|f) =0
0

f # 0 puisque f est un vecteur propre alors (f|f) > 0 et donc| A > 0.

(b) Soient A et p deux valeurs propres distinctes,on note G et G, les sous-espaces
propres associés.

Soit f € Gyet ge Gy, ona:

A flg) = (Aflg) = (D(f)lg) = (fI1D(g)) = (flng) = u(flg)
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On en déduit que (A — p)(f|g) =0, or A # u done (f|g) = 0.

Les sous-espaces propres G et G, sont orthogonaux dans 'espace préhilbertien réel C.

11 > Noyau et image de I'endomorphisme D

(a) lére méthode :

Si f est un élément du noyau de D alors D(f) = 0 et avec le résultat vu dans la
preuve de la question 9 :

(D)) =0 =16 / (@) V/a(l = 2)da

0
La fonction z — (f'(z))*y/z(1 — x) étant continue et positive sur ]0, 1[, on obtient
Vz €]0,1[ (f'(z))*/x(1 —x) =0 et donc Vz €]0,1] f'(x) = 0.

Si f est dans le noyau de D alors f est constante sur [0, 1] (f est continue).

Réciproquement on obtient par définition de D(f) que si f est constante alors

D(f) =0.

2nde méthode :

Par définition le noyau de D est {f € C, D(f)=0}.

Soit f € C, alors f est de classe C* sur [0, 1] et
Vo €[0,1] D(f)(z) = 16(2* — 2)f"(x) + (163 — 8) f'(x) = 0

On a donc
20 — 1

D(f) =0<= f"est de classe C*, f'(0) =0= f'(1) et Va €]0,1] f”(x)+2(x2—_$)

fi(w) =0
D(f) = 0 <= [’ vérifie sur |0, 1| I'équation différentielle linéaire du premier ordre
2r — 1 u'(x)

22 — ) = 2u(z) et [’ est de classe C™ sur

homogeéne y' + a(z)y = 0 avec a(x) =

[0,1] avec f'(0) =0 = f'(1).

On en déduit qu’il existe « € R Va €]0,1[  f'(z) = ae™ 4@ avec A une primitive
de a, ce qui donne Vz €)0,1] f'(z) = ae-dml?=al — % par continuité de

Vel —z)
flen0eten 1, avec f/(0) = f'(1) = 0 il vient @« = 0 et donc f est une fonction
constante.

Réciproquement si f est constante alors D(f) = 0.
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3éme méthode :

Avec l'indication écrite en question 9, on sait que pour f € C, D(f)(z) = —16u'(x)vz — x?

avec u(z) = f'(x)vVa — 22
On adonc D(f) =0<=Vz €]0,1] u/(x)=0<=3Ja R Vzre€]0,1] u(x)=c.

«
On retombe sur f’(r) = ———= avec « € R plus rapidement que dans la méthode
Vi — 12

précédente et par continuité de f" en 0 et en 1 on a a = 0.

Le noyau de D est donc 'ensemble des fonctions constantes sur [0, 1].

(b) Soit h un élément de l'espace image de D, alors il existe f € C telle que h = D(f),
et

(h[1) = (D(f)I1) = (FID(1)) = (f]0) = 0

Toute fonction h de 'image de D est orthogonale & la fonction constante égale a 1 : (h|1) = 0.

12 > Dimension d’un sous-espace propre G, associé a une valeur propre y

Soit p une valeur propre de 'endomorphisme D, G, le sous-espace propre associé.

(a) f € Gy sietseulement si f € Cet D(f) —puf =0, ce qui donne f € C et f vérifie
I'équation différentielle (£,) sur I = [0,1]. On en déduit que G, est inclus dans
E,(I), espace vectoriel des solutions de (E,) sur I =0, 1].

Par le résultat de la question 1, on sait que dimFE, (I) = 2 donc | dimG,, < 2.

yi(x) ?/2(35))'

(b) Etant données deux fonctions y; et y, appartenant a G, soit W : x — det ( ,

vi(z) ys(x)

Par définition Vo € [0,1] W (x) = yi(x)ys(z) — ¢4 (x)ya(x), donc W est de classe
C*sur [0, 1] par produit et combinaison linéaire de fonctions de classe C* sur [0, 1].

Ve e[0,1] Wiz) = wi(@)s(x) +yi(@)ys(x) — v (@)y2(z) — yi(@)ys(z)
Ve e [0,1] W'(z) = wyi(@)ys(x) — yi(x)y2()
On en déduit que
16(a* — 2)W'(x) = yu(@) (pya(z) — (162 — 8)y4(x)) — (g1 (x) — (162 — 8)y;(x)) yo ()

16(z* — 2)W'(z) = —(16z —8)W (x)
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La fonction W est donc solution sur |0, 1[ de 'équation différentielle linéaire du pre-

20 —1
2(z2 —x
On sait alors qu’il existe & € R tel que Vz €]0,1] W (x) = aexp (—A(z)) avec A
une primitive de la fonction a sur ]0, 1.

mier ordre A’ + a(x)h =0 avec a : x +— qui est continue sur |0, 1].

Il existe donc o € R tel que Va €]0,1] W (z) = B (cl)z - La
z(l—x

fonction W étant de classe C* sur [0,1], on a a = 0.

Finalement W : x — det (y,l (z) y?(a“")) est la fonction nulle.

vi(x) yo(x)

Supposons que la fonction ¥, ne soit pas la fonction nulle alors Vx € [0,1] Ja(z) € R

tel que (y} (x)) = a(x) (y?(x)) La fonction « ainsi définie est alors dérivable sur
Y1 () Ys()

un intervalle non vide inclus dans [0, 1] sur lequel la fonction y, ne s’annule pas or

y1(z) = a(z)yz(z) et yy(z) = a(z)ys(z) done o/ (x) = 0 et la fonction «v est constante.

Donc:dae R Vre[0,1] yi(zx) = aya(x).

Finalement pour tout couple (y1,y2) d’éléments de G, la famille (y;,y2) est liée.
On en déduit que G, est de dimension strictement inférieure a 2, or G, est un sous-

espace propre donc | G, est un sous-espace vectoriel de dimension 1.

13 > Elements propres de I'application A

Soit P le sous-espace vectoriel de C des restrictions des fonctions polynomiales a I'inter-
valle 1.

(a)

On sait que P est un sous-espace vectoriel stable par dérivation, donc si P est un
éléement de P alors P’ et P” sont dans P, de plus P est aussi stable par produit
et les fonctions x — 16(z? — x) et x — 16z — 8 sont dans P alors par produit et
combinaison linéaire, D(P) € P.

P est bien stable par D.

On note A I'endomorphisme de P induit par D.

e 11 € R est une valeur propre de A si et seulement si il existe f € P, f # 0, telle
que A(f) = D(f) = nf, ce quirevient & f € P, f # 0 et f est solution de I’équation
différentielle (E,,).
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On a vu en question 2(b) que les solutions non nulles de (£,) sont des fonctions
polynémiales si et seulement si 3¢ € N tel que pu = 16¢>.

On en déduit que la suite croissante (\,),en des valeurs propres de I'endomorphisme

A est | la suite (16¢%),en-

e Pour ¢ € N, on sait par la question 12(b) que le sous-espace propre associé a la
valeur propre A\, = 16¢* est de dimension égale & 1. Par le résultat de la question

q
4\
3(b) c’est I'ensemble 5 apx”, ap = w (n * q) ag avec ap € R 3.
n=0 n+ q a=n

e Avec les résultats de la question 2(b) la fonction polynomiale T, vérifiant (Eg,2)

q
)
Tq:xHZanw” avec an:w (n+q) et

— n+q \g—"n
T, est de degré q.

avec T,(0) = ap = 1 est

(c) Par le résultat de la question 11(b), on sait que I'espace image de application A est
inclus dans 'espace vectoriel des éléments h de P qui vérifient (h|1) = 0.

Réciproquement, on considére h € P une fonction polynéomiale non nulle qui vérifie
(h|1) = 0. Notons p le degré de h.

La famille (7;)qcpo,p) est une famille de polynomes échelonnée en degré, alors elle est
libre et c’est une base de I'espace vectoriel P, des fonctions polynomiales de degré
inférieur ou égal a p.

p
On en déduit qu’il existe (g, ..., q,) € RFT! tel que h = Z a,T, et alors

q=0
(h|1) = Zaq (T,[1).

1 1 1
Pour ¢ #0 (T,|1) =

m(A(T)u) - 16q2(D(Tq)|1) T (TalD)(1) = 0. O en

déduit que 0 = (h|1) = ap et h = ZaqT Z 1(gq A(T,) est dans Im(A).
q*

q=1

L’image de A est 'ensemble des fonctions h de P qui vérifient (h|1).

14 > Valeurs propres de 'endomorphisme D

On admet que pour toute fonction f de C, il existe une suite (P,)n,en d’éléments de P
qui converge uniformément vers f sur l'intervalle I = [0, 1].
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Soit g une fonction de C supposée orthogonale au sous-espace vectoriel P.
D’aprés le résultat admis ci-dessus il existe une suite (P,)nen d’éléments de P qui
converge uniformément vers f sur l'intervalle I = [0, 1].

On a donc hm lg — Pullc =0 avec ||g — Pylloc = Sup |g(x) — P,(x)|.
z€[0,1]

On veut montrer que ¢ est nulle, on va montrer que (glg) =0 :

On sait que Yn € N (g|P,), alors

Vne N (glg) = (9lg — Pu+ Pn) = (glg — Pn) + (91 Pn) = (9]lg — Pn)

Par inégalité triangulaire, les intégrales étant convergentes, on a :

0< ol < [ 2 lgta) - Pyfo)]ds

OrvneN Vrel0,1] |g(z)— P.(z)| < ||lg — Pu|eo, donc
gl g(=)
Va— a2 Vo — a2

Par croissance de I'intégrale et linéarité, puisque les intégrales convergent on obtient :

el
o Voo

Par théoréme d’encadrement puisque lirJlrn lg — Palloo = 0, on obtient :
n——+0oo

Vn e N Vz €]0,1]

|9(z) = Po(2)] < l9(2) = Pa(@)l[oo

VneN 0<(gl9) <|lg— Pl

1_131 (g9lg) = 0, ce qui donne

(9lg) =0

et par le caractére défini-positif du produit scalaire on a g = 0.

On a donc prouvé que si g € C est orthogonale & P alors g est la fonction nulle.

e On sait par le résultat de la question 13(b) que les réels A\, = 16¢* avec ¢ € N sont
des valeurs propres de A donc de D.

e Suppposons qu’il existe une autre valeur propre p de D, alors G, le sous-espace
propre de D associé & p est, par définition, inclus dans C et, par la question 10(b), G,
est orthogonal aux sous-espaces propres G, associés aux valeurs propres A\, = 16¢*
pour q € N.

G, # {0} par définition de sous-espace propre, il existe donc g € G, telle que g # 0.
On a vu en question 13(b) que G, = Vect(T,), alors g et T, sont orthogonaux pour
tout ¢ dans N :

VgeN (gT;) =0

On sait aussi que Vg € N T est de degré ¢, alors la famille (7}),en est une famille
de fonctions polynomiales échelonnées en degré qui engendre toutes les fonctions po-
lynomiales donc P = Vect(1,,q € N).
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On en déduit que g est une fonction de C qui est orthogonale au sous-espace vectoriel
P. Le résultat de la question 14(a) entraine g = 0 ce qui est absurde.

On en déduit que D n’a pas d’autres valeurs propres que les réels \, = 16¢* avec
qg € N.

Les valeurs propres de D sont exactement les réels 16¢% avec ¢ € N.

FIN DU PROBLEME



