PSI Un corrigé du D. M. n°07 1

1 Exercice : Extrait de Oral ESCP 2023

Toutes les variables aléatoires de 1'exercice sont définies sur un méme espace probabilisé ({2, o7, P).
Soit un réel ¢ > 2 et N une variable aléatoire qui suit une loi de Poisson de parametre q.

1> On pose X =¢".
Par théoreme du transfert, X™ = ¢
(¢""P(N = n)),en est sommable.

MmN est d’espérance finie si et seulement si la famille

n

+oo
VneN ¢"P(N =n)= e_qqnmq—' > 0, alors Zq”mP(N =n) € [0, +00] et

n
n=0
+0o +00 qnm+n
E ¢"P(N =n) = E e 1—
n:
+oo ( m—l—l)n
R q
= e '
n:
n=0
_ m—+1
— e el

+o0
Zq"mP(N =n) = "D < 400
n=0

+oo
On en déduit que X™ est d’espérance finie avec E(X™) = Z ¢"P(N =n) = 14" "D,
n=0

On pose co=1et Vne N* ¢, =

o1
k=

— gk’
11 q

2 > Notons R le rayon de convergence R de la série entiere Y ¢,x™.
Par hypothese ¢ > 2 donc Vk € N* ¢ > 2et 1 — ¢* # 0, alors Vn € N* ¢, # 0 et

lim ¢" = +o0, alors
n—-+00

|Cnia] 1
= — 0
el [1 =g F oo

Par le critere de d’Alembert, R = +o0.

On pose alors Vz €| — R, R[ f(x) = Z cpa™.

3> Vxel—R, Rl qr€]— R,R|puisque R = +o0.
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On en déduit que pour x €] — R, R|

—+00

(I—xz)f(x) = (1 —:E)chx”

n=0

—+o00 “+o00
= 5 cnx"—g et

par le changement d’indice k =n + 1

+oo +oo

n=0 k=1
+oo
= CO + Z(Cn - Cn_l)xn
n=1
1
On remarque que Vn € N* ¢, = ¢n—1 donc
1 q" n
Cp — Cp—1 = Cp—1 <1_qn _].> =Cp X 1—(]” = Cpq

Ce qui donne

L—a)f(z)=cot+ > _cag"z" = calqz)" = f(qz)

Onabien: Ve €] - R, R f(gx)=(1—2x)f(x)

4 > Soit m € N, avec I’égalité vue précédemment on a :
“+oo
3 g = f(gm ) = (1- ™) (™)
n=0
fla)=flax1)=(1-1)f(1)=0.

Soit m € N* tel que f(¢™) = 0.
Alors f(q™*!) = f(g x q™) = (1 —¢™)f(¢™) = 0.

+oo
Par récurrence on a obtenu : Vm € N f(¢™™!) =0, donc | Vm € N Z cng" MY = 0.
n=0

5> ec¢y=1doncOlcg =1.

et g =2 ,donc1—qg< —1let|l—gq|>1,cequientraine |1l¢;| < 1.

1!01 = 1

Hl—qk H(l—q)(l—l—q—}-..._’_qk—l)
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q > 2 donc on peut écrire Vk € [I,n —1] 1+qg+---+¢" 1 >k >0 et donc

k 1
<1let ient d i <1.d duit
T gt r g S et on vient de voir que 1—q‘\ , donc par produi
k
VEk € [1,n] ‘1 ~| < 1 et finalement |nlc,| < 1.
—q
1 nlc 1
Onadoncl— =<1 <14 =,
n a donc 5 < + 5 < +2

|
On en déduit que Yn € N P(N = n) (1 + n;") > 0.

nlc

nlec
© = e lc,q", alors la série Z P(N = n)Tn converge absolument

evneN P(N =n)

+oo _
nle, e

(question 2) avec ZP(N =n) 5 = Tf(Q) = 0.
n=0

+oo | +00
On en déduit par linéarité que ZP(N =n) <1 + n.cn> = ZP(N =n)=1.

n=0

Les deux points précédents permettent de justifier que 'on définit ainsi la loi de probabilité
d’une variable aléatoire U a valeurs dans N.

6 > On pose Y = ¢V. Puisque U(2) C N, on a Y (2) C|0, +oc[, de méme pour X = ¢~ on a
X(Q2) C]O, +o0.

lére méthode :

Plutot que de travailler sur les lois de X et de'Y qui n’ont jamais été demandées précédemment,
on passe par les lois de U et N qui, elles, sont connues.

InY In X Int
PuisqueY:qUetX:qN,ona:U:ln—etN:n—,alorsavecf:tr%L,ona

ngq Inq Ingq
U=f(Y)et N=f(X).

On en déduit que si X et Y suivent la méme loi, alors N et U suivent la méme loi mais

3—2q

HUZQZHNZDQ+%):HNZn(HEH%5>:HN:nx

donc P(U =1) #P(N =1).

Les variables aléatoires X et Y ne suivent pas la méme loi.

2nde méthode :

N(Q)=Net X =¢" alors X(Q) = {¢", n e N}
Y =q" et U(Q) C Ndonc Y(Q) C{¢", ne€N}

Si X et Y suivent la méme loi alors on doit avoir en particulier P(X = ¢) = P(Y = q).
Or par bijection de la fonction t + ¢¢, on a : P(X = ¢q) = P(¢" =¢q) = P 1
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P(Y =q)=P(¢" =¢q) =PU=1).
On termine comme précdemment avec P(N = 1) # P(U = 1).

+oo
7 > On a vu que pour tout m € N*, E(X™) = Zq”mP(N =n) =",
n=0

Puisque Vn e N (¢"™)"P(U =n) >0, on a:

+oo +oo
nle
"mP(U =n) = "mP(N =n) 1+ —
DR =) = SR (1452

+oo +oo n . nm
= Y P(N =)+ et
n=0 n=0

_g to©
eq

_ m = n(m+1)
= E(X™)+ 5 chq

n=0

et par le résultat de la question 4
+o00
> q"PU=n) = E(X") < +o0
n=0

Alors par le théoreme du transfert, Y™ est d’espérance finie avec

E(Y™) =Y ¢"P({U =n)=E(X")

On a donc Vm € N* E(X™) =E(Y™).

Deux variables aléatoires peuvent avoir les mémes moments d’ordre m pour tout m € N*
sans avoir méme loi.

2 Probleme : Extrait de MinesPonts MP 2023

Préliminaires

Dans tout le sujet, 'intervalle | — 1, +00[ de R est appelé I et o et f sont les fonctions de R dans
R, définies par :

+o0 l’k
ol@) =) 75
k=1
et

/2
fla) = [ sty at
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Calcul de o(1)

1>

lere méthode : sans les séries entieres
. |k . ) .
o Vr ¢ [-1,1] lim T = +o00 par croissances comparées alors Vo ¢ [—1,1], la série
k—4o00

définissant o est grossierement divergente.
k

x
On pouvait aussi appliquer la régle de d’Alembert avec uy, = 72 pour obtenir cette divergence

grossiere.

Ik

k?

k
T . . : 1
= u < — et on sait que la série de Riemann E e est convergente

o Vx € [—1,1] 2 S

k
. . , - X
puisque 2 > 1, alors par comparaison la série Z 72 est absolument convergente.

Le domaine de définition de la fonction o est donc [—1,1].

2nde méthode : avec les séries entieres

; . s . 1
On remarque que o est la somme d’une série entiere de coefficients a; = =k
La série entiere > azz* a méme rayon de convergence que > kapx®, qui a méme rayon fde
convergence que Y k(kay,)z".

On en déduit que la série entiere > azz* a le méme rayon de convergence que Y z*.

>~ arz® est donc de rayon de convergence R = 1, alors on sait que Vz €] — R, R[ Y aza”
converge absolument et si |z| > R alors > ay2* diverge grossi¢rement.

1 zk
De plus la série de Riemann Z =) est convergente (2 > 1), alors la série Z 73 converge
absolument pour x =1 et z = —1.

k
x
On en déduit que la série Z 7z converge si, et seulement si, z € [—1, 1].

Le domaine de définition de la fonction o est donc [—1, 1].

k
x
e Pour k € N*, fi, : x+— e est continue sur le segment [—1,1].

1 1
Vo € [=L1] [fu(@)] < 13, alors [ fulloo < o5 avee [ fill = %up]!fk(w)l-
se[—1,1
On en déduit que la série a termes positifs Z | felloo €St convergente.
La série de fonctions Z fr étant normalement convergente sur [—1,1], elle est aussi uni-

formément convergente et par théoreme de continuité

La fonction o est continue sur son domaine de définition [—1, 1].
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sin(nt)

2> e Pour n € N* et (o, 3) € R? les fonctions u : ¢ — at? + Bt et v : t sont de

classe C! sur le segment [0, ], alors par intégration par parties
g g

/0 ' (at® + Bt) cos(nt)dt = /0 ' u(t)o' (t)dt

n

/7r (at® + Bt) cos(nt)dt = ! /W(Qozt + B) sin(nt)dt
0 0

cos(nt)
n

Les fonctions u : t — 2at + S et v : t — sont de classe C! sur le segment [0, 7],

alors par intégration par parties :

n

/07T (at® + Bt) cos(nt)dt = ! /OF(Qat + B) sin(nt)dt = 1 /Owu(t)v'(t)dt

= (O] - = 7 Wl
_ ! ((—1)”(20m+6) _ é) _ Q_O‘/ﬂ cos(nt)dt

n? n? n

/07r (at® + Bt) cos(nt)dt = (=)"Qan+5) =8 _ 20 {MT

1 T 1
En prenant = —1 et o = 5. on obtient alors ¥n € N*, / (at® 4 Bt) cos(nt)dt = "
T 0

e lere méthode : Soit ¢ €]0, 7], alors pour n € N* :

Z cos(kt) = Z Re (™)

= Re (Z(e“)k>

k=1
Or e # 1 donc
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n ] — eint
cos(kt) = Re (e” ¢ )

.. [(nt
gint/2 —278in 5

= Relet x —— x
eit/2 —2isin(t/2)

sin(nt/2) cos((n +1)/2)
sin(t/2)
Or 2sin(a) cos(b) = sin(a + b) + sin(a — b) donc

. (Qn +1 ) . ( t)
n sin t)] +sin| ——=
2 2
g cos(kt) =
k=1

t
2sin | =

: ((2n + 1)t)
n sin ( ———— .
Finalement | Vn € N*, Z cos(kt) = -

t 2
k=1 2sin [ -
sin (2)

2nde méthode : Par récurrence sur n, on peut aussi montrer 1’égalité précédente.

3> e Soit x > 0. Si ¢ est une application de classe C! de [0, 7] dans R, alors par intégration
, — cos(xt)
par partie avec v : { — ——— =, 0on a :
x

/07r o(t) sin(xt)dt = /07r ()’ (t)dt_

/7r o(t) sin(xt)dt = 2(0) = () cos(n) + = /7r ¢'(t) cos(xt)dt

T i

Par inégalité triangulaire avec | cos(y)| < 1 pour tout y € R, on a :

/Oﬂgo(t)sin(xt)dt‘ < |£(0)] + lp(m)] +§/0”’(p,(t)’dt

0<
T

™

Par théoreme d’encadrement on obtient alors lilil o(t)sin(xt)dt =0
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1
e D’apres les résultats de la question 2, on peut écrire avec o = o et f=—-1:
i

+oo
o(1) :Z/ (at® + Bt) cos(kt)dt = lim Z/ (at? + Bt) cos(kt)dt

n—-+00
o(1) = lm_ ( /0 ﬂ(ozt2+ﬁt)icos(kt)dt>
k=1

- sm(( 5
= lim (at? + Bt) —

1
n o0 t
e Jo QSin(—) 2
2
T at? t 2 1)t 1 (7
= lim/ ot” + 5 sin<(n+ )>dt —5/ at® + Btdt
0 0

n—s+oo t 2
2 si —
o)

15} sit=0

2n + 1)t>
dt

Soit ¢ : t € [0, 7] ot + [t sit£0 % est de classe C' sur ]0, 7] par quotient de

t
2sin | =

t
fonctions de classe C! dont le dénominateur ne s’annule pas. De plus sin (5) ¥ alors

DO | =+

o(t) ~at+ f. On en déduit que ¢ est continue sur [0, 7.

2(2at + B) sin(t/2) — (at? + Bt) cos(t/2)

4 sin? (E)
2

En utilisant des développements limités a 1'ordre 2 au voisinage de 0 de sinus et cosinus, on
obtient

vVt €lo, ] ¢(t) =

(1) = (2at? + 5t)t2— at? — Bt + o(t?)
QZ + 0(t2)

On en déduit que lim ¢'(t) =2a € R.
—

¢ est continue sur le segment [0, 7], de classe C' sur |0, 7] et ¢’ admet une limite finie en 0
alors par le théoreme de la limite de la dérivée on obtient que ¢ est de classe C! sur [0, 7].

Par le résultat démontré en début de question 3, on en déduit que

™

2 1
lim ©(t) sin ( n;— t) dt =0

n—-+00 0

I 1[at®  pt*]" 1
et finalement o(1) = ——/ at® + ftdt = —= @ pE avec « = — et f = —1.
2 J, 23 " 2], 2
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ce qui donne : o(l) = —

Equivalents

. . . . ™ . .-
4 > e La fonction sinus est continue sur 'intervalle ] 0, —] a valeurs strictement positives, donc

T
Ve € Rt (sin(t))” est continue sur }O, 5} et est a valeurs positives.

[ME]

On en déduit que / (sin(t))®dt converge si et seulement si la fonction ¢ — (sin(t))” est
0

intégrable sur ]0, g] .

On sait que sin(t) b alors pour z € R (sin(¢))” -~ t*, et d’apres les intégrales de
- —

1
Riemann on sait que la fonction t — est intégrable en 0 si et seulement si —z < 1.

Par comparaison la fonction positive ¢ — (sin(¢))” est intégrable en 0 (et donc sur ]O, g} ),

si et seulement si x > —1.

On en déduit que le domaine de définition de f est I =] — 1, 4o00].

Sizel,z+1eletx+2€cl.

flx+2) = /2 sin”*™(t) x sin(t)dt = /2 u(t) x v'(t)dt avec u : t — (sint)™" et
0 0

T
v : t — —cos(t). Ces fonctions u et v sont de classe C' sur lintervalle ]0,5] avec

PH(l) u(t)v(t) = 0 car  + 1 > 0. Par intégration par parties, on a donc :
H

fla+2) = auwli - [ Sl
= 0—u (g) v <g) + /Og(x + 1) cos(t) sin®(t) x cos(t)dt
= (x+1) /OS sin”(t) x cos?(t)dt

jus

= (z+1) /02 sin”(t) (1 — sin®(¢)) dt

et par linéarité f(r +2) = (z+1)f(z) — (x + 1) f(x + 2).

On a donc obtenu : Ve € I, (z+1)f(z) = (x + 2) f(x + 2) (1)
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T
1],—] R
><02 —

. Vérifions les hypotheéses du théoréme de classe C? :
(x,t) —  sin”(t)

51> Soit g:
e On a vu en question 4 que, pour tout x € I, la fonction ¢ — g(z,t) est intégrable sur ] 0, g} :

e Pour tout ¢t € ]0, g], la fonction z — g(x,t) est de classe C? sur I avec

@( t) = In(sint) x (xIn(sint))) et @( t) = In*(sint) x (sint)”
5, (4ot = In(s exp (zIn(s et o5(%,t) =In’(s S :

o 2
e Vz > —1, les fonctions ¢ +— —g(:c,t) et t — —g(x,t) sont continues par morceaux sur

ox 0x?

]O, g} par produit de fonctions continues.

3 2
e In(sint) = In (t - % + 0(t3)) = In(t) 4+ In (1 - % + o(tQ)) = In(t) + o(In(t)), donc avec
ce qui a été fait en question 4 on a :

Jg -
%(x, t) -~ t* In(t)

S r—1
x > —1 alors il existe a tel que x > a > —1, (par exemple o = T), et donc

t* In(t)
tOé

= t""“In(t) v 0 par croissances comparées puisque x — « > 0.
t—

On en déduit que t* In(¢) = o(t*), or pour @ > —1 la fonction ¢ — t* est intégrable en 0
—

0 T
donc par comparaison la fonction ¢ +— a—g(x, t) est intégrable en 0 et donc sur }0, 5]
x

e Hypothese de domination sur tout segment :

Soit [a,b] C I. Vx € [a,b] Vte€ ]0, g] 0 < sin(t) < 1, alors 0 < sin”(t) < sin®(¢) et donc

2

Vo€ la,b] Vte }o, g} 0< %(I,t) < In2(sin(t)) x sin®(t)

m
Notons ¢ : t ~ In®*(sin(t)) x sin®(t), cette fonction est continue sur ]0, 5] et comme

précédemment on obtient : () ~ t* x In*(t) = o(t*) avec a > o > —1, donc par double

™
comparaison la fonction ¢ est intégrable en 0 et finalement sur }0, 5]

Par théoréme de la classe C? pour une intégrale & parametre, on en déduit que la fonction
f est de classe C? sur I avec pour x € I :

%ag 3

flx) = i g(x,t)dt = /02 In(sin(t)) sin®(¢)dt < 0

%a2 2
fi(z) = /0 a—x‘z(:p,t)dt: / In?(sin(t)) sin®(£)dt > 0

0

f est donc de classe C?, décroissante et convexe sur /.
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6> eOnavu: (z+1)f(z) = (z+2)f(x+2), et f est continue sur I donc en 1 et

uy

lim (2 +2)f(r +2) = f(1) = /0 sin(t)dt = 1

z——1

1
On en déduit que f(z) N TET
-1z

7 > Avec la relation (x + 1) f(z) = (z + 2) f(z + 2), on obtient :
YVneN (n+1)f(n)fin+1)=mn+2)f(n+1)f(n+2)

On en déduit que la suite ((n + 1) f(n)f(n + 1)), cn est constante, donc

™

VneN (0 Df)f(n+1) = fO50) = [T1arxa =7

™

Pour tout entier naturel n, f(n)f(n+1) = St )
n

On sait que Vn € N f(n+2) < f(n+1) < f(n) et f(n) >0, donc Zi; S f(}l(:)l)

<1

et par théoreme d’encadrement f(n + 1) ~ f(n), ce qui donne
n—-—+0o0

T
F) o~ Ao,

e On sait que Vz € [0,+00] 0 < |z] <2 < |z] + 1 alors par décroissance de f :

flz]) < flz) < f(lz] +1)

|z] € Net lim |z] =400 donc

T—r—+00

FUe)+1) o F ) 57

Par théoreme d’encadrement, puisque et |z] ~ x, on a alors
T——+00

f(fl?)go\/%go\/g

8 > On sait que la fonction est positive, décroissante, convexe sur |—1, +oo[ avec des équivalents
aux bornes de I qui permettent d’avoir les limites en ces bornes. ce qui donne :
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‘r~.t|Pl

fi= x'—>J sin(#)" df

Développement en série entiere

/2
Si n € N, on note D,, I'intégrale généralisée / (In(sin(t)))™ dt.
0

91> e Pour n € N la fonction f, : ¢ — (In(sin(¢)))™ est continue sur }0, g] par composée

puisque Vt € ]0, g] sin(t) €]0, 1].

On a déja vu que In(sint) o In(t), donc f,(t) o In"(¢), et alors par croissances com-
— —

1
parées Pr% Vifa(t) = Pr% VtIn"(t) = 0. On a donc f,(t) =0 <—) D’apres les intégrales
— —

Vit

de Riemann la fonction ¢ — % est intégrable en 0 donc par comparaison la fonction f,, est

intégrable en 0.

Finalement Vn € N, I'intégrale généralisée D,, est convergente.
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. T . .
e variable affine t = 5 U on a immédiatement

D, = /Oﬂ/z In(sin(t))dt = — /OW/Q(—l) In <sin <g - u)) du = /og In(cos(u))du

10 > D’apres les résultat

f'(0) =

s de la question 5, on sait que

/ “In(sin(t))dt = Dy et f/(1) = / " sin(t) In(sin())dt

0 0

Avec le résultat de la question 9 et par linéarité de l'intégrale avec Ina + Inb = In(ab), on

peut écrire

et donc

D,

2D, — / " L (sin() cos(t))d

w/2 :
1/ In (s1n(2t)>dt
2 J, 2

1 /2 1 w/2
—/ In(sin(2t))dt — —/ In(2)dt
2 Jo 2 Jo

mln2 1

w/2
1 +§/0 In(sin(2t))dt

en effectuant le changement de variable u = 2t

7ln2 1

+- /0 " n(sin(u))du

4 4

mln2 1 1 [
. D+ [ Insi
T T 1+4/7T/2 n(sin u)du

T
en effectuant le changement de variable u = = + 5

Ce qui donne f'(0) = Dy =

7r1112+D1+1/’r/21 ( ( —|—7T>)d
= — — 4+ - n(sin(z + = x
4 4 T4, 2

rn2 Dy 1 [T/?
= - =

T T —1—4/0 n (cos(z)) dx
B 7T1n2+D1
B 4 2

—mIn(2)

2

/2 /2
(1) = / sin(t) In(sin(¢))dt = / —¢'(t) In(sin(t)dt avec ¢ : t — cos(t), qui est une
0 0

bijection décroissante

de classe C' de }0, g] sur [0, 1[.
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us

De plus Vt € }0, g] , sin(t) = /1 — cos?(t), alors f/(1) = — /2 ¢'(t) In ( 1- <p2(t)) dt.

0

La fonction g : v — In (\/1 — u2) étant continue sur [0, 1], le changement de variable
u = p(t) donne :

ry = - / * (gt

1
= 5/ In(1 —u) + In(1 + u)du
0

On sait qu’'une primitive de la fonction x — In(x) sur |0, +o0o[ est  — zIn(x) — z, alors

F) = [0 +wn(l+wu) — (1+u) — (1 —u)ln(l —u) + (1 —u),

N | —

(1) = In(2) -1

2nde méthode :

() = /ﬂ/Q sin(t) In(sin(¢))dt = /ﬂ/Q o' (t)v(t)dt avec u : t — 1 —cos(t) et v : t — In(sint)
qui sont de classe C! sur }O, —} et
u(t)v(t) = (1 — cos(t)) In(sin(t)) oty In(t)

donc 11_1)15 u(t)v(t) = 0.

Si on prend u : t — —cos(t), la limite en 0 de wv n’est pas finie, et il faut faire une
intégration par parties sur [a, 5] puis passer a la limite quand a — 0.
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Par intégration par parties, on obtient :

/2
fa>=[wmwm”—A u(tp (£)dt

= — /W/Q(l — cos(t))cos(t) dt

sin(t)
= — /OF/Z(l — cos(t)) x % x sin(t)dt

avec le changement de variable u = cos(t)

du

oy = - [a-ws
- _/Ollj—udu

1
1
= —/1— du
0 1+U

= —fu—In|1+ull}

1 —u?

F(1) = m@)-1
11 > Pour n € N, la fonction ¢ — t"e™" est continue sur [0, 400 et par croissances coparées
1 1

the™t = o (t_Q) D’apres les intégrales de Riemann, la fonction ¢ — — est intégrable en

+o0o t2

+o00 puisque 2 > 1, alors par comparaison la fonction t +— t"e™*

est intégrable en 400 et

“+o0o
I'intégrale I,, = / t"e~'dt converge.
0

Les fonctions u : t — t" et v : t — —e~" sont de classe C* sur [0, +oo( avec par croissances
comparées tliin u(t)v(t) = 0, alors par intégration par parties :
— 100

I, = /+Oou(t)v'(t)dt
+oo
:hMM@H“—A o (B)o()dt

+oo
= / nt" e tdt
0

I, = nl,

“+o00
Iy = / e tdt = [—e’t}goo = 1= 0! Les deux suites (I,,)nen €t (n!)nen vérifient la méme
0

relation de récurrence linéaire d’ordre 1 et ont méme premier terme, donc| Vn € N I, = nl.
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12 > Soit n € N*, la fonction ¢ : t — —In(sin(¢)) est dec lasse C! sur ]0, g} avec
cos(t
o) =

sin(t)
[0, +o0l.

T
< 0, alors ¢ réalise une bijection strictement décroissante de ]0, 5] sur

Par le changement de variable u = ¢(t) <=t = ¢! (u) = arcsin(e™*), on a alors
/2
(—1)"D, — / (= In(sin(t)))"dt
0

= [P (urdu

+o0 e U
— —— xu"du
0 V1 —e2u
+o0 n

u

———du

Avec le résultat de la question 11, on obtient :

+o0 1 B
(-=1)"D,, —n! = U ——=—=—e")du
0 62u —-1

(_1)nDn =

+oo n,—u
u-e < w >
— 2u
= —_— | — € —1 du
0 Ve —1
+o00 ute U 1

X du
0 1/62u_1 eu+,/€2u_1

Yu >0 e*++ve2 —1>1ete —12>2u >0 par inégalité de convexité, donc

n,—u

u-e

2u

du

+o0
0< (-1)"D, —n! < /
0

+o0o
Et donc 0 < (—1)"D,, — n < / u" e "du, ce qui donne 0 < (—=1)"D,, —n! < (n— 1)\
0

On obtient : (—=1)"D,, —n! = O((n — 1)!) = o(n!) et donc D,, ~ (—=1)"nl.

7T/2 +OO n
13> Veel-1,1] f(x)= / exp(xIn(sin(t)))dt, or Vu e R e* = Z u—‘, donc
0 n!

n=0

/2 X 1n" (sin
f(x) :/0 Z—l ( (t))x”dt

n!
n=0

In" (sin(t)) o

Posons f, : t — ;
n!

e Vn € N f, est intégrable sur }O, g} d’apres le résultat de la question 9.
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+oo
e La série de fonctions Y f,, converge simplement sur ]0, g] et S:t— Z fn(t) = (sin(t))”

n=0

T
est continue sur ]0, 5] .

e Avec le résultat de la question 12, on a :

2 "2 | In(sin(t))]" 1D
meN [ in@= [ Pl gy = CO P
0 0 :

w/2
alors par comparaison puisque x €] — 1, 1], la série Z / | fn(t)|dt converge.
0

Par théoreme d’intégration terme a terme sur un intervalle, on sait que

/2 400 400 /2 2D,
o= [ poa=3 [ =3

On a bien obtenu que f est développable en série entiere sur | — 1, 1[.

n! n—-+oo

]



