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1 Exercice : Extrait de Oral ESCP 2023

Toutes les variables aléatoires de l’exercice sont définies sur un même espace probabilisé (Ω,A ,P).
Soit un réel q > 2 et N une variable aléatoire qui suit une loi de Poisson de paramètre q.

1 . On pose X = qN .
Par théorème du transfert, Xm = qmN est d’espérance finie si et seulement si la famille
(qnmP(N = n))n∈N est sommable.

∀n ∈ N qnmP(N = n) = e−qqnm
qn

n!
> 0, alors

+∞∑
n=0

qnmP(N = n) ∈ [0,+∞] et

+∞∑
n=0

qnmP(N = n) =
+∞∑
n=0

e−q
qnm+n

n!

= e−q
+∞∑
n=0

(qm+1)n

n!

= e−qeq
m+1

+∞∑
n=0

qnmP(N = n) = eq(q
m−1) < +∞

On en déduit que Xm est d’espérance finie avec E(Xm) =
+∞∑
n=0

qnmP(N = n) = eq(q
m−1).

On pose c0 = 1 et ∀n ∈ N∗ cn =
n∏
k=1

1

1− qk
.

2 . Notons R le rayon de convergence R de la série entière
∑
cnx

n.
Par hypothèse q > 2 donc ∀k ∈ N∗ qk > 2 et 1 − qk 6= 0, alors ∀n ∈ N∗ cn 6= 0 et
lim

n→+∞
qn = +∞, alors

|cn+1|
|cn|

=
1

|1− qn+1|
−→
n→+∞

0

Par le critère de d’Alembert, R = +∞.

On pose alors ∀x ∈]−R,R[ f(x) =
+∞∑
n=0

cnx
n.

3 . ∀x ∈]−R,R[ qx ∈]−R,R[ puisque R = +∞.
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On en déduit que pour x ∈]−R,R[

(1− x)f(x) = (1− x)
+∞∑
n=0

cnx
n

=
+∞∑
n=0

cnx
n −

+∞∑
n=0

cnx
n+1

par le changement d’indice k = n+ 1

=
+∞∑
n=0

cnx
n −

+∞∑
k=1

ck−1x
k

= c0 +
+∞∑
n=1

(cn − cn−1)xn

On remarque que ∀n ∈ N∗ cn =
1

1− qn
cn−1 donc

cn − cn−1 = cn−1

(
1

1− qn
− 1

)
= cn−1 ×

qn

1− qn
= cnq

n

Ce qui donne

(1− x)f(x) = c0 +
+∞∑
n=1

cnq
nxn =

+∞∑
n=0

cn(qx)n = f(qx)

On a bien : ∀x ∈]−R,R[ f(qx) = (1− x)f(x)

4 . Soit m ∈ N, avec l’égalité vue précédemment on a :

+∞∑
n=0

cnq
n(m+1) = f(qm+1) = (1− qm)f(qm)

f(q) = f(q × 1) = (1− 1)f(1) = 0.
Soit m ∈ N∗ tel que f(qm) = 0.
Alors f(qm+1) = f(q × qm) = (1− qm)f(qm) = 0.

Par récurrence on a obtenu : ∀m ∈ N f(qm+1) = 0, donc ∀m ∈ N
+∞∑
n=0

cnq
n(m+1) = 0.

5 . • c0 = 1 donc 0!c0 = 1.

1!c1 =
1

1− q
et q > 2, donc 1− q 6 −1 et |1− q| > 1, ce qui entraine |1!c1| 6 1.

∀n > 2 n!cn =
n∏
k=1

k

1− qk
=

n∏
k=1

k

(1− q)(1 + q + · · ·+ qk−1)
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q > 2 donc on peut écrire ∀k ∈ [[1, n− 1]] 1 + q + · · ·+ qk−1 > k > 0 et donc

0 <
k

1 + q + · · ·+ qk−1
6 1 et on vient de voir que

∣∣∣∣ 1

1− q

∣∣∣∣ 6 1, donc par produit

∀k ∈ [[1, n]]

∣∣∣∣ k

1− qk

∣∣∣∣ 6 1 et finalement |n!cn| 6 1.

On a donc 1− 1

2
6 1 +

n!cn
2

6 1 +
1

2
.

On en déduit que ∀n ∈ N P(N = n)

(
1 +

n!cn
2

)
> 0.

• ∀n ∈ N P(N = n)
n!cn

2
= e−qcnq

n, alors la série
∑

P(N = n)
n!cn

2
converge absolument

(question 2) avec
+∞∑
n=0

P(N = n)
n!cn

2
=
e−q

2
f(q) = 0.

On en déduit par linéarité que
+∞∑
n=0

P(N = n)

(
1 +

n!cn
2

)
=

+∞∑
n=0

P(N = n) = 1.

Les deux points précédents permettent de justifier que l’on définit ainsi la loi de probabilité
d’une variable aléatoire U à valeurs dans N.

6 . On pose Y = qU . Puisque U(Ω) ⊂ N, on a Y (Ω) ⊂]0,+∞[, de même pour X = qN on a
X(Ω) ⊂]0,+∞[.

1ère méthode :

Plutôt que de travailler sur les lois de X et de Y qui n’ont jamais été demandées précédemment,
on passe par les lois de U et N qui, elles, sont connues.

Puisque Y = qU et X = qN , on a : U =
lnY

ln q
et N =

lnX

ln q
, alors avec f : t 7→ ln t

ln q
, on a

U = f(Y ) et N = f(X).

On en déduit que si X et Y suivent la même loi, alors N et U suivent la même loi mais

P(U = 1) = P(N = 1)
(

1 +
c1
2

)
= P(N = 1)

(
1 +

1

2(1− q)

)
= P(N = 1)× 3− 2q

2− 2q

donc P(U = 1) 6= P(N = 1).

Les variables aléatoires X et Y ne suivent pas la même loi.

2nde méthode :

N(Ω) = N et X = qN alors X(Ω) = {qn, n ∈ N}.
Y = qU et U(Ω) ⊂ N donc Y (Ω) ⊂ {qn, n ∈ N}.

Si X et Y suivent la même loi alors on doit avoir en particulier P(X = q) = P(Y = q).
Or par bijection de la fonction t 7→ qt, on a : P(X = q) = P(qN = q) = P(N = 1) et
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P(Y = q) = P(qU = q) = P(U = 1).
On termine comme précdemment avec P(N = 1) 6= P(U = 1).

7 . On a vu que pour tout m ∈ N∗, E(Xm) =
+∞∑
n=0

qnmP(N = n) = eq(q
m−1).

Puisque ∀n ∈ N (qm)n P(U = n) > 0, on a :

+∞∑
n=0

qnmP(U = n) =
+∞∑
n=0

qnmP(N = n)

(
1 +

n!cn
2

)

=
+∞∑
n=0

qnmP(N = n) +
+∞∑
n=0

e−q
qnqnmcn

2

= E(Xm) +
e−q

2

+∞∑
n=0

cnq
n(m+1)

et par le résultat de la question 4

+∞∑
n=0

qnmP(U = n) = E(Xm) < +∞

Alors par le théorème du transfert, Y m est d’espérance finie avec

E(Y m) =
+∞∑
n=0

qnmP(U = n) = E(Xm)

On a donc ∀m ∈ N∗ E(Xm) = E(Y m).

Deux variables aléatoires peuvent avoir les mêmes moments d’ordre m pour tout m ∈ N∗

sans avoir même loi.

2 Problème : Extrait de MinesPonts MP 2023

Préliminaires

Dans tout le sujet, l’intervalle ]− 1,+∞[ de R est appelé I et σ et f sont les fonctions de R dans
R, définies par :

σ(x) =
+∞∑
k=1

xk

k2

et

f(x) =

∫ π/2

0

(sin(t))x dt
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Calcul de σ(1)

1 . 1ère méthode : sans les séries entières

• ∀x /∈ [−1, 1] lim
k→+∞

|x|k

k2
= +∞ par croissances comparées alors ∀x /∈ [−1, 1], la série

définissant σ est grossièrement divergente.

On pouvait aussi appliquer la règle de d’Alembert avec uk =
xk

k2
pour obtenir cette divergence

grossière.

• ∀x ∈ [−1, 1]

∣∣∣∣xkk2
∣∣∣∣ =
|x|k

k2
6

1

k2
et on sait que la série de Riemann

∑ 1

k2
est convergente

puisque 2 > 1, alors par comparaison la série
∑ xk

k2
est absolument convergente.

Le domaine de définition de la fonction σ est donc [−1, 1].

2nde méthode : avec les séries entières

On remarque que σ est la somme d’une série entière de coefficients ak =
1

k2
.

La série entière
∑
akx

k a même rayon de convergence que
∑
kakx

k, qui a même rayon fde
convergence que

∑
k(kak)x

k.
On en déduit que la série entière

∑
akx

k a le même rayon de convergence que
∑
xk.∑

akx
k est donc de rayon de convergence R = 1, alors on sait que ∀x ∈] − R,R[

∑
akx

k

converge absolument et si |x| > R alors
∑
akx

k diverge grossièrement.

De plus la série de Riemann
∑ 1

k2
est convergente (2 > 1), alors la série

∑ xk

k2
converge

absolument pour x = 1 et x = −1.

On en déduit que la série
∑ xk

k2
converge si, et seulement si, x ∈ [−1, 1].

Le domaine de définition de la fonction σ est donc [−1, 1].

• Pour k ∈ N∗, fk : x 7→ xk

k2
est continue sur le segment [−1, 1].

∀x ∈ [−1, 1] |fk(x)| 6 1

k2
, alors ‖fk‖∞ 6

1

k2
avec ‖fk‖∞ = Sup

s∈[−1,1]
|fk(x)|.

On en déduit que la série à termes positifs
∑
‖fk‖∞ est convergente.

La série de fonctions
∑

fk étant normalement convergente sur [−1, 1], elle est aussi uni-

formément convergente et par théorème de continuité

La fonction σ est continue sur son domaine de définition [−1, 1].
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2 . • Pour n ∈ N∗ et (α, β) ∈ R2 les fonctions u : t 7→ αt2 + βt et v : t 7→ sin(nt)

n
sont de

classe C1 sur le segment [0, π], alors par intégration par parties∫ π

0

(
αt2 + βt

)
cos(nt)dt =

∫ π

0

u(t)v′(t)dt

= [u(t)v(t)]π0 −
∫ π

0

u′(t)v(t)dt

∫ π

0

(
αt2 + βt

)
cos(nt)dt = − 1

n

∫ π

0

(2αt+ β) sin(nt)dt

Les fonctions u : t 7→ 2αt + β et v : t 7→ cos(nt)

n
sont de classe C1 sur le segment [0, π],

alors par intégration par parties :∫ π

0

(
αt2 + βt

)
cos(nt)dt = − 1

n

∫ π

0

(2αt+ β) sin(nt)dt =
1

n

∫ π

0

u(t)v′(t)dt

=
1

n
[u(t)v(t)]π0 −

1

n

∫ π
0
u′(t)v(t)dt

=
1

n

(
(−1)n(2απ + β)

n
− β

n

)
− 2α

n2

∫ π

0

cos(nt)dt

∫ π

0

(
αt2 + βt

)
cos(nt)dt =

(−1)n(2απ + β)− β
n2

− 2α

n2

[
sin(nt)

n

]π
0

=
(−1)n(2απ + β)− β

n2

En prenant β = −1 et α =
1

2π
on obtient alors ∀n ∈ N∗,

∫ π

0

(
αt2 + βt

)
cos(nt)dt =

1

n2

• 1ère méthode : Soit t ∈ ]0, π], alors pour n ∈ N∗ :

n∑
k=1

cos(kt) =
n∑
k=1

Re
(
eikt
)

= Re

(
n∑
k=1

(eit)k

)
Or eit 6= 1 donc
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n∑
k=1

cos(kt) = Re

(
eit

1− eint

1− eit

)

= Re

eit × eint/2

eit/2
×
−2i sin

(
nt

2

)
−2i sin(t/2)


= Re

(
ei(n+1)t/2 sin(nt/2)

sin(t/2)

)

=
sin(nt/2) cos((n+ 1)/2)

sin(t/2)

Or 2 sin(a) cos(b) = sin(a+ b) + sin(a− b) donc

n∑
k=1

cos(kt) =

sin

(
2n+ 1

2
t

)
+ sin

(
− t

2

)
2 sin

(
t

2

)

Finalement ∀n ∈ N∗,
n∑
k=1

cos(kt) =

sin

(
(2n+ 1)t

2

)
2 sin

(
t

2

) − 1

2

2nde méthode : Par récurrence sur n, on peut aussi montrer l’égalité précédente.

3 . • Soit x > 0. Si ϕ est une application de classe C1 de [0, π] dans R, alors par intégration

par partie avec v : t 7→ − cos(xt)

x
, on a :∫ π

0

ϕ(t) sin(xt)dt =

∫ π

0

ϕ(t)v′(t)dt

= [ϕ(t)v(t)]π0 −
∫ π

0

ϕ′(t)v(t)dt

∫ π

0

ϕ(t) sin(xt)dt =
ϕ(0)− ϕ(π) cos(xπ)

x
+

1

x

∫ π

0

ϕ′(t) cos(xt)dt

Par inégalité triangulaire avec | cos(y)| 6 1 pour tout y ∈ R, on a :

0 6

∣∣∣∣∫ π

0

ϕ(t) sin(xt)dt

∣∣∣∣ 6 |ϕ(0)|+ |ϕ(π)|
x

+
1

x

∫ π

0

|ϕ′(t)|dt

Par théorème d’encadrement on obtient alors lim
x→+∞

∫ π

0

ϕ(t) sin(xt)dt = 0
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• D’après les résultats de la question 2, on peut écrire avec α =
1

2π
et β = −1 :

σ(1) =
+∞∑
k=1

∫ π

0

(αt2 + βt) cos(kt)dt = lim
n→+∞

n∑
k=1

∫ π

0

(αt2 + βt) cos(kt)dt

σ(1) = lim
n→+∞

(∫ π

0

(αt2 + βt)
n∑
k=1

cos(kt)dt

)

= lim
n→+∞

∫ π

0

(αt2 + βt)

sin

(
(2n+ 1)t

2

)
2 sin

(
t

2

) − 1

2

 dt

=

 lim
n→+∞

∫ π

0

αt2 + βt

2 sin

(
t

2

) sin

(
(2n+ 1)t

2

)
dt

− 1

2

∫ π

0

αt2 + βtdt

Soit ϕ : t ∈ [0, π] 7→


β si t = 0

αt2 + βt

2 sin

(
t

2

) si t 6= 0
. ϕ est de classe C1 sur ]0, π] par quotient de

fonctions de classe C1 dont le dénominateur ne s’annule pas. De plus sin

(
t

2

)
∼
0

t

2
alors

ϕ(t) ∼
0
αt+ β. On en déduit que ϕ est continue sur [0, π].

∀t ∈]0, π] ϕ′(t) =
2(2αt+ β) sin(t/2)− (αt2 + βt) cos(t/2)

4 sin2

(
t

2

)
En utilisant des développements limités à l’ordre 2 au voisinage de 0 de sinus et cosinus, on
obtient

ϕ′(t) =
(2αt2 + βt)− αt2 − βt+ o(t2)

2
t2

4
+ o(t2)

On en déduit que lim
t→0

ϕ′(t) = 2α ∈ R.

ϕ est continue sur le segment [0, π], de classe C1 sur ]0, π] et ϕ′ admet une limite finie en 0
alors par le théorème de la limite de la dérivée on obtient que ϕ est de classe C1 sur [0, π].

Par le résultat démontré en début de question 3, on en déduit que

lim
n→+∞

∫ π

0

ϕ(t) sin

(
2n+ 1

2
t

)
dt = 0

et finalement σ(1) = −1

2

∫ π

0

αt2 + βtdt = −1

2

[
αt3

3
+
βt2

2

]π
0

avec α =
1

2π
et β = −1.
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ce qui donne : σ(1) =
π2

6

Équivalents

4 . • La fonction sinus est continue sur l’intervalle
]
0,
π

2

]
à valeurs strictement positives, donc

∀x ∈ R t 7→ (sin(t))x est continue sur
]
0,
π

2

]
et est à valeurs positives.

On en déduit que

∫ π
2

0

(sin(t))xdt converge si et seulement si la fonction t 7→ (sin(t))x est

intégrable sur
]
0,
π

2

]
.

On sait que sin(t) ∼
t→0

t, alors pour x ∈ R (sin(t))x ∼
t→0

tx, et d’après les intégrales de

Riemann on sait que la fonction t 7→ 1

t−x
est intégrable en 0 si et seulement si −x < 1.

Par comparaison la fonction positive t 7→ (sin(t))x est intégrable en 0 (et donc sur
]
0,
π

2

]
),

si et seulement si x > −1.

On en déduit que le domaine de définition de f est I =]− 1,+∞[.

Si x ∈ I, x+ 1 ∈ I et x+ 2 ∈ I.

f(x+ 2) =

∫ π
2

0

sinx+1(t)× sin(t)dt =

∫ π
2

0

u(t)× v′(t)dt avec u : t 7→ (sin t)x+1 et

v : t 7→ − cos(t). Ces fonctions u et v sont de classe C1 sur l’intervalle
]
0,
π

2

]
avec

lim
t→0

u(t)v(t) = 0 car x+ 1 > 0. Par intégration par parties, on a donc :

f(x+ 2) = [u(t)v(t)]
π
2
0 −

∫ π
2

0

u′(t)v(t)dt

= 0− u
(π

2

)
v
(π

2

)
+

∫ π
2

0

(x+ 1) cos(t) sinx(t)× cos(t)dt

= (x+ 1)

∫ π
2

0

sinx(t)× cos2(t)dt

= (x+ 1)

∫ π
2

0

sinx(t)
(
1− sin2(t)

)
dt

et par linéarité f(x+ 2) = (x+ 1)f(x)− (x+ 1)f(x+ 2).

On a donc obtenu : ∀x ∈ I, (x+ 1)f(x) = (x+ 2)f(x+ 2) (1)
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5 . Soit g :
I ×

]
0,
π

2

]
→ R

(x, t) 7→ sinx(t)
. Vérifions les hypothèses du théorème de classe C2 :

• On a vu en question 4 que, pour tout x ∈ I, la fonction t 7→ g(x, t) est intégrable sur
]
0,
π

2

]
.

• Pour tout t ∈
]
0,
π

2

]
, la fonction x 7→ g(x, t) est de classe C2 sur I avec

∂g

∂x
(x, t) = ln(sin t)× exp (x ln(sin t))) et

∂2g

∂x2
(x, t) = ln2(sin t)× (sin t)x.

• ∀x > −1, les fonctions t 7→ ∂g

∂x
(x, t) et t 7→ ∂2g

∂x2
(x, t) sont continues par morceaux sur]

0,
π

2

]
par produit de fonctions continues.

• ln(sin t) =
0

ln

(
t− t3

6
+ o(t3)

)
=
0

ln(t) + ln

(
1− t2

6
+ o(t2)

)
=
0

ln(t) + o(ln(t)), donc avec

ce qui a été fait en question 4 on a :

∂g

∂x
(x, t) ∼

t→0
tx ln(t)

x > −1 alors il existe α tel que x > α > −1,

(
par exemple α =

x− 1

2

)
, et donc

tx ln(t)

tα
= tx−α ln(t) −→

t→0
0 par croissances comparées puisque x− α > 0.

On en déduit que tx ln(t) =
t→0

o(tα), or pour α > −1 la fonction t 7→ tα est intégrable en 0

donc par comparaison la fonction t 7→ ∂g

∂x
(x, t) est intégrable en 0 et donc sur

]
0,
π

2

]
.

• Hypothèse de domination sur tout segment :

Soit [a, b] ⊂ I. ∀x ∈ [a, b] ∀t ∈
]
0,
π

2

]
0 < sin(t) 6 1, alors 0 6 sinx(t) 6 sina(t) et donc

∀x ∈ [a, b] ∀t ∈
]
0,
π

2

]
0 6

∂2g

∂x2
(x, t) 6 ln2(sin(t))× sina(t)

Notons ϕ : t 7→ ln2(sin(t)) × sina(t), cette fonction est continue sur
]
0,
π

2

]
et comme

précédemment on obtient : ϕ(t) ∼
0
ta × ln2(t) =

0
o(tα) avec a > α > −1, donc par double

comparaison la fonction ϕ est intégrable en 0 et finalement sur
]
0,
π

2

]
.

Par théorème de la classe C2 pour une intégrale à paramètre, on en déduit que la fonction
f est de classe C2 sur I avec pour x ∈ I :

f ′(x) =

∫ π
2

0

∂g

∂x
(x, t)dt =

∫ π
2

0

ln(sin(t)) sinx(t)dt 6 0

f ′′(x) =

∫ π
2

0

∂2g

∂x2
(x, t)dt =

∫ π
2

0

ln2(sin(t)) sinx(t)dt > 0

f est donc de classe C2, décroissante et convexe sur I.
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6 . • On a vu : (x+ 1)f(x) = (x+ 2)f(x+ 2), et f est continue sur I donc en 1 et

lim
x→−1

(x+ 2)f(x+ 2) = f(1) =

∫ π
2

0

sin(t)dt = 1

On en déduit que f(x) ∼
−1

1

x+ 1
.

7 . Avec la relation (x+ 1)f(x) = (x+ 2)f(x+ 2), on obtient :

∀n ∈ N (n+ 1)f(n)f(n+ 1) = (n+ 2)f(n+ 1)f(n+ 2)

On en déduit que la suite ((n+ 1)f(n)f(n+ 1))n∈N est constante, donc

∀n ∈ N (n+ 1)f(n)f(n+ 1) = f(0)f(1) =

∫ π
2

0

1dt× 1 =
π

2

Pour tout entier naturel n, f(n)f(n+ 1) =
π

2(n+ 1)

On sait que ∀n ∈ N f(n+ 2) 6 f(n+ 1) 6 f(n) et f(n) > 0, donc
n+ 1

n+ 2
6
f(n+ 1)

f(n)
6 1

et par théorème d’encadrement f(n+ 1) ∼
n→+∞

f(n), ce qui donne

f(n) ∼
n→+∞

√
π

2n

• On sait que ∀x ∈ [0,+∞[ 0 6 bxc 6 x < bxc+ 1 alors par décroissance de f :

f (bxc) 6 f(x) 6 f (bxc+ 1)

bxc ∈ N et lim
x→+∞

bxc = +∞ donc

f (bxc+ 1) ∼
+∞

f (bxc) ∼
+∞

√
π

2bxc

Par théorème d’encadrement, puisque et bxc ∼
x→+∞

x, on a alors

f(x) ∼
+∞

√
π

2bxc
∼
+∞

√
π

2x

8 . On sait que la fonction est positive, décroissante, convexe sur ]−1,+∞[ avec des équivalents
aux bornes de I qui permettent d’avoir les limites en ces bornes. ce qui donne :
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Développement en série entière

Si n ∈ N, on note Dn l’intégrale généralisée

∫ π/2

0

(ln(sin(t)))n dt.

9 . • Pour n ∈ N la fonction fn : t 7→ (ln(sin(t)))n est continue sur
]
0,
π

2

]
par composée

puisque ∀t ∈
]
0,
π

2

]
sin(t) ∈]0, 1].

On a déjà vu que ln(sin t) ∼
t→0

ln(t), donc fn(t) ∼
t→0

lnn(t), et alors par croissances com-

parées lim
t→0

√
tfn(t) = lim

t→0

√
t lnn(t) = 0. On a donc fn(t) =

0
o

(
1√
t

)
. D’après les intégrales

de Riemann la fonction t 7→ 1√
t

est intégrable en 0 donc par comparaison la fonction fn est

intégrable en 0.

Finalement ∀n ∈ N, l’intégrale généralisée Dn est convergente.



PSI Un corrigé du D. M. n°07 13

• Par le changement de variable affine t =
π

2
− u, on a immédiatement

D1 =

∫ π/2

0

ln(sin(t))dt = −
∫ π/2

0

(−1) ln
(

sin
(π

2
− u
))

du =

∫ π
2

0

ln(cos(u))du

10 . D’après les résultats de la question 5, on sait que

f ′(0) =

∫ π
2

0

ln(sin(t))dt = D1 et f ′(1) =

∫ π
2

0

sin(t) ln(sin(t))dt

Avec le résultat de la question 9 et par linéarité de l’intégrale avec ln a + ln b = ln(ab), on
peut écrire

2D1 =

∫ π/2

0

ln(sin(t) cos(t))dt

et donc

D1 =
1

2

∫ π/2

0

ln

(
sin(2t)

2

)
dt

=
1

2

∫ π/2

0

ln(sin(2t))dt− 1

2

∫ π/2

0

ln(2)dt

= −π ln 2

4
+

1

2

∫ π/2

0

ln(sin(2t))dt

en effectuant le changement de variable u = 2t

D1 = −π ln 2

4
+

1

4

∫ π

0

ln(sin(u))du

= −π ln 2

4
+

1

4
D1 +

1

4

∫ π

π/2

ln(sinu)du

en effectuant le changement de variable u = x+
π

2

D1 = −π ln 2

4
+
D1

4
+

1

4

∫ π/2

0

ln
(

sin
(
x+

π

2

))
dx

= −π ln 2

4
+
D1

4
+

1

4

∫ π/2

0

ln (cos(x)) dx

D1 = −π ln 2

4
+
D1

2

Ce qui donne f ′(0) = D1 =
−π ln(2)

2

f ′(1) =

∫ π/2

0

sin(t) ln(sin(t))dt =

∫ π/2

0

−ϕ′(t) ln(sin(t)dt avec ϕ : t 7→ cos(t), qui est une

bijection décroissante de classe C1 de
]
0,
π

2

]
sur [0, 1[.



PSI Un corrigé du D. M. n°07 14

De plus ∀t ∈
]
0,
π

2

]
, sin(t) =

√
1− cos2(t), alors f ′(1) = −

∫ π
2

0

ϕ′(t) ln
(√

1− ϕ2(t)
)

dt.

La fonction g : u 7→ ln
(√

1− u2
)

étant continue sur [0, 1[, le changement de variable
u = ϕ(t) donne :

f ′(1) = −
∫ π

2

0

ϕ′(t)g(ϕ(t))dt

=

∫ 1

0

g(u)du

=
1

2

∫ 1

0

ln(1− u2)du

=
1

2

∫ 1

0

ln(1− u) + ln(1 + u)du

On sait qu’une primitive de la fonction x 7→ ln(x) sur ]0,+∞[ est x 7→ x ln(x)− x, alors

f ′(1) =
1

2
[(1 + u) ln(1 + u)− (1 + u)− (1− u) ln(1− u) + (1− u)]10

f ′(1) = ln(2)− 1

2nde méthode :

f ′(1) =

∫ π/2

0

sin(t) ln(sin(t))dt =

∫ π/2

0

u′(t)v(t)dt avec u : t 7→ 1− cos(t) et v : t 7→ ln(sin t)

qui sont de classe C1 sur
]
0,
π

2

]
et

u(t)v(t) = (1− cos(t)) ln(sin(t)) ∼
t→0

t2

2
ln(t)

donc lim
t→0

u(t)v(t) = 0.

Si on prend u : t 7→ − cos(t), la limite en 0 de uv n’est pas finie, et il faut faire une
intégration par parties sur [a, π

2
] puis passer à la limite quand a→ 0.
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Par intégration par parties, on obtient :

f ′(1) = [u(t)v(t)]π/20 −
∫ π/2

0

u(t)v′(t)dt

= −
∫ π/2

0

(1− cos(t))
cos(t)

sin(t)
dt

= −
∫ π/2

0

(1− cos(t))× cos(t)

sin2(t)
× sin(t)dt

avec le changement de variable u = cos(t)

f ′(1) = −
∫ 1

0

(1− u)× u

1− u2
du

= −
∫ 1

0

u

1 + u
du

= −
∫ 1

0

1− 1

1 + u
du

= − [u− ln |1 + u|]10

f ′(1) = ln(2)− 1

11 . Pour n ∈ N, la fonction t 7→ tne−t est continue sur [0,+∞[ et par croissances coparées

tne−t =
+∞

o

(
1

t2

)
. D’après les intégrales de Riemann, la fonction t 7→ 1

t2
est intégrable en

+∞ puisque 2 > 1, alors par comparaison la fonction t 7→ tne−t est intégrable en +∞ et

l’intégrale In =

∫ +∞

0

tne−tdt converge.

Les fonctions u : t 7→ tn et v : t 7→ −e−t sont de classe C1 sur [0,+∞( avec par croissances
comparées lim

t→+∞
u(t)v(t) = 0, alors par intégration par parties :

In =

∫ +∞

0

u(t)v′(t)dt

= [u(t)v(t)]+∞0 −
∫ +∞

0

u′(t)v(t)dt

=

∫ +∞

0

ntn−1e−tdt

In = nIn−1

I0 =

∫ +∞

0

e−tdt =
[
−e−t

]+∞
0

= 1 = 0!. Les deux suites (In)n∈N et (n!)n∈N vérifient la même

relation de récurrence linéaire d’ordre 1 et ont même premier terme, donc ∀n ∈ N In = n!.



PSI Un corrigé du D. M. n°07 16

12 . Soit n ∈ N∗, la fonction ϕ : t 7→ − ln(sin(t)) est dec lasse C1 sur
]
0,
π

2

]
avec

ϕ′(t) =
cos(t)

sin(t)
< 0, alors ϕ réalise une bijection strictement décroissante de

]
0,
π

2

]
sur

[0,+∞[.

Par le changement de variable u = ϕ(t)⇐⇒ t = ϕ−1(u) = arcsin(e−u), on a alors

(−1)nDn =

∫ π/2

0

(− ln(sin(t)))ndt

= −
∫ +∞
0

(ϕ−1)
′
(u)undu

=

∫ +∞

0

e−u√
1− e−2u

× undu

(−1)nDn =

∫ +∞

0

un√
e2u − 1

du

Avec le résultat de la question 11, on obtient :

(−1)nDn − n! =

∫ +∞

0

un
(

1√
e2u − 1

− e−u
)

du

=

∫ +∞

0

une−u√
e2u − 1

(
eu −

√
e2u − 1

)
du

=

∫ +∞

0

une−u√
e2u − 1

× 1

eu +
√
e2u − 1

du

∀u > 0 eu +
√
e2u − 1 > 1 et e2u − 1 > 2u > 0 par inégalité de convexité, donc

0 6 (−1)nDn − n! 6
∫ +∞

0

une−u

2u
du

Et donc 0 6 (−1)nDn − n 6
∫ +∞

0

un−1e−udu, ce qui donne 0 6 (−1)nDn − n! 6 (n− 1)!.

On obtient : (−1)nDn − n! = O((n− 1)!) = o(n!) et donc Dn ∼ (−1)nn!.

13 . ∀x ∈]− 1, 1[ f(x) =

∫ π/2

0

exp(x ln(sin(t)))dt, or ∀u ∈ R eu =
+∞∑
n=0

un

n!
, donc

f(x) =

∫ π/2

0

+∞∑
n=0

lnn(sin(t))

n!
xndt

Posons fn : t 7→ lnn(sin(t))

n!
xn.

• ∀n ∈ N fn est intégrable sur
]
0,
π

2

]
d’après le résultat de la question 9.
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• La série de fonctions
∑
fn converge simplement sur

]
0,
π

2

]
et S : t 7→

+∞∑
n=0

fn(t) = (sin(t))x

est continue sur
]
0,
π

2

]
.

• Avec le résultat de la question 12, on a :

∀n ∈ N

∫ π/2

0

|fn(t)|dt =

∫ π/2

0

| ln(sin(t))|n

n!
|x|ndt =

(−1)nDn

n!
|x|n ∼

n→+∞
|x|n

alors par comparaison puisque x ∈]− 1, 1[, la série
∑∫ π/2

0

|fn(t)|dt converge.

Par théorème d’intégration terme à terme sur un intervalle, on sait que

f(x) =

∫ π/2

0

+∞∑
n=0

fn(t)dt =
+∞∑
n=0

∫ π/2

0

fn(t)dt =
+∞∑
n=0

Dn

n!
xn

On a bien obtenu que f est développable en série entière sur ]− 1, 1[.


