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Exercice n°1 : Oral MinesPonts 2025

Soit ε,X et Y trois variables aléatoires indépendantes dé�nies sur le même espace proba-

bilisé (Ω,A,P). On suppose que ε suit une loi de Bernoulli de paramètre
1

2
; et que X et

Y suivent une loi géométrique de paramètre p ∈]0, 1[.

On considère la matrice aléatoire M =

(
(2ε− 1)X Y

Y (2ε− 1)X

)
.

1. Notons A l'événement : � La matrice aléatoire M est inversible �.
On sait que P(A) = 1− P(Ā) = 1− P(det(M) = 0).

∀ω ∈ Ω det(M(ω)) =

∣∣∣∣(2ε(ω)− 1)X(ω) Y (ω
Y (ω) (2ε(ω)− 1)X(ω)

∣∣∣∣
= ((2ε(ω)− 1)X(ω))2 − Y 2(ω)

Par hypothèse ε(Ω) = {0, 1}, alors par la formule des probabilités totales avec le
système complet d'événements associé à ε, on a :

P(Ā) = P(ε = 0, det(M) = 0) + P(ε = 1, det(M) = 0)

= P(ε = 0, (−X)2 = Y 2) + P(ε = 1, X2 = Y 2)

= P(X2 = Y 2)

par hypothèse X(Ω) = N∗ = Y (Ω) donc

P(Ā) = P(X = Y )

Par la formule des probabilités totales avec le système complet d'événements associé
à X on a :

P(Ā) =
+∞∑
k=1

P(X = k,X = Y )

=
+∞∑
k=1

P(X = k, Y = k)

par indépendance de X et Y on a :

=
+∞∑
k=1

P(X = k)× P(Y = k)

=
+∞∑
k=1

(
p(1− p)k−1

)2
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P(Ā) = p2
+∞∑
k=1

(
(1− p)2

)k−1

= p2
+∞∑
i=0

(
(1− p)2

)i
or (1− p)2 ∈]0, 1[

= p2 × 1

1− (1− p)2

=
p2

2p− p2

P(Ā) =
p

2− p

On en déduit que la probabilité que M soit inversible est égale à
2(1− p)

2− p
.

2. Pour alléger les notations, on va laisser la notationM plutôt queM(ω) pour ω ∈ Ω.
Déterminons les valeurs propres de la matrice M , pour cela cherchons les racines de
son polynôme caractéristique χM .

M est carrée de d'ordre 2, on sait donc que

∀t ∈ R χ
M(t) = t2 − tr(M))t+ det(M)

= t2 − 2(2ε− 1)Xt+ ((2ε− 1)X)2 − Y 2

= (t− (2ε− 1)X)2 − Y 2

∀t ∈ R χ
M(t) = (t− (2ε− 1)X − Y )× (t− (2ε− 1)X + Y )

Les valeurs propres de M sont donc λ = (2ε− 1)X + Y et µ = (2ε− 1)X − Y .

Notons B l'événement �M est à valeurs propres strictement positives. �.

P(B) = P (((2ε− 1)X + Y > 0) ∩ ((2ε− 1)X − Y > 0))

Comme précédemment avec le système complet d'événements associé à ε, on a :

P(B) = P((ε = 0) ∩B) + P((ε = 1) ∩B)

= P((ε = 0) ∩ (−X + Y > 0) ∩ (−X − Y > 0) + P((ε = 1) ∩ (X + Y > 0) ∩ (X − Y > 0)
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Puisque X(Ω) = N∗ = Y (Ω), on sait que (X + Y > 0) = Ω et (−X − Y > 0) = �,
donc

P(B) = 0 + P((ε = 1) ∩ (X − Y > 0))

par indépendance de ε,X, Y et le lemme des coalitions

= P(ε = 1)× P(X − Y > 0)

=
1

2
P(X > Y )

avec le système complet d'événements associé à Y

=
1

2

+∞∑
k=1

P(Y = k,X > k)

X ⊥⊥Y

P(B) =
1

2

+∞∑
k=1

P(Y = k)× P(X > k)

X ∼ G(p) ∼ Y donc

P(B) =
1

2

+∞∑
k=1

p(1− p)k−1 × (1− p)k

=
p(1− p)

2

+∞∑
k=1

(
(1− p)2

)k−1
P(B) =

p(1− p)
2

× 1

(1− (1− p)2)

La probabilité que M soit à valeurs propres strictement positive est égale à
1− p

2(2− p)
.

Exercice n°2 : Extrait de Centrale PSI 2023

Un point se déplace sur un axe gradué. Au départ, il se trouve à l'origine et à chaque étape
il se déplace suivant le résultat du lancer d'une pièce de monnaie qui n'est pas supposée
équilibrée.

Le déplacement du point est formalisé de la manière suivante. Dans l'espace probabilisé
(Ω,A,P), on considère une suite de variables aléatoires (Xn)n∈N∗ à valeurs dans {−1, 1},
indépendantes, et telles que, pour tout n ∈ N∗,

P (Xn = 1) = p et P (Xn = −1) = q, où p ∈]0, 1[ et q = 1− p.
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Les variables aléatoires (Xn)n∈N∗ représentent les résultats des lancers successifs de la
pièce de monnaie.

L'abscisse Sn du point à l'issue du n-ième lancer est alors dé�nie par :
S0 = 0,

Sn =
n∑

k=1

Xk ∀n ∈ N∗

On admet que, si (Yn)n∈N∗ est une suite de variables aléatoires indépendantes suivant
toutes la même loi alors, pour tout n ≥ 2, quel que soit l'entier k compris entre 1 et n−1,

les variables aléatoires
n−k∑
i=1

Yi et
n∑

i=k+1

Yi suivent la même loi.

On se propose de calculer la probabilité que le point ne revienne jamais à l'origine.

On remarque que le point ne peut revenir à l'origine (i.e. Sk = 0 ) qu'après un nombre
pair de lancers de la pièce de monnaie (i.e. k = 2n ).

On introduit alors les suites (an)n∈N et (bn)n∈N dé�nies par a0 = 1, b0 = 0 et

∀n ∈ N∗, an = P (S2n = 0) et bn = P
(
[S1 6= 0]∩[S2 6= 0]∩· · ·∩[S2n−1 6= 0]∩[S2n = 0]

)
et les séries entières

A(x) =
+∞∑
n=0

anx
2n et B(x) =

+∞∑
n=0

bnx
2n.

Partie I

3. • Notons U1 la variable aléatoire
1

2
(X1 + 1). Puisque X1(Ω) = {−1, 1}, on a

U1(Ω) = {0, 1} donc U1 suit une loi de Bernoulli de paramètre P(U1 = 1) = P(X1 = 1) = p.

• Par dé�nition S0 = 0, donc E(S0) = 0 = V(S0).

• Soit n ∈ N∗, posons Tn =
n∑

k=1

Uk, on a alors Tn =
1

2
(Sn + n).

Les variables aléatoires X1, . . . , Xn étant indépendantes, par le lemme des coalitions
les variables aléatoires U1, . . . , Un sont indépendantes et suivent la même loi de
Bernoulli de paramètre p. On sait alors que Tn suit une loi binomiale de paramètres
n et p. On en déduit, par linéarité de l'espérance et propriété sur la variance que :

E(Tn) = np =
1

2
(E(Sn) + n) V(Tn) = np(1− p) =

1

4
V(Sn)

∀n ∈ N∗ E(Sn) = n(2p− 1) et V(Sn) = 4np(1− p).

L'espérance et la variance de Sn valent respectivement n(2p− 1) et 4np(1− p) pour n ∈ N
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Remarque :Il n'est pas nécessaire de passer par une loi binomiale pour trou-
ver l'espérance et la variance de Sn, puisque par indépendance des variables on

a E(Sn) =
n∑

k=1

E(Xk) et V(Sn) =
n∑

k=1

V(Xk), et il su�t d'avoir la loi de
Xk + 1

2
.

Mais quand l'énoncé indique clairement d'utiliser une loi binomiale on doit se plier
à cette injonction, l'idée étant qu'on veut véri�er certains points de connaissance et
pas d'autres...

4. Remarque : Il était fourni la fonction Python random.random() qui renvoie un
nombre �ottant psuedo-aléatoire dans l'intervalle [0,1]. En fait cette fonction simule
la loi uniforme sur [0,1] c'est-à-dire le tirage d'un réel x compris entre 0 et 1 de
façon aléatoire de telle sorte que ∀p ∈ [0, 1] P(x ∈ [0, p]) = p. Ce qui permet de si-
muler une variable aléatoire X qui suit une loi de Bernoulli de paramètre p en tirant
un nombre x avec random.random() et en considérant que : x 6 p⇐⇒ (X = 1) est
réalisé.

Voici donc une proposition de fonction Python qui renvoie le nombre de retours au
point à l'origine :

def retours(n,p) :
x=0 # position du point à l'origine
r=0 # nombre de retours
for i in range(n) :
if random.random()6 p :
x+=1 # déplacement vers la droite d'une unité

else :
x+=-1 # déplacement vers la gauche d'une unité

if x == 0 : # le point est de retour à l'origine
r+=1

return r

5. Avec les notations introduites en question 3, on a Sn = 2Tn − n et donc

an = P(S2n = 0) = P(2T2n = 2n) = P(T2n = n)

or on a vu que Tn ∼ B(n, p) donc T2n ∼ B(2n, p) et

an = P(T2n = n) =

(
2n
n

)
pn(1− p)2n−n

On a bien : pour tout n ∈ N∗ an =

(
2n

n

)
pnqn.

6. On note R le rayon de convergence de la série entière
∑

anx
2n.



PSI Un corrigé du D.S. n°06 - Sujet B 6

1ère méthode : avec le critère de d'Alembert

Pour x ∈ R∗, on pose ∀n ∈ N un = anx
2n, alors un 6= 0 et

|un+1

|un|
=

an+1

an
x2

=
(2n+ 2)!

(n+ 1)!2
× n!2

(2n)!
× pn+1qn+1

pnqn
× x2

=
(2n+ 2)(2n+ 1)

(n+ 1)2
× pqx2

=
2(2n+ 1)

n+ 1
pqx2

On en déduit que lim
n→+∞

|un+1

|un|
= 4pqx2.

Par la règle de d'Alembert, on sait que si 4pqx2 < 1 alors la série
∑
un converge

absolument et si 4pqx2 > 1 alors la série
∑
un diverge grossièrement avec

lim
n→+∞

|un| = +∞.

On en déduit que : si |x| < 1√
4pq

alors la série
∑
anx

2n converge absolument donc

R >
1√
4pq

et si |x| > 1√
4pq

alors lim
n→+∞

anx
2n = +∞ et la suite (anx

2n) n'est pas

bornée donc R 6
1√
4pq

.

On obtient �nalement R =
1

2
√
pq

.

2ème méthode : avec la dé�nition du rayon de convergence (c'est plus long)

La série entière
∑
anx

2n est une série lacunaire, son rayon de convergence R est
celui de la série entière

∑
dnx

n avec d2n = an et d2n+1 = 0.
Par dét�nition R = Sup {ρ ∈ R+, (dnρ

n)n∈N est bornée}.

Soit ρ ∈]0,+∞[, la suite (dnρ
n)n∈N est bornée si et seulement si les deux suites

extraites (d2nρ
2n) et (d2n+1ρ

2n+1) sont bornées.
Par dé�nition de d2n+1, la suite (d2n+1ρ

2n+1) est la suite nulle donc elle est toujours
bornée.

∀n ∈ N∗ d2nρ
2n = anρ

2n =

(
2n
n

)
pnqnρ2n =

(2n)!

n!2
(pqρ2)n. Pour connaitre les va-

leurs de ρ pour lesquelles la suite (anρ
2n) est bornée, on peut chercher un équivalent
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avec la formule de Stirling que l'on rappelle : n! ∼
(n
e

)n√
2πn

anρ
2n ∼

(
2n

e

)2n√
4πn×

( e
n

)2n
× (pqρ2)n

2πn

∼ 22n

√
πn

(pqρ2)n

an ∼ (4pqρ2)n√
πn

On en déduit que la suite (anρ
2n) est bornée si et seulement si |4pqρ2| 6 1, ce qui

donne, puisque ρ > 0, ρ 6
1√
4pq

.

On en déduit que R = Sup

[
0,

1√
4pq

]
=

1

2
√
pq

.

7. On sait que pour tout x ∈] − R,R[ l'expression A(x) est dé�nie et pour |x| > R

alors A(x) n'est pas dé�nie et R =
1√
4pq

.

∀p ∈]0, 1[ pq = p(1 − p) = p − p2, par étude d'une fonction polynomiale de degré

2, on obtient que ∀p ∈]0, 1[ p(1− p) ∈
]
0,

1

4

]
et p(1− p) =

1

4
⇐⇒ p =

1

2
.

Remarque : Nous n'avions pas encore évoqué cette propriété intéressante à connaître :

p(1− p) 6 1

4
pour p ∈ [0, 1] avec égalité lorsque p =

1

2
. Ce n'est pas au programme

o�ciel mais on peut la citer en précisant qu'on le montre par étude de fonction ou
par connaissance des fonctions polynômiales de degré 2 (extremum global).

On en déduit que si p 6= 1

2
alors R > 1 et donc A(x) est dé�nie en x = 1.

Si p =
1

2
, alors R = 1 et an =

(
2n
n

)
× 1

4n
.

Par la formule de Stirling : n! ∼
(n
e

)n√
2πn, alors

an ∼
1

4n
×
(

2n

e

)2n√
2π(2n)×

( e
n

)2n 1

2πn

an ∼
1√
πn

La série de Riemann
∑ 1√

n
est divergente puisque

1

2
< 1, alors la série

∑
an

diverge. On en déduit que A(x) n'est pas dé�nie en x = 1.
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L'expression A(x) est dé�nie en x = 1 si et seulement si p 6= 1

2

8. On peut écrire
1√

1− x
= (1− x)−

1
2 = (1 + (−x))−

1
2 .

Alors par développement en série entière, on sait que

∀x ∈]− 1, 1[
1√

1− x
= 1 +

+∞∑
n=1

(−1/2)(−1/2− 1) · · · (−1/2− n+ 1)

n!
(−x)n

= 1 +
+∞∑
n=1

(1/2)(1/2 + 1) · · · (1/2− n− 1)

n!
xn

= 1 +
+∞∑
n=1

1× 3× · · · × (2n− 1)

2nn!
xn

= 1 +
+∞∑
n=1

(2n)!

2n × 2× · · · × (2n)× n!
xn

= 1 +
+∞∑
n=1

(2n)!

22nn!× n!
xn

∀x ∈]− 1, 1[
1√

1− x
=

+∞∑
n=0

1

4n

(
2n
n

)
xn

Par dé�nition ∀x ∈]−R,R[ A(x) =
+∞∑
n=0

anx
2n =

+∞∑
n=0

(
2n
n

)
(pqx2)n =

+∞∑
n=0

1

4n

(
2n
n

)
(4pqx2)n.

On en déduit que ∀x ∈]−R,R[ A(x) =
1√

1− 4pqx2
.

Partie II

9. Pour k ∈ N∗, notons Bk = {[S1 6= 0] ∩ [S2 6= 0] ∩ · · · ∩ [S2k−1 6= 0] ∩ [S2k = 0]}, Bk

est l'événement � le point revient à l'origine pour la première fois à l'instant 2k �.
Posons aussi B0 = �, on aura alors ∀k ∈ N bk = P(Bk).

Pour n ∈ N∗, si {S2n = 0} est réalisé alors l'indice de premier retour à l'origine est
inférieur ou égal à 2n, on en déduit qu'en décomposant l'événement {S2n = 0} selon
l'indice de 1er retour du point à l'origine, on a :

{S2n = 0} =
n⋃

k=0

({S2n = 0} ∩Bk)
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Par σ-additivité de la probabilité P, l'union précédente étant une union d'événements
incompatibles deux à deux, on obtient :

an = P(S2n = 0) =
n∑

k=0

P ({S2n = 0} ∩Bk)

Remarque :Certains ont voulu prendre un système complet d'événements, mais ce
système ne doit pas dépendre de (S2n = 0), ce doit être (E, (Bk)k∈N) avec E : � le
point ne retourne jamais à l'origine �. Ensuite c'est dans la formule des probbaili-
tés totales qu'on va obtenir que P(E ∩ (S2n = 0)) = 0 = P(Bk ∩ (S2n = 0)) pour
tout k > 2n. ce qui donnera �nalement comme ci-dessus une somme pour k = 0 à n.

Or Bk ∩ (S2n = 0) = (S1 6= 0) ∩ (S2 6= 0) ∩ · · · ∩ (S2k−1 6= 0) ∩ (S2k = 0) ∩ (S2n = 0)

et S2n =
2n∑
i=0

Xi = S2k +
2n∑

i=2k+1

Xi donc

Bk∩(S2n = 0) = (S1 6= 0)∩(S2 6= 0)∩· · ·∩(S2k−1 6= 0)∩(S2k = 0)∩

(
n∑

i=2k+1

Xi = 0

)

ce qui donne

an =
n∑

k=0

P

(
Bk ∩

(
n∑

i=2k+1

Xi = 0

))
Par hypothèse la suite de variables aléatoires (Xn)n∈N∗ est une suite de variables
aléatoires indépendantes, alors par le lemme des coalitions les événements Bk et(

n∑
i=2k+1

Xi = 0

)
sont indépendants, ce qui donne

an =
n∑

k=0

P(Bk)× P

(
2n∑

i=2k+1

Xi = 0

)

Nous sommes dans les conditions écrites dans l'énoncé pour admettre que
2n∑

i=2k+1

Xi

suit la même loi que
2n−2k∑
i=1

Xi, donc

an =
n∑

k=0

bk × P(S2(n−k) = 0)

Pour n ∈ N∗ on a établi la relation an =
n∑

k=0

bkan−k.
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10. Pour n ∈ N∗ avec Bn = {[S1 6= 0] ∩ [S2 6= 0] ∩ · · · ∩ [S2n−1 6= 0] ∩ [S2n = 0]}, on a
Bn ⊂ (S2n = 0) donc 0 6 bn 6 an, la série entière dé�nissant B(x) est donc de
rayon de convergence supérieur ou égal à R.

1ère méthode :

Pour n ∈ N et x ∈]−R,R[, on pose un = bnx
2n et vn = anx

2n.

On en déduit que pour tout x ∈] − R,R[, les séries
∑
un et

∑
vn convergent ab-

solument. On note
∑
wn la série produit de Cauchy de

∑
un et

∑
vn, alors

∑
wn

converge absolument avec
+∞∑
n=0

wn =

(
+∞∑
n=0

un

)
×

(
+∞∑
n=0

vn

)
.

Par dé�nition

wn =
n∑

k=0

ukvn−k =
n∑

k=0

bkan−kx
2k+2n−2k =

n∑
k=0

bkan−kx
2n

Par le résultat de la question 9, ∀n ∈ N∗ wn = anx
2n, et w0 = u0v0 = a0b0 = 0.

On a donc
+∞∑
n=0

wn =
+∞∑
n=1

anx
n = A(x)− a0 = A(x)− 1,

+∞∑
n=0

un = A(x) et

+∞∑
n=0

vn = B(x).

Finalement ∀x ∈]−R,R[ A(x)− 1 = A(x)×B(x), avec R =
1

2
√
pq

.

2ème méthode :

D'après la relation : an =
n∑

k=0

bkan−k pour n ∈ N∗, on peut écrire :

∀x ∈]−R,R[ A(x) =
+∞∑
n=0

anx
2n = a0 +

+∞∑
n=1

(
n∑

k=0

bkan−k

)
(x2)n

Ce qui donne aussi : A(x) = a0 +
+∞∑
n=0

ωnu
n avec ωn =

n∑
k=0

bkan−k pour n ∈ N et

u = x2.

Par produit de Cauchy de deux séries entières, on sait que pour |z| < min(Ra, Rb),
où Ra et Rb sont les rayons de convergence des séries entières

∑
anz

n et
∑
bnz

n,

+∞∑
n=0

ωnz
n =

(
+∞∑
n=0

anz
n

)
×

(
+∞∑
n=0

bnz
n

)
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On a donc ∀x ∈]−R,R[ A(x) = 1 + A(x)×B(x)

11. D'après les résultats des questions 8 et 10, on a :

∀x ∈
]
− 1

2
√
pq
,

1

2
√
pq

[
1√

1− 4pqx2
− 1 =

B(x)√
1− 4pqx2

Ce qui donne : B(x) = 1−
√

1− 4pqx2 pour tout x ∈
]
− 1

2
√
pq
,

1

2
√
pq

[
.

12. • On a déjà vu que 4pq ∈]0, 1] (question 7), alors l'expression 1 −
√

1− 4pqx2 est
toujours dé�nie pour x = 1.

• B(x) =
+∞∑
n=0

bnx
2n est dé�nie en x = 1 si, et seulement si, la série

∑
bn converge.

∀n ∈ N∗ bn = P(Bn) avecBn = {[S1 6= 0] ∩ [S2 6= 0] ∩ · · · ∩ [S2n−1 6= 0] ∩ [S2n = 0]}.
La suite (Bn)n∈N∗ est une suite d'événements incompatibles deux à deux, alors par

σ-additivité, on sait que la série
∑

P(Bn) converge avec
+∞∑
n=1

P(Bn) = P

( ⋃
n∈N∗

Bn

)
.

L'expression qui dé�nit B(x) comme somme d'une série entière est dé�nie en x = 1

Partie III

13. Notons A l'événement � le point ne revient jamais à l'origine �, on sait que
P(A) = 1−P(Ā) et Ā est l'événement � le point revient à l'origine �(après un certain
nombre de lancers qui est obligatoirement pair d'après ce qui a été remarqué dans
l'énoncé).

On en déduit que Ā =
⋃

n∈N∗

Bn avecBn = {[S1 6= 0] ∩ [S2 6= 0] ∩ · · · ∩ [S2n−1 6= 0] ∩ [S2n = 0]}.

On obtient, comme vu précédemment, P(Ā) =
+∞∑
n=1

bn =
+∞∑
n=0

bn puisque b0 = 0.

On a d'après le résultat de la question 11 :

∀x ∈
]
− 1

2
√
pq
,

1

2
√
pq

[
B(x) =

+∞∑
n=0

bnx
2n = 1−

√
1− 4pqx2

Les deux expressions
+∞∑
n=0

bnx
2n et 1−

√
1− 4pqx2 sont dé�nies en x = 1 mais a-t-on

égalité de ces deux expressions en x = 1 ?



PSI Un corrigé du D.S. n°06 - Sujet B 12

• Si 1 ∈
]
− 1

2
√
pq
,

1

2
√
pq

[
, alors on a bien sûr l'égalité. C'est le cas pour p 6= 1

2
comme vu en question 7.

• Si p =
1

2
, alors R = 1 et 1 /∈]−R,R[.

Mais puisque la série
∑

bn converge et est à termes positifs, on obtient la conver-

gence normale sur [−1, 1] de la série de fonctions
∑
bnx

2n, alors
+∞∑
n=0

bn = lim
x→1−

B(x) = lim
x→1−

1−
√

1− 4pqx = 1−
√

1− 4pq.

Finalement dans tous les cas B(1) =
+∞∑
n=0

bn = 1−
√

1− 4pq.

On en déduit que P(A) = 1−B(1) =
√

1− 4pq, or

1− 4pq = 1− 4p(1− p) = 1− 4p+ 4p2 = (2p− 1)2 = (p− (1− p))2 = (p− q)2

La probabilité de l'évènement � le point ne revient jamais en 0 � est égale à |p− q|.

Fin du sujet


