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1 Les équations de Maxwell

1.1 Postulat de Lorentz
Une charge ¢; crée le champ électromagnétique {El(M , t),El(M , t)} en tout point M de

I’espace. Le postulat de Lorentz donne la force exercée par :

. . . . . —>
e ¢ sur une charge g, située en M, et animée de la vitesse vo(1) :

Fi9 = qa(E1(Ma,t) + Ua(t) A B1(Ma,t))

e un ensemble (S) de charges créant le champ électromagnétique {E (M,1), B (M, t)}

La force qu’exerce (S) sur une charge ¢ située en M a t résulte de la somme des forces
dues a chaque charge constituant (S) :

F=qE(Mt)+ Tt) AB(M,1))

e Les charges et les courants sont sources d’un champ électromagnétique (E , E) Inverse-
ment, Le champ électromagnétique (E , E) agit sur les sources via la force de Lorentz. Il
en résulte que les sources sont fonction du champ électromagnétique lui-méme fonction
des sources. On a un systéme bouclé.

1.2 Les équations

Entre 1864 et 1865 Maxwell a postulé ces 4 équations pour déterminer le champ électromagné-
tique en tout point M de l'espace et & tout instant .

@ Le champ électromagnétique {E (M, t); B (M, t)} créé au point M a la date t est relié a

ses sources { p(P,t); 7(P, t)} situées en P a t par les équations locales de Maxwell :

Maxwell-Gauss (MG) div(ﬁ) _r
€0

—— OB

Maxwell-Faraday (MF) rotFE = — o

—

Maxwell-flux (M®) div(B) =0

— — E
Maxwell-Ampére (MA) RB =uo( g + 6088_75)



1.3 Théoréme de superposition

Si les sources {pl J 1} et { 02 72} créent les champs électromagnétiques respectifs {E 1(M, t); B (M, t)}
t {E}(M, t); BQ(M, t)} alors les distributions :

p(P,t) = Aip1(P,t) + Aapa(P 1)
et 7(Pit) =M\ 71(Pt)+ A ja(Pt)
créent le champ électromagnétique F (M, t) = A\ El(M, t)+ AQEQ(M, t)
et B(M,t) = M By (M, 1) + Ny Bo(M, 1)

La linéarité des équations de Maxwell entraine la validité du théoréme de superposition.
En effet, tous les opérateurs (rot div et 8) sont linéaires.

1.4 Les différents régimes

Les champs E et B sont découplés seulement en régime stationnaire (fréquence f = 0).

En régime variable (f 7é 0), les sources de E sont les charges (p = ,011e + Plibre) €t les
variations temporelles de B Les sources de B sont les courants j phbrev et les variations
temporelles de E. On appelle vecteur courant de déplacement ] 4= €0 a@t En régime vari-
able, les sources (courants et charges) rayonnent un champ électromagnétique. Cette Onde

ElectroMagnétique (OEM) est due au couplage entre E et B cest-a-dire a (MF) et (MA).

L’ARQS est approximation des régimes lentement variables (0 < f < fo).

Si on impose des courants, alors on est dans I’ARQS magnethue 8E 0

Si on impose des charges, alors on est dans ’ARQS électrique % 83 & 6)

2 Propriétés de symétrie du champ électromagnétique

En régime variable, on etudle les symétries et les invariances de l’ensemble des sources
(charges p ET courants j ) pour en déduire celles du champ électromagnétique (E B ).

e Une invariance par translatlon ou par rotation des sources induit la méme invariance du
champ électromagnétique (E B)

e En un point M d’un plan de symétrie des sources, E (M) est contenu dans ce plan alors
que B(M) est orthogonal & ce plan.

e En un point M d’un plan d’antisymétrie des sources, E (M) est orthogonal & ce plan alors
—
que B(M) est contenu dans ce plan.
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3 L’énergie électromagnétique

3.1 Puissance fournie par le champ EM aux porteurs de charges

Un porteur de charge de type ¢ placé dans le champ électromagnétique {E , B } ;

subit la force de Lorentz 71 = qZ(E + U; A E)

?Z- développe la puissance p; = ¢; v, - B

Dans le volume mésoscopique d7 les n; d7 porteurs de charges subissent le méme champ
électromagnétique. La puissance totale développée est :

dP; = pin;dr = n;q; V; - Edr

La puissance totale développée par tous les types de porteurs de charges dans le volume
meésoscopique dr est :

N
i—1
N

or par définition j = Z niq; Ui
i—1

—

dot dP = 5 - Edr

QO La puissance volumique (en W.m™?) fournie par un champ électromagnétique a des por-
teurs de charges est :

_7.B

o &
TS

Remarques :

e Dans le cas _gl’une antenne réceptrice, les charges recoivent de la puissance de la part du
champ (F, B) d'ou j - E > 0.

e Dans le cas d’une antenne émettrice, les charges en mouvement rayonnent de la puissance
—
dou 5 - £ <O.

. . ) - 2 . 2
e Un conducteur ohmique est toujours récepteur car 3 = vE d’ou ‘(11—7) =L >0
Ty
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3.2 Equation locale de Poynting

- 1 —-— aﬁ
D'aprés (MA) j = —1otB — 290
aprés (MA) ’uoro €0y
> > 1> OE
7 E="FE-1otB —eE -2
Ho ot
or Pdiv(E A B) = B 1ot E — E - 10t B
d'ot E -1otB = B - ot E — div(E A B)
> > 12 0B OE 1 . = =
or (MF) y -F=——B-— —gF — —div(E A B)
Ho ot ot po
» >  EAB._ 9 ,E B
—J - B =div( )+ (= + 5—)
Mo ot 2 2#0

3.3 Grandeurs énergétiques associées & un champ EM

On définit un R.

O Par définition, le vecteur de Poynting R (en W.m?) est le vecteur densité volumique
de courants d’énergie électromagnétique :

. EAB
R —
Ho

Le flux du vecteur du vecteur de Poynting R représente la puissance électromagnétique P,,,

qui traverse (S) :
Pem = // R-dS
(S)

O La densité volumique d’énergie électromagnétique u,,, est définie par :

dUem €0E2 i B2 i
Uem = - 5 — Ue Um
dr 2 2110 :

O Le bilan local de puissance électromagnétique est 1’équation locale de Poynting,
appelé aussi théoréme de Poynting :

OUem

ot

- -

—j - E=div(R) +

3.4 Bilan énergétique sur un volume (V) fixe

Intégrons ’équation locale de Poynting sur un volume (V) fixe limité par la surface fermée (3)
orientée par sa normale sortante :
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_P€m,6hamp%porteurs - - /// 7 . E)dT = /// dlv(ﬁ) dr 4 /// auem dr
V) V) W) ot
d d
comme (V) est fixe /// Ottem dr = _(/// U AT) = Uem
v Ot At/ ) dt

Ostrogradski /// diV(ﬁ)dT = # R - dgext = Pem,(V)—eat
) (%)

dUem = _Pem,champ—)porteurs dt — Pem,(V)%ext dt

La puissance électromagnétique :

e sortant de (V) est P, (v)—ext €changée avec I'extérieur.

e cédée par le champ électromagnétique aux porteurs de charges contenus dans (V) est

’Pem,champ—morteurs .

Le bilan d’énergie électromagnétique pendant entre ¢ et £+ d¢ sur le volume (V) fixe exprime
que 'augmentation d’énergie U, est due a I’échange d’énergie avec l'extérieur (flux du vecteur
de Poynting) et a la création d’énergie par les porteurs de charges.

dUem = 5Uem,e + 5Uem,c
dUem = Pem,ext%(l)) dt + Pem,porteurs—)champ dt

4 L’ARQS
4.1 Temps de propagation

Les sources du champ électromagnétique {E (M, 1), B (M, t)} ressenti en M & t sont les charges

et les courants {p(P, t); T(P, t)} situés en P. En régime variable, 'état des sources a (t — 7)

détermine le champ électromagnétique en M a t. Le retard 7 di & la propagation vaut 7 = £M4

En régime stationnaire (pas de dépendance en temps) les retards sont sans effet. En régime
variable la situation est complexe puisque les retards sont différents pour les différents points
P d’une source.
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O L’approximation des régimes quasi stationnaires (ARQS) est un régime lente-
ment variable qui consiste & négliger les retards de propagation 7 en régime variable
devant I’échelle caractéristique 7' = 1 des variations temporelles des sources Tpas = % LT
soit L < X\ = T ou L désigne la taille du systéme et A la longueur d’onde de ’'OEM.

en TP f < 10 MHz
soit T > 1077
ARQS si L < 30m

La taille des circuits étudiés satisfait cette condition.

5 ARQS magnétique

5.1 Définition

Dans le cadre de ’ARQS magnétique les courants dominent les charges p?.c <1
Simplifions I’équation de conservation de la charge div( j ) + ap =0:

A
ot ~

div(7)

_pcL
— <1
ch<<

hlh-lﬂlb

Le terme g—f ne peut pas compenser le terme le(_)) La seule possibilité est donc que

diV(?) = 0. La loi des noeuds est donc valide.

Montrons que le vecteur densité de courant de déplacement £,2% at E oot négligeable :

EQ[LQ|8—[;| CQ% - E D
p— B~ 5 5
[t(B)]] 5 BT
E B
d’ MF) — ~ —
or d’aprés ( )D T

e |3E|
doi oMol 51

—— & <1
[rot(B)|| T

Sous quelle forme est I’énergie électromagnétique dans ’ARQS magnétique ?

E? 2
Uel €05 - E <1
U, B2 c2B?
210

Dans le cadre de ’ARQS magnétique L < A, 'énergie électromagnétique est essentiellement
sous forme magnétique et les équations de Maxwell s’écrivent :
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(MG) divE = 2

€0
— (‘9§
MF tf = ———
(MF) 1o 5
M®) divB =0

—

(MA) 10t B ~ puo j

L

5.2 Conséquences

Le théoréme d’Ampeére est le méme en régime stationnaire que dans ’ARQS magnétique. Ainsi
les champs B suivants sont valables dans I’ARQS magnétique :

pnot(t) —>

e un fil rectiligne infiniment long B = o’ Ug

o un solénoide : B = nuoi(t) .

Les phénomeénes d’induction électromagnétique étudiés en lére année reléevent de
I’ARQS magnétique.

5.3 Etude d’un solénoide
5.3.1 Champ magnétique

Soit un solénoide d’axe (Oz), de rayon R comportant n spires par unité de longueur, assez long
pour négliger les effets de bord, parcouru par un courant d’intensité i(¢) lentement variable a
la fréquence f telle que ’ARQS magnétique est validée : R < \ = % Le champ magnétique

—

i
s’approxime a celui calculé en régime stationnaire avec le théoréme d’Ampére : B(M,t) ~ By :

a lintérieur §(M, t) = poni(t)d,
a lextérieur E(M, t) = 0

5.3.2 Les équations de Maxwell

Dans le vide, c’est-a-dire en dehors de la source de courant, p = 0 et 7 =0 :

&5t
I
o

(MG) div

el

OB di_,

MF) & Dintéri s
(MF) a l'intérieur ro %

I
|
%
~~
|
=
=
S

(MF) a l'extérieur ro
(M) di
(MA)

=

ol o) o o
I

Q

1
I
ol © o

—
o
=
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5.3.3 Calcul du champ électrique

Les variations temporelles de B (M, t) induisent un champ électrique E (M,t) d’apres (MF). 11
y a deux facons de calculer E (M, t).

1ére fagon :

On considére un point M(r, 0, z) quelconque de I'espace.

Le plan (M, @,, ©.) est un plan d’antisymétrie du solénoide parcouru par i(¢). Donc E (M)
est orthogonal a ce plan soit E (M) = Eug. Le solénoide est invariant par translation selon
(Oz) et par rotation d’angle 6 autour de (Oz) d’ou :

E(M) = E(r)T,

On calcule la circulation de E le long de la ligne de champ (£) de E qui passe par M
c’est-a-dire le cercle de rayon r et d’axe (Oz) :

yﬁ E~d7:§1§ E(r)@y-dl
() (o)

Théoréme de Stokes §I§ E-dl = // ol E - dSu,
(£) (Sa)

/ B 6 = 200 E ()

di R T N di
si M est extérieur 2nrE(r) = —uon—ZQW/ rdr+ / 0-dSu, = —uonle2
dt  J R dt

di " di
si M est intérieur 27rE(r) = —uon—ZQW/ rdr = —,uon—Zm“Q
dt J dt

R = ponr di _,
a l'intérieur £ = — —Uu
2 dt °
N L. - /JJ()TLRQ dl_,
a Vextérieur £ = — — U
x 2r dt o

2nde fagon :

On remarque que (MF) est analogue & r@ﬁ = ,u07 avec 7 = jU, a lintérieur et 7 =0
a 'extérieur du cylindre infiniment long de rayon R et d’axe (Oz). Il y a donc une analogie
avec le cable cylindrique parcouru par des courants dans tout son volume. L’application du
théoréme d’Ampére conduit a :

NETTIUYNE - 0 Y8

a l'intérieur B = HoJ 0o
-RQ

N ) s =t /"LOJ b d

a l'extérieur B = 5 Ug
r

E est analogue a B et 7 est analogue a —n%. D’ou :

T = ponr di _,
a l'intérieur £ = — — U
2 dt ’
N L . =1 MonRz dl__,
a l'extérieur £ = — — U
2r dt o
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5.3.4 L’équation de Maxwell-Ampére

Examinons (MA) en un point M en dehors des sources de courant :

— 8E
tB=0
ro + Mo€o— 875
— 2 = - 1 8E
t(B = —
rot(Bo + B1) c? Ot
— — 1 0F
0 +10iB; = —

L’ARQS consiste a négliger devant Bo le champ B1 induit par 2£ 7é 0 d aprés (MA).

5.3.5 Energie életromagnétique

Calculons I’énergie magnétique U, et I'énergie électrique U, contenue dans le solénoide :

B2 )2 1
U = /// o) ey Ly
(solénoide) 2;“0 2#0 2
2
Cpe_ € (1o dz) / ) €ofty W2 R di
Ug = — | ——=n— 2nrdrl = Ré(
///(wlenmde 2 ( 2 dt 0 16 dt
Us 1di\* R*1 R*> 1 /(R\’
Un 80 idt) Tser 8(cT)? 8\ A

Dans ’ARQS magnétique 1’énergie électromagnétique est principalement sous forme mag-
nétique.

5.3.6 Bilan d’énergie

Exprimons le vecteur de Poynting sur la face intérieure du solénoide :

- EATB’ Rdi i "R _di
R(r=R",t) = _ Holt Zu /\_Momuz — _Ho® 1

La puissance électromagnétique instantanée regue par le solénoide est le flux entrant de R
a travers sa surface latérale :

. R di
- —/ Rir = B 1) -asw, = 1019y
Slat) 2 dt
. 1
—/ R(r=R",1)-dSW@, = da (—Li2>
(Star) dt \2
dU
) = /™
p(t) i

La puissance p(t) rayonnée a l'intérieur du solénoide fait augmenter I’énergie magnétique
U = 3Li? stockée dans la bobine.
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Dans le vide et dans ’ARQS magnétique, B se calcule avec le théoréme d’Ampére comme
en RS :

Maxwell-Gauss (MG) div(E)) =0
- B
Maxwell-Faraday (MF) 1ot E = —%—t
Maxwell-flux (M®) div(B) = 0
Maxwell-Ampére (MA) rotB ~ 0
U Up,

5.4 Effet de peau

On place un bloc de métal placé a l intérieur d’'un solénoide parcouru par un courant _@’intensité
variable i(t) de densité volumique j O(M t). En un point M des spires du solénoide jo(M,t) #
0 et j O(M t) = 0 ailleurs.

Le champ magnétique BO(M t) créé par j O(M t) est d’ apres (MA) rotBo ,uoyo.
D’aprés (MF), BO(M t) variable induit E, (M, t) tel que rotE1 9B

Or dans le bloc de métal et dans les spires du solénoide E 1 crée un courant induit de densité
volumique j 1= ’yE 1 d’aprés la loi d’Ohm locale.

Les courants de Foucault (eddy currents en anglais) sont les courants induits dans un
couducteur massif.

: BB — = -
Dans les spires du solénoide rot(By + B1) = ,uo(j 0+ ] 1+ eanl) avec r B = g jo. Le
champ magnétique propre (auto-induit) vérifie donc :

9Eq|
Dans PARQS magnétique ~2-2— col -

TET R 60f < 1 dans ’ARQS magnétique.

Dans un conducteur et dans I’ARQS g%nethue raﬁ ,uoy = uoq/ﬁ
La loi des nceuds reste valable : div(rotB) = po div( j ) 0.

D’ou div(’yﬁ) ’ydiV(E) =0 or div(ﬁ) =£

Dans ’ARQS magnétique, le conducteur reste neutre p = 0.

La force de Laplace dF';, =id 7 A B reste valable.
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— > — —>
rotBy & o j1 = poyEy

B
en odg fl ~ oy Er

— = 8§0
th] = ———
ot ot
E B
enodgfl% TO—BOf
1
d’ou B = BO—'UO;ML
L2
Bl ~ Boﬁ

L’épaisseur de peau est définie par

5 [ 2
foYw

Si la dimension du bloc de métal est L < ¢ alors le champ magnétique auto-induit
(propre) Bj est négligeable devant le champ magnétique inducteur Bj.

Si L < 0 n’est pas validée alors dans le métal (neutre p = 0) :

Maxwell-Gauss (MG) div(E ) =0

oB
Maxwell-Faraday (MF) rotE =5

Maxwell-flux (M®) div(B) =0
Maxwell-Ampére (MA) ol B ~ M07 = uoyﬁ

6 ARQS électrique

6.1 ARQS électrique dans le vide

Soit un condensateur plan dont les armatures, de taille caractéristique L, sont connectées & un
générateur de tension lentement variable a la fréquence f < £.

Le champ électrique dans le condensateur (entre les armatures) s’approxime a celui calculé
Ey = o) 1_[,2

en régime stationnaire avec le théoréme de Gauss : <

Un champ magnétique §1(M ,t) est induit par 8E° =+ 0

Lycée Janson de Sailly 11 F.DESOMBRE



— = =g 1 850
d’aprés (MA B =0+—=——
aprés (MA) rot + 2
L

d’olt en odg By ~ EO—

I’énergie magnétique u,, =

B L*fE§ _ (L>26 E2

20 A2 2 V2
S5 - OB
d’apres (MF) IGt)(Eg + FE,) = _8_151
- 0B
0+ 1"—Ot>(E1) = _8_751
d'oienodg Ky~ B, L f
2
dans 'ARQS électrique F; ~ Fy— 2 <L By
E? E2
I’énergie électrique u, = 607 ~ 607

Dans le vide et dans ’ARQS électrique (L < \), E se calcule comme en RS avec le théoréme
de Gauss :

Maxwell-Gauss (MG) div(E ) 0
Maxwell-Faraday (MF) 1otE ~ 0
Maxwell-flux (M®) div( 0

B) =
Maxwell-Ampeére (MA) rot rot B ~
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6.2 Etude d’un condensateur plan

6.2.1 Calcul du champ magnétique induit

A Z
— — i
On considére un condensateur plan d’épaisseur e dont les Ey=0 !
armatures sont des disques d’axe (Oz) de rayon R > e !
de sorte qu’on néglige les effets de bord. !
L’application du théoréme de Gauss donne : L
T3
—q(t) l
z olt) . _ qlt) i ‘
Eo(M,t) = U, = U w
o(M,?) e mR% .
N u
Calculons le champ magnétique induit B;(M,t) en un E’O — oWy iOz
point M quelconque situé a l'intérieur du solénoide. [ «©
Les sources (les charges ici) sont invariantes par rotation

autour de (Oz) et le plan (M, d,, u,) est un plan de
symétrie. Donc B (M, t) est orthogonal a (M, @, )
soit By (M,t) = By(r, z,t) Te.

On calcule la circulation de §1(M ,t) le long d’une ligne
de champ (£) de B :

+q(t)

1)
I
=

515 Bl(r,z,t)m-dm@:// rot By - dST.
(L) (S)

1 OF
d’aprés (MA) 27rBy(r, z,t) = // —2% -dSU,
c

21r By (r, 2, t) 02 5% // 7TR2€() dSu,

7 )
L= 27T R2

6.2.2 Bilan d’énergie

E2 E2 q2 e (]2
Ue = V(g L rRe=— | — ) =
ﬂondensateur « - 2 " ‘- 2 (608) 2C

B2 R q 9 -2 41 R )
Um:/// 214 / _(@L) orredy — H09C || _ HodTe
condensateur 2“0 0 2,“0 2m " R? ATRY | 4 0 167
oo Un R (¢\' R R* R
ARQS électrique 0.~ s \g N~ TeE — F <1

La puissance électromagnétique regue a 'instant t par l'intérieur du condensateur (cylindre
d’axe (Oz), de rayon R et de hauteur e) est le flux entrant du vecteur de Poynting a travers la
surface latérale :
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Eo A B,
pt) = —/ R-dST, = // 2o AP s,
(Sla,t) Slat) MO

1 - Mo qqe qq
t) =— N 5 Wo)2nRe T, = =4
p(t) ,uo(ﬂ'R2€0 s R2 ug) mhei 7TR260 C

d [ ¢ dUe
t = — —_— p—
) =g (20 ) dt

La puissance p(t) rayonnée a U'intérieur du condensateur fait augmenter I’énergie électrique

2
U, = g—c stockée dans le condensateur.

7 Lois de I'induction dans I’ARQS magnétique

7.1 Force électromotrice

Considérons 'exemple d’une spire filiforme dont le métal a une conductivité électrique v. A
quelle condition, en régime établi, est-il possible de faire circuler un courant d’intensité i(t)
dans la spire ?

Appliquons le TEC & un électron de conduction pendant un tour de spire dans le cadre du
modeéle classique de Drude :

AEc:—eyﬁ E-d7+7§ Fp-dl
© ©

Si gS(C) E-d7 =0 alors AE, = gS(C) Ffr .d7 < 0. La force de friction ﬁ)fqn = M7 st 1ésis-
tante. L’électron perd donc de I’énergie a chaque tour. Le courant ne peut étre que tran81t01re
En régime établi, le courant est nul.

Il est donc nécessaire que ﬁ(c) E.d7 # 0 pour quun courant i(¢) non nul circule dans la
spire en régime établi. N

La force électromotrice e en V est définie par e = jﬁ(c) E-d/?

Le métal qui constitue la spire est un conducteur ohmique de résistance R soumis a un
générateur de fem e :

6255 E-d?:yﬁ i-d?:yg Jsdz_zyg i:igﬁ dR = Ri
(© © 7 © 75 @75 o
La définition de la fem e permet bien de retrouver la loi de I’électrocinétique e = Ri

Le champ électrique n’étant plus a circulation conservative, on peut le décomposer en :

E = —gradV + Em

55 7. 7:0+§1§ B Al =
©) ©)

Sur une portion AB de circuit :

B—> — B—» —
/ E-dE:VA—VB—i—/ E,-d¢
A

de sorte que

o
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O Le champ électromoteur & circulation non conservative est responsable de la fem e :
§l§ ﬁm . d? =e
(©)

On retrouve la loi d’Ohm généralisée :

RABi:VA—VB+€

7.2 Lois expérimentales de I’'induction

On crée un champ magnétique avec un aimant droit (inducteur). On prend une spire (con-
ducteur) non reliée & un générateur.

Expérimentalement, on constate que si on éloigne ou si on rapproche 'aimant de la spire
maintenue fixe alors un courant est induit dans la spire. Le courant est d’autant plus
intense que la vitesse de déplacement de 'aimant est grande. Le sens du courant ¢ induit
s’'inverse si le rapprochement devient un éloignement.

On appelle induction de Neumann (a) et (b) le cas ou le conducteur est fixe dans
un champ magnétique variable.

Inversement, si on éloigne ou si on rapproche la spire de 'aimant maintenu fixe alors on
mesure le méme courant induit dans la spire pour la méme vitesse relative.

On appelle induction de Lorentz (c) et (d) le cas ou le conducteur est mobile dans
un champ magnétique stationnaire.

©) ® © @
S I S S S
I N N N N
face nord face sud

Le courant induit dans la spire crée un champ magnétique auto-induit dont le flux propre
tend a s’opposer a 'augmentation (a)/diminution (b) du flux du champ inducteur.

Si le conducteur est en circuit ouvert alors avec un voltmétre on mesure une fem e d’induction.
Si le conducteur est en circuit fermé alors la fem e d’induction génére la circulation d'un
courant ¢ induit.
Par convention, la fem e induite est reliée au courant i induit par la convention généra-
teur.

8 Induction de Neumann et ses applications

8.1 Loi de Faraday

On démontre la loi intégrale de Faraday a partir de ’équation locale de Maxwell-Faraday :
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9B

ot
L. — —
théoréme de Stokes 35 rotl -dSn

Ed?://
©) (S)
e:—// 8—B-dsﬁ:—ﬁ// B-dST

Le conducteur étant fixe le flux magnétique ¢ = ] f( s) B - dS7 ne varie que par rapport au
temps.

—
rot

=

Q D’aprés la loi de Faraday, une variation temporelle du flux magnétique induit une force
électromotrice e telle que :

do
At
QO Le signe — traduit la loi de (modération) Lenz :
la fem e induite tend, par ses conséquences, a s’opposer aux causes qui 1’ont produites.

e =

Par auto-induction, le courant i induit crée un champ magnétique dont 1’effet, conformé-
ment a la loi de Lenz, est de s’opposer a la variation du flux magnétique du champ inducteur.

8.2 Chauffage par induction

Soit un solénoide d’axe (Oz) parcouru par un courant i(t) sinusoidal. En négligeant les effets
de bord, cette bobine crée le champ magnétique Eo(t) = npoi(t) @, = Bycos(wt)W, en posant
By = nuoly,.

A TDintérieur de la bobine, on place un bloc de métal cylindrique, de rayon R, d’axe (Oz),
de longueur ¢ et de conductivité électrique ~.

8.2.1 Analyse physique

dBo
dt -
dg} bloc de métal. D’aprés la loi d’Ohm locale des courants de Foucault de densité j, =

vE, apparaissent dans tout le volume du conducteur qui constitue I’induit. L’effet Joule
produit par les courants de Foucault est responsable d'un échauffement de I'induit.

La bobine constitue I'inducteur car #+ 0. Elle induit un champ électrique E 1 a l'intérieur

8.3 Courants de Foucault induits

On détermine le champ électrique E 1 induit puis 71.

On considére un point M(r, 0, z) quelconque de lespace. Le plan (M, ., u.) est un plan
—

d’antisymétrie du solénoide parcouru par i(t). Donc E(M) est orthogonal a ce plan soit

E (M) = EUy. Le solénoide est invariant par translation selon (Oz) et par rotation d’angle 6
autour de (Oz) d’ou :

El(M) = El(T>Ug
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On calcule la circulation de E; le long de la ligne de champ (£) de B, qui passe par M
c’est-a-dire le cercle de rayon r et d’axe (Oz) :

2m
e:yé Ei-d/ :¢ Ei(r)ue-d? :/ rEy(r)df = 2nrEy(r)
(£) 0

(£)
PN = - — 3 —
Théoréme de Stokes e = 55 E,-d/¢ = / rotF; -dSu,
(£) (Sa)
. o di [T di
si M est intérieur 2nrEy (r) = —pon—27 [ rdr = —pgn—mnr
dt B dt
E, = —'u[gwd—iu@ = npol,— sin(wt)wy = dl sin(wt) we
o B .
loi d’Ohm locale j(r,t) = Rindd sin(wt) Wy
> ji

loi de Joule locale p, = 71 B ==
Y
La puissance électromagnétique totale induite dans le métal est dissipée sous forme d’énergie
thermique par effet Joule :

R _ ;2 2 2 R

< t) > Biw?2ml

PJ:/// < Py >t dT:/ M?WMdr:M<sin2(wt) >t/ 3 dr
V) 0 v 4 0

1

< sin*(wt) >, = 3

Ce chauffage par induction produit la puissance thermique :

_ yBjw?R'rl
B 8

Les plaques a induction _f)onctionnent sur ce principe. L’inducteur est un bobinage
qui crée le champ magnétique By(t). L’induit est le fond de la casserole métallique posé
sur la plaque.

Py

Remarque : N
Dans ce calcul, on a négligé le champ magnétique propre B (auto-induit par les courants
. . =2 =1 B
de Foucault) devant le champ magnétique inducteur By. En effet, (MF) s’écrit rot £y = —%—f
- - — 2
ou B = By + Bj est le champ total. Cette approximation est valable si R < § ou 6§ =
Y oW
est I’épaisseur de peau.
2
A f = 50Hz (fré d t étal 0 = ~ 2cm.
f z (fréquence du secteur) pour un méta \/107 107 < 9750 cm

Cette fréquence est assez basse pour que R > 9§ et donc El n’est pas négligeable.

8.4 Feuilletage d’'un conducteur

Si le chauffage n’est pas le but, alors la puissance P;(oc R*) constitue une perte qu'il faut
chercher & minimiser. C’est le cas dans un transformateur ol le matériau ferromagnétique
utilisé pour canaliser les lignes de champ est conducteur.
On remarque que Pj est proportionnelle a la section droite Sz = (7R?)? du conducteur.
On divise le cylindre métallique en N cylindres identiques de longueur ¢ et on intercale des
feuilles isolantes entre chaque cylindre.
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La section droite de chaque petit barreau est S’ = % c’est-a-dire de rayon R’ tel que
TR? = ”TRQ. La puissance totale dissipée par les N barreaux vaut P, oc NR = NN—If = %4

Le feuilletage est une technique qui consiste a diviser le bloc métallique en N blocs séparés
par des feuilles d’isolant. La puissance perdue par effet Joule est ainsi divisée par N.

8.5 Calcul du champ magnétique propre

Les courants de Foucault de densité ] 1 dans I'induit metalh_(lue générent un champ magnétique
propre B 1. A quelle condition le champ magnétique propre B, créé par les courants de Foucault
est-il bien négligeable devant le champ magnétique inducteur Bo

Une couronne cylindrique comprise entre 7’ et 7' + dr’ parcourue par des courants de Foucault
orthoradiaux de densité 71(7" , )y est équivalente a un solénoide de rayon 7’ et de longueur ¢
infinie (on néglige les effets de bord).

A Dextérieur de ce solénoide, dB;(r > r',t) = 0. A lextérieur é? linduit mé_t}allique
c’est-a-dire a 'extérieur de tous ces solénoides (en un point M du vide) By(r > R) = 0

A Tintérieur de 'induit en M repéré par r < R, El(r, t) est la somme des champs créés
par les solénoides de rayon r’ > r de sorte que M soit & I'intérieur de ces bobines. On calcule
By(r,t) = By(r,t)u . avec le théoréme d’Ampere appliqué sur un contour rectangulaire ABCD
situé dans un plan méridien (M, u,, @.) et tel que AB = CD = { paralléle & @ :

_) - R R
¢ -d f enlace = Mo / dIenlacé,“O / jl (T/a t)l dT/
ABCD r T

B R
[ Bi(r,t) = pg i 20w sin(wt) / r’ dr!

— B N
Bi(r,t) = o 40” sin(wt) (B2 — r) T,

2 .
B t
sur I'axe (Oz) Bi(r =0,t) = BO’MO; % sin(wt) @, = By (E) sin(w )TL)Z

Le champ propre El auto-induit par les courants de Foucault est négligeable devant le

[ 2
champ inducteur Eo siR<doud = représente ’épaisseur de peau du conducteur
Y oW

métallique.

8.6 Epaisseur de peau dans un conducteur semi-infini
8.6.1 Caractére diffusif de I’effet de peau

Considérons un bloc de métal parallélépipédique dont les trois dimensions sont trés grandes
devant I’épaisseur de peau 9. On le place a I'intérieur d’une bobine qui crée le champ magnétique
Bo = By cos(wt)d, en absence du métal. Le bloc est invariant par translation selon (Oz) et
(Oy). On note ¢ > ¢ sa dimension selon (Ox).

Lycée Janson de Sailly 18 F.DESOMBRE



z
A
|
|
|

vide | peau du métal métal
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_l’_
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(MG) divE =0
~ 0B
(MF) 1ot E = -
(M®) divB = 0
— > — —
(MA) rot B &~ po j = povE

rot(rot B) = grad(div(B)) — AB
uovmﬁ =0- AB

On reconnait une équation de diffusion :

-

AB = MO”YW

En tenant compte de U'invariance du bloc métallique par translation selon (Oz) et (Oy), on

2B OB
o2 =M 5p

On impose un champ 1_3)0 sinusoidal de pulsation w. On cherche donc une solution en
régime sinusoidal forcé de la forme B(z,t) = b(x)cos(wt + ¢(x)). L’équation de diffusion
étant linéaire, on résout en complexe :
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»*B _ 0B
7 %

avec B = E(:IJ) exp(iwt)
28 - 2
Lz~ oywb =ish

E(%ﬂ = ;\)+ exp(%) exp (iwt + %) + X exp(—%) exp (iwt — %)

continuité en x = 0

=)

Si x — oo c’est-a-dire si z > § alors le champ ne doit pas diverger d’ot ;\:L =
D’apres la relation de passage a 'interface vide-métal

-

E(x:0+,t)—BOUZ:pOjSA Uy

Absence de courant surfacique soit 73 — 0. Dot la continuité du champ a U'interface vide/mé-
talen z =0 d’ou :

E(x =0,t) = X exp(iwt) = By exp(iwt) U,

Les courants de Foucault 7 = ’yE) induits dans le métal (par §Q(t>) créent le champ propre

B 1 négligeable dans la peau du métal mais pas au-dela.

B = B, exp(—%) Ccos (wt — g)?[z

Le probléme est analogue aux ondes thermiques qui se propagent dans le sol dues a des

variations de la température au niveau du sol.

On déduit le champ électrique dans le métal de (MA) :

povE =10t B = W
=2 (1+Z) By T\ By . . T\
E = 3 mexp(zwt —zg) y = 1070 exp(zwt — 25 —|—ZZ> Uy
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At=0 champ E = exp(—x/6)cos(x/&)

08

Champ E

02

0.0

o 1 2 3 4 5 ]
alpha=x/6 en rad

Q les champs magnétiques et électriques dans le métal sont des ondes évanescentes, c’est-
a~dire des OPPH qui se propagent dans le sens des x croissants et dont ’amplitude décroit (dans
le sens de propagation) sur la I’épaisseur de peau

2
%%

5=

. Les courants 7 = vE) ne circulent que dans la peau.

L’effet de peau est le phénoméne diffusif par lequel une OEM ne pénétre dans un
conducteur ohmique qu’au voisinage de sa surface c’est-a-dire dans la peau. L’épaisseur de
peau représente ’échelle de la propagation.

Q Pour le cuivre & 50 Hz, 6 ~ 1 cm En TP, on utilise des fils électriques en cuivre d’épaisseur
de l'ordre du mm (< 6) et donc il n’y a pas d’effet de peau.

DC 1MHz 1GHz 1GHz

En régime continu (DC), la fréquence est nulle, § — +oo donc exp(—%) — 1. Absence
d’effet de peau : POEM occupe tout le volume du conducteur car il n’y a pas d’induction (le
champ magnétique propre est nul).

8.6.2 Cas du conducteur parfait

Le conducteur parfait est le cas limite pour lequel les OEM ne pénétrent pas :
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0 —>0 avecw # 0 dou vy — o0
E’int:ﬁ et Eint:()’

Les courants 7 et les charges p ne peuvent étre que surfaciques.

8.6.3 Limitation de l’effet de peau

L’effet de peau est en général nuisible car il augmente la résistance et donc les pertes par effet

Joule en diminuant la section S traversée par le courant (R = %é)

Les méthodes pour diminuer 'effet de peau sont les suivantes :

e diviser le conducteur en plusieurs conducteurs associés en paralléle et isolés entre eux,
chaque “brin” ayant un rayon inférieur a 9.

e plaquer le conducteur avec de I'argent (métal qui posséde la plus grande conductivité). La
composante continue du courant circule dans tout le volume et la composante alternative
HF ne circule que dans la pellicule d’argent.

e adopter une géométrie tubulaire : I’épaisseur du tube creux est de 'ordre de 9.

9 Induction de Lorentz

On étudie le cas d'un circuit mobile dans un champ magnétique stationnaire (créé par un aimant

fixe). On repére la position du circuit par x dans le référentiel du laboratoire et sa vitesse est

_do _
doncv—dt—x

9.1 Loi de Faraday

On démontre la loi intégrale de Faraday a partir de ’équation locale de Maxwell-Faraday :

9B
ot
R —> — — N
théoréme de Stokes 55 E-d?¢ = // rotl -dSn
(S

©) )
e——// 3—B-d5ﬁ_—§// B-dST

d t dzd
dérivée composée e = _do(z(t) __dedo —vuf(z)

dt dt dz

—
Iro

&3y

La fem e et donc le courant induit ¢ ainsi que la force de Laplace F L=¢i A7 A dépendent
de la vitesse v du circuit. La force de Laplace est une force de freinage électromagné-
tique de la forme F'; = —A(2)7 (frottement fluide avec A(z) > 0) qui s’oppose & $2 d’aprés
la loi de modération de Lenz.
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9.2

1.

= W

9.3

Méthode
Analyse physique du probléme
Orienter le courant c’est-a-dire choisir un sens positif de circulation de ¢ dans le circuit.
D’aprés la régle de la main droite la surface du circuit est orientée par 77.

Exprimer le flux magnétique ¢.(z) coupé par le circuit dans son mouvement. Le flux
propre ¢, = Li est le flux du champ magnétique propre (auto-induction) créé par le
courant induit 7. Le flux total est ¢ = ¢.(x) + ¢,. Négliger 'auto-inductance L revient a
négliger le champ propre.

Appliquer la loi de Faraday pour exprimer la fem induite e en fonction de la vitesse v(x)
du conducteur.

Reéaliser le schéma électrique équivalent en adoptant la convention générateur pour représen-
ter e et 7. La loi des mailles donne 1’équation électrique.

Reéaliser le bilan des actions mécaniques sur le systéme mécanique mobile. Le TCI ou le
TMC donne I’équation mécanique. La force de Laplace agit comme une force de freinage
conformément a la loi de Lenz.

Cadre qui chute dans un champ magnétique localisé

Un cadre conducteur, constitué de 4 segments de longueur a, tombe dans le plan du schéma
sous l'effet de la gravité.

Sa résistance électrique est notée R et son autoinductance L.

L’espace est divisé en deux régions :

e pour z < 0, il n’y a pas de champ magnétique ;

e pour x > 0, il y a un champ magnétique uniforme, stationnaire et orthogonal au plan du

schéma.

107 +|

OF

0

Figure 1: Chute d’un cadre.

Etablir les équations différentielles régissant la vitesse v(t) du cadre dans les 3 régions :

e le cadre est entiérement dans la région B = 0 ;

—

e le cadre est a cheval sur les régions ou B=0et B £ 0.

e le cadre est entiérement dans la région ou B £ 0.

Lycée Janson de Sailly 23 F.DESOMBRE



9.4 Equilibre d’une tige

Une tige métallique OA de masse m, de résistance R et de longueur a oscille sans frottement
(liaison pivot parfaite) autour d’un axe fixe (Oz), perpendiculaire au plan de la figure.

Le moment d’inertie de la tige autour de (Oz) est J = $ma®.

La tige est en contact en A avec un rail métallique formant ainsi un circuit électrique sont
le seul élément résistant est la tige O A.

Elle est placée dans un champ magnétique uniforme B¢, normal au plan du systéme.

Figure 2: Equilibre d'une tige.

1. Déterminer I'équation différentielle vérifiée par 'angle 6(t) avec la verticale.

2. On se limite a de petites oscillations autour de la position d’équilibre. Linéariser ’équation
différentielle précédente.

Déterminer la valeur minimale B,,;, de B pour la tige atteigne sa position d’équilibre
sans oscillation.

3. Ecrire sans calcul 'expression du taux de variation de 1’énergie mécanique du pendule

df—tm en fonction de l'intensité i(t) qui circule dans la tige.

Retrouver la relation précédente a partir des deux équations électromécaniques couplées
utilisées a la lére question.

9.5 Rails de Laplace en pente

On reprend la situation des rails de Laplace, mais au lieu d’étre horizontaux, ils font un angle
« avec ’horizontale.

Le champ magnétique est uniforme et stationnaire et dirigé orthogonalement au rail.

On prendra B = 150mT, m = 8,0g, ¢ = 12cm (masse et longueur du barreau mobile),
a=30°et g =9,8m.s72. On néglige les frottements.

1. Faire un schéma en précisant le sens du courant pour que la force permette au barreau
mobile de monter le long des rails.

2. Calculer la valeur de i pour que le barreau monte & vitesse constante (on imagine qu’il a
une vitesse initiale...)

3. Calculer la puissance des forces de Laplace sur le barreau s’il met 0,5s pour augmenter
son altitude de 10 cm.
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9.6 Intéraction entre deux tiges

Deux tiges T et T; identiques, de masse m, chacune de résistance électrique % sont mobiles
sans frottement sur deux rails paralléles horizontaux espacés d’une distance a.

La résistance électrique des rails est négligeable devant R ; 'inductance propre du circuit
est négligée.

L’ensemble est plongé dans un champ magnétique uniforme et constant B = Beé,, et un
champ de pesanteur § = —gi,.

Initialement 75 est immobile et 77 se déplace vers Ty avec la vitesse vy = vgi,.

Les deux tiges restent paralleles a i, lors de leur mouvement.

Figure 3: Deux tiges en intéraction.

1. Expliquer sans calcul pourquoi la tige 77 ralentit alors que la tige 75 se met en mouvement.

2. Etablir une équation électrique reliant i(t), intensité du courant dans le circuit, a vy (t) et
vo(t). On note U7 = vy(t)u, et Uy = vo(t)i, les vitesses des tiges 77 et Ts.

3. Etablir deux équations mécaniques.

4. En déduire un systéme d’équations différentielles couplées sur vy (t) et vy(t).

Pour découpler les équations différentielles précédentes, on introduit la fonction somme
o(t) et la fonction différence §(t) définies par :

(a) Montrer que :

do

= -0

dt
dé 0
Z 4220
dt+7'

Déterminer 'expression de 7.

(b) Résoudre pour déterminer les solutions o(t) et o(t).
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(c) En déduire vq(t) et va(t).

(d) Représenter sur un méme schéma 'allure des graphes de vy (t) et vq(t).

5. Calculer I'intensité du courant i(t) qui circule dans les deux tiges.

6. Calculer la charge totale () qui circule entre t =0 et t — oo.

7. Déduire de i(t) Iénergie &; dissipée par effet Joule entre ¢t = 0 et t — oo.

8. Calculer la variation A&, d’énergie mécanique du systéme entre t = 0 et t — oo. Com-
menter.
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10 Inductance d’un circuit

10.1 Inductance propre

@ Le flux propre ¢, est le flux de B a travers le circuit qui crée lui-méme ce champ. Il est
proportionnel au champ B , lui-méme proportionnel au courant 7 (qui peut dépendre du temps).
L’inductance propre ou autoinductance L (en H) est le facteur de proportionalité positif
déterminé uniquement par la géométrie du circuit :

¢, = Li
avec [L] = [wo]-L
d’ott [pg] = Hm™!

En effet, d’apres le théoréme d’Ampére :

10.2 Inductance mutuelle
10.2.1 Deéfinition

Considérons deux circuits (C;) et (C2) parcourus respectivement par les courants i, et is.
L’orientation des courants i; et io détermine celle des surfaces des circuits (Cy) et (Ca).
Le flux noté ¢;_,» de §1 créé par (Cy) a travers (Cq) est proportionnel a By et donc a i;. On
définit I'inductance mutuelle M par :

P12 = Mioiy
de méme ¢2_>1 = MQl’iQ
avec M12 = M21 =M

Le signe de I'inductance mutuelle M (en H) dépend de l'orientation relative des deux circuits.
En revanche I'inductance propre L est toujours positive. La valeur absolue de M dépend de la
géométrie de I'ensemble.

Exprimons les flux magnétique totaux a travers chaque circuit :

O1 = Op1 + Pas1 = Lyt + Miy
G2 = Qpa + P12 = Loto + M1y

10.2.2 Exemple

Soit le circuit (C;) constitué d’un fil rectiligne infiniment long confondu avec l'axe (Oz) et
parcouru par le courant d’intensité i; positif dans le sens de (Oz).
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Soit le circuit (Cy) constitué d’un tore d’axe (Oz), de rayon intérieur R de section carrée de
coté a et parcouru par le courant d’intensité 7.

On a montré que le fil crée 31 ’%_’9
N
On a montré que le tore crée By, = 0 a l'extérieur et 32 = & gN” 9 & l'intérieur du tore.
On a pris le sens de rotation de iy lié & Wy = —71 = — Uy par la régle de la main droite.

Le flux de B 1 & travers les N spires du tore vaut avec dSs = drdz :

P12 =N By -dSs7y
(1 spire)
P12 = —N By -dS; Wy
(1 spire)
: R+ta g +5
P12 = — e —T/ " dz
2w rJoa
N poty ar_1t+5
Brn = =10 mm@+Mg
oNa R+a ,
¢1—>2 = _Zlﬂgﬂ_ 111( R ) = M1,
woNa R+a
M= — 1
2m n( R )

M est proportionnel au nombre N de spires.

2 2
|
1 |
( \‘
11
Ty = TH@®-------- poneeeed
ig 'l.2
,R,
a ®ﬁz @7{2
iy
(C2)
~ - 7 (C1)
(41
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On peut aussi calculer M a partir de :

Y1 = / By -dSimy
(C1)

Go = — / Bom - dSs 70
(C2))

MON iy [HTe dr
¢2~>1 =

NPJOZZ

_a
2

a8
Po1 = — o [IH(T)]?F [ng
- uolNa R+a .
¢2—>1 = —Zzu(;ﬁ ln< R > = Miy
N
A= Mo aln(R—i—a)
2 R

11 Energie magnétique d’un ensemble de circuits

Pour un seul circuit le flux magnétique total ¢ est égal au flux propre ¢, = Li et I'énergie

magnétique vaut Uy, = 3Li* = ¢i
n
En général, pour n circuits Uy, = > 3¢xix. Considérons 'exemple de n = 2 circuits :
k=1

01 = Op1 + Pas1 = Lyt + Miy
G2 = Qp2 + G152 = Loio + M1y

1 1
or U, = —p11 — P9t
m 2¢1 1+ 2¢2 2
L’énergie magnétique totale de deux circuits couplés est Uy, = 5 L1} + 5L2i3 + Miyis
Or I’énergie magnétique totale vaut :

/// — dT >0
espace

avec le champ total B = B1 + Bg

1 S
d’ou Uy, [2L1 (—) —I—Mz.—l-i——Lz

12

le discriminant est A = M2 — L1L, <0

d’out |M‘ S \ LlLQ

Si M = 0 alors les deux circuits ne sont pas couplés.

Enrouler les bobines sur une tore ferromagnétique permet de canaliser les lignes de
champ magnétique et ainsi de réaliser un couplage parfait |M| = \/L;Ls.

Sans le tore ferromagnétique, c¢’est-a-dire dans 'air, le couplage entre les deux bobines est
médiocre. En effet, ce n’est pas le méme flux qui traverse chaque spire car les pertes sont
importantes.
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Avec le tore ferromagnétique on montre (par application du théoréme d’Ampére) que le
champ magnétique B et donc le flux ¢ = BS a travers une spire est proportionnel & Nyi; + Naio

¢ - )\(lel + NQiQ)
au primaire ¢1 = N1¢ = Llil + MZQ = )\(N12Z1 + NlNQig)
au secondaire ¢y = No¢ = Loiy + Miy = N(NoNyiy + Niio)
doit Lyt 4 M = ANy Ny + AN
19 12
et Lo2 + M = AN, Ny + AN22
11

11
d’ou Ly = AN}
Ly = AN?
M = AN; N,

On retrouve la condition de couplage parfait |M| = /Ly Lo
11.1 Couplage par mutuelle
On considére deux bobines identiques de résistance R et d’auto-inductance L. On soumet 'une

a un échelon de tension de continue E en fermant l'interrupteur K a l'instant ¢ = 0. Les deux
bobines sont couplées par mutuelle M > 0.

K R
N

E TC) L g’é L | |R

Etablissons les lois i1 (t) et i3(t) des courants qui s’établissent dans les bobines.

11.2 Cas du couplage non parfait M < L
D’aprés la loi de Faraday :

_déy

dt
avec ¢1 = Liy + Miq

. diy disy

d’ou e; = (Ldt +Mdt>
_dés

dt
avec ¢g = Lio + Miy

di di
d’oll €9 = — (Lﬁ + M Zl)

€1 —

€y =

dt dt

Le circuit électrique équivalent est le suivant :
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D’aprés la loi des mailles :

. . di di
E:Rh—q:mrHG%+Méi
. . di di
OZRm—ey:Rm+LHf+Nﬁ#

On pose S(t) = i1(t) + i2(t) et D(t) = i1(t) — i2(t)

(L+ M)S + RS
(L — M)S + RD

E
E

_ LM _ L-M
On pose 7, = =5~ et 7_ = =% > 7.

L’énergie magnétique totale stockée dans les bobines est :
1 1
U, = ~é1is + = o
2<Z5121 + 2¢222
I, 1, .
Un = §L21 + §L22 + Miyig

L’énergie U,,(t) est continue & t = 0 d’ou 41(t) et iy(t) également. D’ou i;(t = 0) = 0 et

Le graphe de i9(t) présente un minimum pour t, = L;Q—%Q In (£ tel que 92(t = t) =0
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11.3 Cas du couplage non parfait M = L
L L L
Un = 5(@? + iy + iyis) = S+ ip)? = 552
L’énergie U,,(t) est continue a ¢t = 0 d’ou S(t) également. Les courants i;(t) et i5(¢) ne sont
plus continus a ¢ = 0 ! L’instant g n’est plus défini.

E =2LS+ RS
E=RD
E Rt
D(t) = % = cste
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