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1 Les équations de Maxwell

1.1 Postulat de Lorentz

Une charge q1 crée le champ électromagnétique
{

#»

E1(M, t),
#»

B1(M, t)
}

en tout point M de
l’espace. Le postulat de Lorentz donne la force exercée par :

• q1 sur une charge q2 située en M2 et animée de la vitesse #»v 2(t) :

#»

F 1→2 = q2(
#»

E1(M2, t) +
#»v 2(t) ∧

#»

B1(M2, t))

• un ensemble (S) de charges créant le champ électromagnétique
{

#»

E(M, t),
#»

B(M, t)
}

.
La force qu’exerce (S) sur une charge q située en M à t résulte de la somme des forces
dues à chaque charge constituant (S) :

#»

F = q(
#»

E(M, t) + #»v (t) ∧ #»

B(M, t))

• Les charges et les courants sont sources d’un champ électromagnétique (
#»

E,
#»

B). Inverse-
ment, Le champ électromagnétique (

#»

E,
#»

B) agit sur les sources via la force de Lorentz. Il
en résulte que les sources sont fonction du champ électromagnétique lui-même fonction
des sources. On a un système bouclé.

1.2 Les équations

Entre 1864 et 1865 Maxwell a postulé ces 4 équations pour déterminer le champ électromagné-
tique en tout point M de l’espace et à tout instant t.

♡ Le champ électromagnétique
{

#»

E(M, t);
#»

B(M, t)
}

créé au point M à la date t est relié à

ses sources
{
ρ(P, t);

#»
j (P, t)

}
situées en P à t par les équations locales de Maxwell :

Maxwell-Gauss (MG) div(
#»

E) =
ρ

ε0

Maxwell-Faraday (MF) −→rot
#»

E = −∂B⃗

∂t

Maxwell-flux (MΦ) div(
#»

B) = 0

Maxwell-Ampère (MA) −→rot
#»

B = µ0(
#»
j + ε0

∂
#»

E

∂t
)
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1.3 Théorème de superposition

Si les sources
{
ρ1;

#»
j 1

}
et
{
ρ2;

#»
j 2

}
créent les champs électromagnétiques respectifs

{
#»

E1(M, t);
#»

B1(M, t)
}

et
{

#»

E2(M, t);
#»

B2(M, t)
}

alors les distributions :

ρ(P, t) = λ1ρ1(P, t) + λ2ρ2(P, t)

et #»
j (P, t) = λ1

#»
j 1(P, t) + λ2

#»
j 2(P, t)

créent le champ électromagnétique
#»

E(M, t) = λ1
#»

E1(M, t) + λ2
#»

E2(M, t)

et
#»

B(M, t) = λ1
#»

B1(M, t) + λ2
#»

B2(M, t)

La linéarité des équations de Maxwell entraîne la validité du théorème de superposition.

En effet, tous les opérateurs (−→rot, div et ∂
∂t

) sont linéaires.

1.4 Les différents régimes

Les champs
#»

E et
#»

B sont découplés seulement en régime stationnaire (fréquence f = 0).

En régime variable (f ̸= 0), les sources de
#»

E sont les charges (ρ = ρlié + ρlibre) et les
variations temporelles de

#»

B. Les sources de
#»

B sont les courants #»
j = ρlibre

#»v et les variations
temporelles de

#»

E . On appelle vecteur courant de déplacement #»
j d = ε0

∂
#»
E
∂t

. En régime vari-
able, les sources (courants et charges) rayonnent un champ électromagnétique. Cette Onde
ElectroMagnétique (OEM) est due au couplage entre

#»

E et
#»

B c’est-à-dire à (MF) et (MA).

L’ARQS est l’approximation des régimes lentement variables (0 < f < f0).
Si on impose des courants, alors on est dans l’ARQS magnétique ∂

#»
E
∂t

≈ #»
0

Si on impose des charges, alors on est dans l’ARQS électrique ∂
#»
B
∂t

≈ #»
0

2 Propriétés de symétrie du champ électromagnétique

En régime variable, on étudie les symétries et les invariances de l’ensemble des sources
(charges ρ ET courants #»

j ) pour en déduire celles du champ électromagnétique (
#»

E,
#»

B).

• Une invariance par translation ou par rotation des sources induit la même invariance du
champ électromagnétique (

#»

E,
#»

B).

• En un point M d’un plan de symétrie des sources,
#»

E(M) est contenu dans ce plan alors
que

#»

B(M) est orthogonal à ce plan.

• En un point M d’un plan d’antisymétrie des sources,
#»

E(M) est orthogonal à ce plan alors
que

#»

B(M) est contenu dans ce plan.
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3 L’énergie électromagnétique

3.1 Puissance fournie par le champ EM aux porteurs de charges

Un porteur de charge de type i placé dans le champ électromagnétique
{

#»

E,
#»

B
}

:

subit la force de Lorentz
#»

f i = qi(
#»

E + v⃗i ∧
#»

B)
#»

f i développe la puissance pi = qi
#»v i ·

#»

E

Dans le volume mésoscopique dτ les ni dτ porteurs de charges subissent le même champ
électromagnétique. La puissance totale développée est :

dPi = pini dτ = niqi
#»v i ·

#»

E dτ

La puissance totale développée par tous les types de porteurs de charges dans le volume
mésoscopique dτ est :

dP =
N∑
i=1

(niqi
#»v i) ·

#»

E dτ

or par définition #»
j =

N∑
i=1

niqi
#»v i

d’où dP =
#»
j · #»

E dτ

♡ La puissance volumique (en W.m−3) fournie par un champ électromagnétique à des por-
teurs de charges est :

dP
dτ

=
#»
j · #»

E

Remarques :

• Dans le cas d’une antenne réceptrice, les charges reçoivent de la puissance de la part du
champ (

#»

E,
#»

B) d’où #»
j · #»

E > 0.

• Dans le cas d’une antenne émettrice, les charges en mouvement rayonnent de la puissance
d’où #»

j · #»

E < 0.

• Un conducteur ohmique est toujours récepteur car #»
j = γ

#»

E d’où dP
dτ

= j2

γ
> 0
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3.2 Equation locale de Poynting

D’après (MA) #»
j =

1

µ0

−→rot
#»

B − ε0
∂

#»

E

∂t

#»
j · #»

E =
1

µ0

#»

E · −→rot
#»

B − ε0
#»

E · ∂
#»

E

∂t

or ��♡div(
#»

E ∧ #»

B) =
#»

B · −→rot
#»

E − #»

E · −→rot
#»

B

d’où
#»

E · −→rot
#»

B =
#»

B · −→rot
#»

E − div(
#»

E ∧ #»

B)

or (MF) #»
j · #»

E = − 1

µ0

#»

B · ∂
#»

B

∂t
− ε0

#»

E · ∂
#»

E

∂t
− 1

µ0

div(
#»

E ∧ #»

B)

− #»
j · #»

E = div(

#»

E ∧ #»

B

µ0

) +
∂

∂t
(
ε0E

2

2
+

B2

2µ0

)

3.3 Grandeurs énergétiques associées à un champ EM

On définit un R⃗.

♡ Par définition, le vecteur de Poynting R⃗ (en W.m2) est le vecteur densité volumique
de courants d’énergie électromagnétique :

R⃗ =

#»

E ∧ #»

B

µ0

Le flux du vecteur du vecteur de Poynting R⃗ représente la puissance électromagnétique Pem

qui traverse (S) :

Pem =

¨
(S)

R⃗ · d #»

S

♡ La densité volumique d’énergie électromagnétique uem est définie par :

uem =
dUem

dτ
=

ε0E
2

2
+

B2

2µ0

= uel + um

♡ Le bilan local de puissance électromagnétique est l’équation locale de Poynting,
appelé aussi théorème de Poynting :

− #»
j · #»

E = div(R⃗) +
∂uem

∂t

3.4 Bilan énergétique sur un volume (V) fixe

Intégrons l’équation locale de Poynting sur un volume (V) fixe limité par la surface fermée (Σ)
orientée par sa normale sortante :
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−Pem,champ→porteurs = −
˚

(V)

#»
j · #»

E dτ =

˚
(V)

div(R⃗) dτ +

˚
(V)

∂uem

∂t
dτ

comme (V) est fixe
˚

(V)

∂uem

∂t
dτ =

d

dt
(

˚
(V)

uem dτ) =
dUem

dt

Ostrogradski
˚

(V)
div(R⃗)dτ =

‹
(Σ)

R⃗ · d #»

S ext = Pem,(V)→ext

dUem = −Pem,champ→porteurs dt− Pem,(V)→ext dt

La puissance électromagnétique :

• sortant de (V) est Pem,(V)→ext échangée avec l’extérieur.

• cédée par le champ électromagnétique aux porteurs de charges contenus dans (V) est
Pem,champ→porteurs.

Le bilan d’énergie électromagnétique pendant entre t et t+dt sur le volume (V) fixe exprime
que l’augmentation d’énergie Uem est due à l’échange d’énergie avec l’extérieur (flux du vecteur
de Poynting) et à la création d’énergie par les porteurs de charges.

dUem = δUem,e + δUem,c

dUem = Pem,ext→(V) dt+ Pem,porteurs→champ dt

4 L’ARQS

4.1 Temps de propagation

Les sources du champ électromagnétique
{

#»

E(M, t),
#»

B(M, t)
}

ressenti en M à t sont les charges

et les courants
{
ρ(P, t);

#»
j (P, t)

}
situés en P. En régime variable, l’état des sources à (t − τ)

détermine le champ électromagnétique en M à t. Le retard τ dû à la propagation vaut τ = PM
c

En régime stationnaire (pas de dépendance en temps) les retards sont sans effet. En régime
variable la situation est complexe puisque les retards sont différents pour les différents points
P d’une source.
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♡ L’approximation des régimes quasi stationnaires (ARQS) est un régime lente-
ment variable qui consiste à négliger les retards de propagation τ en régime variable
devant l’échelle caractéristique T = 1

f
des variations temporelles des sources τmax = L

c
≪ T

soit L ≪ λ = cT où L désigne la taille du système et λ la longueur d’onde de l’OEM.

en TP f < 10MHz

soit T > 10−7 s

ARQS si L ≪ 30m

La taille des circuits étudiés satisfait cette condition.

5 ARQS magnétique

5.1 Définition

Dans le cadre de l’ARQS magnétique les courants dominent les charges ρc
j
≪ 1

Simplifions l’équation de conservation de la charge div(
#»
j ) + ∂ρ

∂t
= 0 :

|∂ρ|
∂t

div(
#»
j )

≈
ρ
T
j
L

≈ ρc

j

L

cT
≪ 1

Le terme ∂ρ
∂t

ne peut pas compenser le terme div(
#»
j ). La seule possibilité est donc que

div(
#»
j ) = 0. La loi des nœuds est donc valide.

Montrons que le vecteur densité de courant de déplacement ε0
∂

#»
E
∂t

est négligeable :

ε0µ0|∂
#»
E |
∂t

||−→rot(
#»

B)||
≈

E
c2T
B
D

≈ E

B

D

c2T

or d’après (MF)
E

D
≈ B

T

d’où
ε0µ0|∂

#»
E |
∂t

||−→rot(
#»

B)||
≈ D2

c2T 2
≪ 1

Sous quelle forme est l’énergie électromagnétique dans l’ARQS magnétique ?

uel

um

=
ε0

E2

2
B2

2µ0

≈ E2

c2B2
≪ 1

Dans le cadre de l’ARQS magnétique L ≪ λ, l’énergie électromagnétique est essentiellement
sous forme magnétique et les équations de Maxwell s’écrivent :

Lycée Janson de Sailly 6 F.DESOMBRE



(MG) div
#»

E =
ρ

ε0

(MF) −→rot
#»

E = −∂
#»

B

∂t

MΦ) div
#»

B = 0

(MA) −→rot
#»

B ≈ µ0
#»
j

5.2 Conséquences

Le théorème d’Ampère est le même en régime stationnaire que dans l’ARQS magnétique. Ainsi
les champs B⃗ suivants sont valables dans l’ARQS magnétique :

• un fil rectiligne infiniment long
#»

B = µ0i(t)
2πr

#»u θ

• un solénoïde :
#»

B = nµ0i(t)
#»u z

Les phénomènes d’induction électromagnétique étudiés en 1ère année relèvent de
l’ARQS magnétique.

5.3 Etude d’un solénoïde

5.3.1 Champ magnétique

Soit un solénoïde d’axe (Oz), de rayon R comportant n spires par unité de longueur, assez long
pour négliger les effets de bord, parcouru par un courant d’intensité i(t) lentement variable à
la fréquence f telle que l’ARQS magnétique est validée : R ≪ λ = c

f
. Le champ magnétique

s’approxime à celui calculé en régime stationnaire avec le théorème d’Ampère :
#»

B(M, t) ≈ #»

B0 :

à l’intérieur
#»

B(M, t) = µ0ni(t)
#»u z

à l’extérieur
#»

B(M, t) =
#»
0

5.3.2 Les équations de Maxwell

Dans le vide, c’est-à-dire en dehors de la source de courant, ρ = 0 et #»
j =

#»
0 :

(MG) div
#»

E = 0

(MF) à l’intérieur −→rot
#»

E = −∂
#»

B

∂t
= µ0(−n

di

dt
#»u z)

(MF) à l’extérieur −→rot
#»

E =
#»
0

(MΦ) div
#»

B = 0

(MA) −→rot
#»

B ≈ #»
0
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5.3.3 Calcul du champ électrique

Les variations temporelles de
#»

B(M, t) induisent un champ électrique
#»

E(M, t) d’après (MF). Il
y a deux façons de calculer

#»

E(M, t).
1ère façon :
On considère un point M(r, θ, z) quelconque de l’espace.
Le plan (M, #»u r,

#»u z) est un plan d’antisymétrie du solénoïde parcouru par i(t). Donc
#»

E(M)

est orthogonal à ce plan soit
#»

E(M) = E #»u θ. Le solénoïde est invariant par translation selon
(Oz) et par rotation d’angle θ autour de (Oz) d’où :

#»

E(M) = E(r) #»u θ

On calcule la circulation de
#»

E le long de la ligne de champ (L) de
#»

E qui passe par M
c’est-à-dire le cercle de rayon r et d’axe (Oz) :

˛
(L)

#»

E · d #»

ℓ =

˛
(L)

E(r) #»u θ · d
#»

ℓ =

ˆ 2π

0

rE(r) dθ = 2πrE(r)

Théorème de Stokes
˛
(L)

#»

E · d #»

ℓ =

¨
(Sd)

−→rot
#»

E · dS #»u z

si M est extérieur 2πrE(r) = −µ0n
di

dt
2π

ˆ R

0

r dr +

ˆ r

R

#»
0 · dS #»u z = −µ0n

di

dt
πR2

si M est intérieur 2πrE(r) = −µ0n
di

dt
2π

ˆ r

0

r dr = −µ0n
di

dt
πr2

à l’intérieur
#»

E = −µ0nr

2

di

dt
#»u θ

à l’extérieur
#»

E = −µ0nR
2

2r

di

dt
#»u θ

2nde façon :
On remarque que (MF) est analogue à −→rot

#»

B = µ0
#»
j avec #»

j = j #»u z à l’intérieur et #»
j =

#»
0

à l’extérieur du cylindre infiniment long de rayon R et d’axe (Oz). Il y a donc une analogie
avec le câble cylindrique parcouru par des courants dans tout son volume. L’application du
théorème d’Ampère conduit à :

à l’intérieur
#»

B =
µ0jr

2
#»u θ

à l’extérieur
#»

B =
µ0jR

2

2r
#»u θ

#»

E est analogue à
#»

B et j est analogue à −ndi
dt

. D’où :

à l’intérieur
#»

E = −µ0nr

2

di

dt
#»u θ

à l’extérieur
#»

E = −µ0nR
2

2r

di

dt
#»u θ
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5.3.4 L’équation de Maxwell-Ampère

Examinons (MA) en un point M en dehors des sources de courant :

−→rot
#»

B =
#»
0 + µ0ϵ0

∂
#»

E

∂t

−→rot(
#»

B0 +
#»

B1) =
#»
0 +

1

c2
∂

#»

E

∂t

#»
0 +

−→rot
#»

B1 =
1

c2
∂

#»

E

∂t
#»

B =
#»

B0 +
#»

B1 ≈
#»

B0

L’ARQS consiste à négliger devant
#»

B0 le champ
#»

B1 induit par ∂
#»
E
∂t

̸= #»
0 d’après (MA).

5.3.5 Energie életromagnétique

Calculons l’énergie magnétique Um et l’énergie électrique Ue contenue dans le solénoïde :

Um =

˚
(solénoïde)

B2

2µ0

=
(nµ0i)

2

2µ0

πR2ℓ =
1

2
Li2

Uel =

˚
(solénoïde)

ϵ0
2
E2 =

ϵ0
2

(
−µ0

2
n
di

dt

)2 ˆ R

0

r22πr dr ℓ =
ϵ0µ

2
0

16
n2πR4ℓ

(
di

dt

)2

Uel

Um

=
R2

8c2

(
1

i

di

dt

)2

≈ R2

8c2
1

T 2
=

R2

8(cT )2
=

1

8

(
R

λ

)2

≪ 1

Dans l’ARQS magnétique l’énergie électromagnétique est principalement sous forme mag-
nétique.

5.3.6 Bilan d’énergie

Exprimons le vecteur de Poynting sur la face intérieure du solénoïde :

R⃗(r = R−, t) =

#»

E ∧ #»

B

µ0

= −µ0nR

2

di

dt
#»u θ ∧

µ0ni

µ0

#»u z = −µ0n
2R

2
i
di

dt
#»u r

La puissance électromagnétique instantanée reçue par le solénoïde est le flux entrant de R⃗
à travers sa surface latérale :

p(t) = −
¨

(Slat)

R⃗(r = R−, t) · dS #»u r =
µ0n

2R

2
i
di

dt
2πRℓ

p(t) = −
¨

(Slat)

R⃗(r = R−, t) · dS #»u r =
d

dt

(
1

2
Li2
)

p(t) =
dUm

dt

La puissance p(t) rayonnée à l’intérieur du solénoïde fait augmenter l’énergie magnétique
Um = 1

2
Li2 stockée dans la bobine.
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Dans le vide et dans l’ARQS magnétique,
#»

B se calcule avec le théorème d’Ampère comme
en RS :

Maxwell-Gauss (MG) div(
#»

E) = 0

Maxwell-Faraday (MF) −→rot
#»

E = −∂B⃗

∂t

Maxwell-flux (MΦ) div(
#»

B) = 0

Maxwell-Ampère (MA) −→rot
#»

B ≈ #»
0

u ≈ um

5.4 Effet de peau

On place un bloc de métal placé à l’intérieur d’un solénoïde parcouru par un courant d’intensité
variable i(t) de densité volumique #»

j 0(M, t). En un point M des spires du solénoïde #»
j 0(M, t) ̸=

#»
0 et #»

j 0(M, t) =
#»
0 ailleurs.

Le champ magnétique
#»

B0(M, t) créé par #»
j 0(M, t) est d’après (MA) −→rot

#»

B0 = µ0
#»
j 0.

D’après (MF),
#»

B0(M, t) variable induit
#»

E1(M, t) tel que −→rot
#»

E1 = −∂
#»
B0

∂t

Or dans le bloc de métal et dans les spires du solénoïde
#»

E1 crée un courant induit de densité
volumique #»

j 1 = γ
#»

E1 d’après la loi d’Ohm locale.

Les courants de Foucault (eddy currents en anglais) sont les courants induits dans un
couducteur massif.

Dans les spires du solénoïde −→rot(
#»

B0 +
#»

B1) = µ0(
#»
j 0 +

#»
j 1 + ϵ0

∂
#»
E1

∂t
) avec −→rot

#»

B0 = µ0
#»
j 0. Le

champ magnétique propre (auto-induit) vérifie donc :

−→rot
#»

B1 = µ0(γ
#»

E1 + ϵ0
∂

#»

E1

∂t
)

Dans l’ARQS magnétique ε0| ∂
#»
E1|
∂t

||γ #»
E1||

≈ ε0f
γ

≪ 1 dans l’ARQS magnétique.

Dans un conducteur et dans l’ARQS magnétique −→rot
#»

B ≈ µ0
#»
j = µ0γ

#»

E
La loi des nœuds reste valable : div(−→rot

#»

B) = µ0 div(
#»
j ) = 0.

D’où div(γ
#»

E) = γdiv(
#»

E) = 0 or div(
#»

E) = ρ
ϵ0

Dans l’ARQS magnétique, le conducteur reste neutre ρ = 0.
La force de Laplace d

#»

F L = i d
#»

ℓ ∧ #»

B reste valable.
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−→rot
#»

B1 ≈ µ0
#»
j 1 = µ0γ

#»

E1

en odg
B1

L
≈ µ0γE1

−→rot
#»

E1 = −∂
#»

B0

∂t

en odg
E1

L
≈ B0

T
= B0 f

d’où B1 ≈ B0
1

π

µ0γω

2
L2

B1 ≈ B0
L2

δ2

L’épaisseur de peau est définie par

δ =

√
2

µ0γω

Si la dimension du bloc de métal est L ≪ δ alors le champ magnétique auto-induit
(propre) B1 est négligeable devant le champ magnétique inducteur B0.

Si L ≪ δ n’est pas validée alors dans le métal (neutre ρ = 0) :

Maxwell-Gauss (MG) div(
#»

E) = 0

Maxwell-Faraday (MF) −→rot
#»

E = −∂B⃗

∂t

Maxwell-flux (MΦ) div(
#»

B) = 0

Maxwell-Ampère (MA) −→rot
#»

B ≈ µ0
#»
j = µ0γ

#»

E

6 ARQS électrique

6.1 ARQS électrique dans le vide

Soit un condensateur plan dont les armatures, de taille caractéristique L, sont connectées à un
générateur de tension lentement variable à la fréquence f ≪ c

L
.

Le champ électrique dans le condensateur (entre les armatures) s’approxime à celui calculé
en régime stationnaire avec le théorème de Gauss :

#»

E0 =
σ(t)
ϵ0

#»u z

Un champ magnétique
#»

B1(M, t) est induit par ∂
#»
E0

∂t
̸= #»

0
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d’après (MA) −→rot
#»

B1 =
#»
0 +

1

c2
∂

#»

E0

∂t

d’où en odg B1 ≈ E0
Lf

c2

l’énergie magnétique um =
B2

1

2µ0

≈ L2f 2E2
0

c4 2µ0

=

(
L

λ

)2

ϵ0
E2

0

2

d’après (MF) −→rot(
#»

E0 +
#»

E1) = −∂
#»

B1

∂t

#»
0 +

−→rot(
#»

E1) = −∂
#»

B1

∂t
d’où en odg E1 ≈ B1 Lf

dans l’ARQS électrique E1 ≈ E0
L2

λ2
≪ E0

l’énergie électrique ue = ϵ0
E2

2
≈ ϵ0

E2
0

2

Dans le vide et dans l’ARQS électrique (L ≪ λ),
#»

E se calcule comme en RS avec le théorème
de Gauss :

Maxwell-Gauss (MG) div(
#»

E) = 0

Maxwell-Faraday (MF) −→rot
#»

E ≈ #»
0

Maxwell-flux (MΦ) div(
#»

B) = 0

Maxwell-Ampère (MA) −→rot
#»

B ≈ 1

c2
∂

#»

E

∂t
u = um + ue ≈ ue
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6.2 Etude d’un condensateur plan

6.2.1 Calcul du champ magnétique induit

On considère un condensateur plan d’épaisseur e dont les
armatures sont des disques d’axe (Oz) de rayon R ≫ e
de sorte qu’on néglige les effets de bord.
L’application du théorème de Gauss donne :

#»

E0(M, t) =
σ(t)

ϵ0
#»u z =

q(t)

πR2ϵ0
#»u z

Calculons le champ magnétique induit
#»

B1(M, t) en un
point M quelconque situé à l’intérieur du solénoïde.
Les sources (les charges ici) sont invariantes par rotation
autour de (Oz) et le plan (M, #»u r,

#»u z) est un plan de
symétrie. Donc

#»

B1(M, t) est orthogonal à (M, #»u r,
#»u z)

soit
#»

B1(M, t) = B1(r, z, t)
#»u θ.

On calcule la circulation de
#»

B1(M, t) le long d’une ligne
de champ (L) de

#»

B1 :

z

O+

#»u z

−q(t)
+ e

2

+q(t)
− e

2

#»

E0 =
#»
0

#»

E0 =
σ(t)
ϵ0

#»u z

#»

E =
#»
0

˛
(L)

B1(r, z, t)
#»u θ · dℓ #»u θ =

¨
(S)

−→rot
#»

B1 · dS #»u z

d’après (MA) 2πrB1(r, z, t) =

¨
(S)

1

c2
∂

#»

E0

∂t
· dS #»u z

2πrB1(r, z, t) =
1

c2
∂

∂t

¨
(S)

q(t)

πR2ϵ0
#»u z · dS #»u z

#»

B1 =
µ0

2π
q̇
r

R2
#»u θ

6.2.2 Bilan d’énergie

Ue =

˚
condensateur

ϵ0
E2

0

2
= ϵ0

E2
0

2
πR2 e =

q2

2

(
e

ϵ0S

)
=

q2

2C

Um =

˚
condensateur

B2
1

2µ0

dτ =

ˆ R

0

1

2µ0

(µ0

2π
q̇
r

R2

)2
2πr e dr =

µ0q̇
2e

4πR4

[
r4

4

]R
0

=
µ0q̇

2e

16π

ARQS électrique
Um

Ue

=
ϵ0µ0R

2

8

(
q̇

q

)2

≈ R2

T 2c2
=

R2

T 2c2
=

R2

λ2
≪ 1

La puissance électromagnétique reçue à l’instant t par l’intérieur du condensateur (cylindre
d’axe (Oz), de rayon R et de hauteur e) est le flux entrant du vecteur de Poynting à travers la
surface latérale :
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p(t) = −
¨

(Slat)

R · dS #»u r = −
¨

(Slat)

(
#»

E0 ∧
#»

B1

µ0

)
· dS #»u r

p(t) = − 1

µ0

(
q

πR2ϵ0
#»u z ∧

µ0

2π
q̇
R

R2
#»u θ)2πRe #»u r =

qq̇e

πR2ϵ0
=

qq̇

C

p(t) =
d

dt

(
q2

2C

)
=

dUe

dt

La puissance p(t) rayonnée à l’intérieur du condensateur fait augmenter l’énergie électrique
Ue =

q2

2C
stockée dans le condensateur.

7 Lois de l’induction dans l’ARQS magnétique

7.1 Force électromotrice

Considérons l’exemple d’une spire filiforme dont le métal a une conductivité électrique γ. A
quelle condition, en régime établi, est-il possible de faire circuler un courant d’intensité i(t)
dans la spire ?

Appliquons le TEC à un électron de conduction pendant un tour de spire dans le cadre du
modèle classique de Drude :

∆Ec = −e

˛
(C)

#»

E · d #»

ℓ +

˛
(C)

#»

F fr · d
#»

ℓ

Si
¸
(C)

#»

E · d #»

ℓ = 0 alors ∆Ec =
¸
(C)

#»

F fr · d
#»

ℓ < 0. La force de friction
#»

F fr = −m #»v
τ

est résis-
tante. L’électron perd donc de l’énergie à chaque tour. Le courant ne peut être que transitoire.
En régime établi, le courant est nul.

Il est donc nécessaire que
¸
(C)

#»

E · d #»

ℓ ̸= 0 pour qu’un courant i(t) non nul circule dans la
spire en régime établi.

La force électromotrice e en V est définie par e =
¸
(C)

#»

E · d #»

ℓ
Le métal qui constitue la spire est un conducteur ohmique de résistance R soumis à un

générateur de fem e :

e =

˛
(C)

#»

E · d #»

ℓ =

˛
(C)

#»
j

γ
· d #»

ℓ =

˛
(C)

jS

γS
dℓ = i

˛
(C)

ℓ

γS
= i

˛
(C)

dR = Ri

La définition de la fem e permet bien de retrouver la loi de l’électrocinétique e = Ri

Le champ électrique n’étant plus à circulation conservative, on peut le décomposer en :

#»

E = − #      »

gradV +
#»

Em

de sorte que
˛
(C)

#»

E · d #»

ℓ = 0 +

˛
(C)

#»

Em · d #»

ℓ = e

Sur une portion AB de circuit :ˆ B

A

#»

E · d #»

ℓ = VA − VB +

ˆ B

A

#»

Em · d #»

ℓ
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♡ Le champ électromoteur à circulation non conservative est responsable de la fem e :
˛
(C)

#»

Em · d #»

ℓ = e

On retrouve la loi d’Ohm généralisée :

RABi = VA − VB + e

7.2 Lois expérimentales de l’induction

On crée un champ magnétique avec un aimant droit (inducteur). On prend une spire (con-
ducteur) non reliée à un générateur.

Expérimentalement, on constate que si on éloigne ou si on rapproche l’aimant de la spire
maintenue fixe alors un courant est induit dans la spire. Le courant est d’autant plus
intense que la vitesse de déplacement de l’aimant est grande. Le sens du courant i induit
s’inverse si le rapprochement devient un éloignement.

On appelle induction de Neumann (a) et (b) le cas où le conducteur est fixe dans
un champ magnétique variable.

Inversement, si on éloigne ou si on rapproche la spire de l’aimant maintenu fixe alors on
mesure le même courant induit dans la spire pour la même vitesse relative.

On appelle induction de Lorentz (c) et (d) le cas où le conducteur est mobile dans
un champ magnétique stationnaire.

S

N

i

S

N

i

S

N

i

S

N

i

a b c d

face nord face sud

Le courant induit dans la spire crée un champ magnétique auto-induit dont le flux propre
tend à s’opposer à l’augmentation (a)/diminution (b) du flux du champ inducteur.

Si le conducteur est en circuit ouvert alors avec un voltmètre on mesure une fem e d’induction.
Si le conducteur est en circuit fermé alors la fem e d’induction génère la circulation d’un

courant i induit.
Par convention, la fem e induite est reliée au courant i induit par la convention généra-

teur.

8 Induction de Neumann et ses applications

8.1 Loi de Faraday

On démontre la loi intégrale de Faraday à partir de l’équation locale de Maxwell-Faraday :

Lycée Janson de Sailly 15 F.DESOMBRE



−→rot
#»

E = −∂
#»

B

∂t

théorème de Stokes
˛
(C)

#»

E · d #»

ℓ =

¨
(S)

−→rot
#»

E · dS #»n

e = −
¨

(S)

∂
#»

B

∂t
· dS #»n = − ∂

∂t

¨
(S)

#»

B · dS #»n

Le conducteur étant fixe le flux magnétique ϕ =
˜

(S)
#»

B · dS #»n ne varie que par rapport au
temps.

♡ D’après la loi de Faraday, une variation temporelle du flux magnétique induit une force
électromotrice e telle que :

e = −dϕ

dt

♡ Le signe − traduit la loi de (modération) Lenz :
la fem e induite tend, par ses conséquences, à s’opposer aux causes qui l’ont produites.

Par auto-induction, le courant i induit crée un champ magnétique dont l’effet, conformé-
ment à la loi de Lenz, est de s’opposer à la variation du flux magnétique du champ inducteur.

8.2 Chauffage par induction

Soit un solénoïde d’axe (Oz) parcouru par un courant i(t) sinusoïdal. En négligeant les effets
de bord, cette bobine crée le champ magnétique

#»

B0(t) = nµ0i(t)
#»u z = B0 cos(ωt)

#»u z en posant
B0 = nµ0Im.

A l’intérieur de la bobine, on place un bloc de métal cylindrique, de rayon R, d’axe (Oz),
de longueur ℓ et de conductivité électrique γ.

8.2.1 Analyse physique

La bobine constitue l’inducteur car d
#»
B0

dt
̸= #»

0 . Elle induit un champ électrique
#»

E1 à l’intérieur
du bloc de métal. D’après la loi d’Ohm locale des courants de Foucault de densité #»

j 1 =
γ

#»

E1 apparaissent dans tout le volume du conducteur qui constitue l’induit. L’effet Joule
produit par les courants de Foucault est responsable d’un échauffement de l’induit.

8.3 Courants de Foucault induits

On détermine le champ électrique
#»

E1 induit puis #»
j 1.

On considère un point M(r, θ, z) quelconque de l’espace. Le plan (M, #»u r,
#»u z) est un plan

d’antisymétrie du solénoïde parcouru par i(t). Donc
#»

E(M) est orthogonal à ce plan soit
#»

E(M) = E #»u θ. Le solénoïde est invariant par translation selon (Oz) et par rotation d’angle θ
autour de (Oz) d’où :

#»

E1(M) = E1(r)
#»u θ
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On calcule la circulation de
#»

E1 le long de la ligne de champ (L) de
#»

E1 qui passe par M
c’est-à-dire le cercle de rayon r et d’axe (Oz) :

e =

˛
(L)

#»

E1 · d
#»

ℓ =

˛
(L)

E1(r)
#»u θ · d

#»

ℓ =

ˆ 2π

0

rE1(r) dθ = 2πrE1(r)

Théorème de Stokes e =

˛
(L)

#»

E1 · d
#»

ℓ =

¨
(Sd)

−→rot
#»

E1 · dS #»u z

si M est intérieur 2πrE1(r) = −µ0n
di

dt
2π

ˆ r

0

r dr = −µ0n
di

dt
πr2

#»

E1 = −µ0nr

2

di

dt
#»u θ = nµ0Im

ωr

2
sin(ωt) #»u θ =

B0ωr

2
sin(ωt) #»u θ

loi d’Ohm locale #»
j 1(r, t) =

γB0ωr

2
sin(ωt) #»u θ

loi de Joule locale pv =
#»
j 1 ·

#»

E1 =
j21
γ

La puissance électromagnétique totale induite dans le métal est dissipée sous forme d’énergie
thermique par effet Joule :

PJ =

˚
(V)

< pv >t dτ =

ˆ R

0

< j21(r, t) >t

γ
2πrℓ dr =

γB2
0ω

22πl

4
< sin2(ωt) >t

ˆ R

0

r3 dr

< sin2(ωt) >t =
1

2

Ce chauffage par induction produit la puissance thermique :

PJ =
γB2

0ω
2R4πl

8

Les plaques à induction fonctionnent sur ce principe. L’inducteur est un bobinage
qui crée le champ magnétique

#»

B0(t). L’induit est le fond de la casserole métallique posé
sur la plaque.

Remarque :
Dans ce calcul, on a négligé le champ magnétique propre

#»

B1 (auto-induit par les courants
de Foucault) devant le champ magnétique inducteur

#»

B0. En effet, (MF) s’écrit −→rot
#»

E1 = −∂
#»
B
∂t

où
#»

B =
#»

B0 +
#»

B1 est le champ total. Cette approximation est valable si R ≪ δ où δ =

√
2

γµ0ω
est l’épaisseur de peau.

A f = 50Hz (fréquence du secteur) pour un métal δ =

√
2

107 × 4π10−7 × 2π50
≈ 2 cm.

Cette fréquence est assez basse pour que R > δ et donc
#»

B1 n’est pas négligeable.

8.4 Feuilletage d’un conducteur

Si le chauffage n’est pas le but, alors la puissance PJ(∝ R4) constitue une perte qu’il faut
chercher à minimiser. C’est le cas dans un transformateur où le matériau ferromagnétique
utilisé pour canaliser les lignes de champ est conducteur.

On remarque que PJ est proportionnelle à la section droite S2
0 = (πR2)2 du conducteur.

On divise le cylindre métallique en N cylindres identiques de longueur ℓ et on intercale des
feuilles isolantes entre chaque cylindre.
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La section droite de chaque petit barreau est S ′ = S0

N
c’est-à-dire de rayon R′ tel que

πR′2 = πR2

N
. La puissance totale dissipée par les N barreaux vaut P ′

J ∝ NR′4 = NR4

N2 = R4

N

Le feuilletage est une technique qui consiste à diviser le bloc métallique en N blocs séparés
par des feuilles d’isolant. La puissance perdue par effet Joule est ainsi divisée par N.

8.5 Calcul du champ magnétique propre

Les courants de Foucault de densité #»
j 1 dans l’induit métallique génèrent un champ magnétique

propre
#»

B1. A quelle condition le champ magnétique propre
#»

B1 créé par les courants de Foucault
est-il bien négligeable devant le champ magnétique inducteur

#»

B0 ?

Une couronne cylindrique comprise entre r′ et r′ + dr′ parcourue par des courants de Foucault
orthoradiaux de densité #»

j 1(r
′, t) #»u θ est équivalente à un solénoïde de rayon r′ et de longueur ℓ

infinie (on néglige les effets de bord).
A l’extérieur de ce solénoïde, dB1(r > r′, t) =

#»
0 . A l’extérieur de l’induit métallique

c’est-à-dire à l’extérieur de tous ces solénoïdes (en un point M du vide)
#»

B1(r > R) =
#»
0

A l’intérieur de l’induit en M repéré par r ≤ R,
#»

B1(r, t) est la somme des champs créés
par les solénoïdes de rayon r′ > r de sorte que M soit à l’intérieur de ces bobines. On calcule
#»

B1(r, t) = B1(r, t)
#»u z avec le théorème d’Ampère appliqué sur un contour rectangulaire ABCD

situé dans un plan méridien (M, #»u r,
#»u z) et tel que AB = CD = ℓ parallèle à #»u z :

˛
ABCD

#»

B1 · d
#»

ℓ = µ0Ienlacé = µ0

ˆ R

r

dIenlacéµ0

ˆ R

r

j1(r
′, t)l dr′

l B1(r, t) = µ0 ℓ
γB0ω

2
sin(ωt)

ˆ R

r

r′ dr′

#»

B1(r, t) = µ0
γB0ω

4
sin(ωt) (R2 − r2) #»u z

sur l’axe (Oz)
#»

B1(r = 0, t) = B0
µ0γω

2

R2

2
sin(ωt) #»u z = B0

(
R

δ

)2
sin(ωt)

2
#»u z

Le champ propre
#»

B1 auto-induit par les courants de Foucault est négligeable devant le

champ inducteur
#»

B0 si R ≪ δ où δ =

√
2

γµ0ω
représente l’épaisseur de peau du conducteur

métallique.

8.6 Epaisseur de peau dans un conducteur semi-infini

8.6.1 Caractère diffusif de l’effet de peau

Considérons un bloc de métal parallélépipédique dont les trois dimensions sont très grandes
devant l’épaisseur de peau δ. On le place à l’intérieur d’une bobine qui crée le champ magnétique
#»

B0 = B0 cos(ωt)
#»u z en l’absence du métal. Le bloc est invariant par translation selon (Oz) et

(Oy). On note ℓ > δ sa dimension selon (Ox).
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vide

z

O
x

peau du métal métal

δ

#»

B0(t)

#»

B(x, t) =
#»

B0 +
#»

B1 ≈
#»
0

#»

B1 ≈
#»
0

Dans l’ARQS magnétique, les équations de Maxwell dans le métal (neutre ρ = 0) s’écrivent
:

(MG) div
#»

E = 0

(MF) −→rot
#»

E = −∂
#»

B

∂t

(MΦ) div
#»

B = 0

(MA) −→rot
#»

B ≈ µ0
#»
j = µ0γ

#»

E

(MF) et (MA) couplent
#»

E et
#»

B. On les découple en appliquant la formule :

−→rot(−→rot
#»

B) =
#      »

grad(div(
#»

B))− #»

∆
#»

B

µ0γ
−→rot

#»

E = 0− #»

∆
#»

B

On reconnaît une équation de diffusion :

#»

∆
#»

B = µ0γ
∂

#»

B

∂t

En tenant compte de l’invariance du bloc métallique par translation selon (Oz) et (Oy), on
a

∂2 #»

B

∂x2
= µ0γ

∂
#»

B

∂t

On impose un champ
#»

B0 sinusoïdal de pulsation ω. On cherche donc une solution en
régime sinusoïdal forcé de la forme

#»

B(x, t) =
#»

b (x) cos(ωt+ φ(x)). L’équation de diffusion
étant linéaire, on résout en complexe :
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∂2 #»

B

∂x2
= µ0γ

∂
#»

B

∂t

avec
#»

B =
#»

b (x) exp(iωt)

d2 #»

b

dx2
= iµ0γω

#»

b = i
2

δ2
#»

b

(E.C) r2 = i
2

δ2
=

2

δ2
exp
(
i
π

2

)
=

(
±
√
2

δ
exp
(
i
π

4

))2

r = ±
√
2

δ
exp
(
i
π

4

)
= ±

√
2

δ

(
1√
2
+ i

1√
2

)
= ±1

δ
(1 + i)

#»

b (x) =
#»

λ+ exp
(x
δ
(1 + i)

)
+

#»

λ− exp
(
−x

δ
(1 + i)

)
#»

B(x, t) =
#»

λ+ exp
(x
δ

)
exp

(
iωt+

ix

δ

)
+

#»

λ− exp
(
−x

δ

)
exp

(
iωt− ix

δ

)
continuité en x = 0

Si x → ∞ c’est-à-dire si x ≫ δ alors le champ ne doit pas diverger d’où
#»

λ+ =
#»
0

D’après la relation de passage à l’interface vide-métal

#»

B(x = 0+, t)−B0
#»u z = µ0

#»
j s ∧ #»u x

Absence de courant surfacique soit #»
j s =

#»
0 . D’où la continuité du champ à l’interface vide/mé-

tal en x = 0 d’où :

#»

B(x = 0, t) =
#»

λ− exp(iωt) = B0 exp(iωt)
#»u z

Les courants de Foucault #»
j = γ

#»

E induits dans le métal (par
#»

B0(t)) créent le champ propre
#»

B1 négligeable dans la peau du métal mais pas au-delà.

#»

B = B0 exp
(
−x

δ

)
cos
(
ωt− x

δ

)
#»u z

Le problème est analogue aux ondes thermiques qui se propagent dans le sol dues à des
variations de la température au niveau du sol.

On déduit le champ électrique dans le métal de (MA) :

µ0γ
#»

E =
−→rot

#»

B = −dB

dx
#»u y

#»

E =
(1 + i)

δ

B0

µ0γ
exp
(
iωt− i

x

δ

)
#»u y =

B0

µ0γδ
exp
(
iωt− i

x

δ
+ i

π

4

)
#»u y

#»

E =

√
2B0

µ0γδ
cos
(
ωt− x

δ
+

π

4

)
) #»u y
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♡ les champs magnétiques et électriques dans le métal sont des ondes évanescentes, c’est-
à-dire des OPPH qui se propagent dans le sens des x croissants et dont l’amplitude décroît (dans
le sens de propagation) sur la l’épaisseur de peau

δ =

√
2

γµ0ω

. Les courants #»
j = γ

#»

E ne circulent que dans la peau.
L’effet de peau est le phénomène diffusif par lequel une OEM ne pénètre dans un

conducteur ohmique qu’au voisinage de sa surface c’est-à-dire dans la peau. L’épaisseur de
peau représente l’échelle de la propagation.

♡ Pour le cuivre à 50Hz, δ ≈ 1 cm En TP, on utilise des fils électriques en cuivre d’épaisseur
de l’ordre du mm (≪ δ) et donc il n’y a pas d’effet de peau.

En régime continu (DC), la fréquence est nulle, δ → +∞ donc exp
(
−x

δ

)
→ 1. Absence

d’effet de peau : l’OEM occupe tout le volume du conducteur car il n’y a pas d’induction (le
champ magnétique propre est nul).

8.6.2 Cas du conducteur parfait

Le conducteur parfait est le cas limite pour lequel les OEM ne pénètrent pas :

Lycée Janson de Sailly 21 F.DESOMBRE



δ → 0 avec ω ̸= 0 d’où γ → ∞
#»

E int =
#»
0 et

#»

Bint = 0⃗

Les courants #»
j et les charges ρ ne peuvent être que surfaciques.

8.6.3 Limitation de l’effet de peau

L’effet de peau est en général nuisible car il augmente la résistance et donc les pertes par effet
Joule en diminuant la section S traversée par le courant (R = 1

γ
l
S
).

Les méthodes pour diminuer l’effet de peau sont les suivantes :

• diviser le conducteur en plusieurs conducteurs associés en parallèle et isolés entre eux,
chaque “brin” ayant un rayon inférieur à δ.

• plaquer le conducteur avec de l’argent (métal qui possède la plus grande conductivité). La
composante continue du courant circule dans tout le volume et la composante alternative
HF ne circule que dans la pellicule d’argent.

• adopter une géométrie tubulaire : l’épaisseur du tube creux est de l’ordre de δ.

9 Induction de Lorentz

On étudie le cas d’un circuit mobile dans un champ magnétique stationnaire (créé par un aimant
fixe). On repère la position du circuit par x dans le référentiel du laboratoire et sa vitesse est
donc v = dx

dt
= ẋ

9.1 Loi de Faraday

On démontre la loi intégrale de Faraday à partir de l’équation locale de Maxwell-Faraday :

−→rot
#»

E = −∂
#»

B

∂t

théorème de Stokes
˛
(C)

#»

E · d #»

ℓ =

¨
(S)

−→rot
#»

E · dS #»n

e = −
¨

(S)

∂
#»

B

∂t
· dS #»n = − ∂

∂t

¨
(S)

#»

B · dS #»n

dérivée composée e = −dϕ(x(t))

dt
= −dx

dt

dϕ

dx
= −vf(x)

La fem e et donc le courant induit i ainsi que la force de Laplace
#»

F L =
¸
i d

#»

ℓ ∧ #»

B dépendent
de la vitesse v du circuit. La force de Laplace est une force de freinage électromagné-
tique de la forme

#»

F L = −λ(x) #»v (frottement fluide avec λ(x) > 0) qui s’oppose à dϕ
dt

d’après
la loi de modération de Lenz.
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9.2 Méthode

1. Analyse physique du problème

2. Orienter le courant c’est-à-dire choisir un sens positif de circulation de i dans le circuit.

3. D’après la règle de la main droite la surface du circuit est orientée par #»n .

4. Exprimer le flux magnétique ϕc(x) coupé par le circuit dans son mouvement. Le flux
propre ϕp = Li est le flux du champ magnétique propre (auto-induction) créé par le
courant induit i. Le flux total est ϕ = ϕc(x) + ϕp. Négliger l’auto-inductance L revient à
négliger le champ propre.

5. Appliquer la loi de Faraday pour exprimer la fem induite e en fonction de la vitesse v(x)
du conducteur.

6. Réaliser le schéma électrique équivalent en adoptant la convention générateur pour représen-
ter e et i. La loi des mailles donne l’équation électrique.

7. Réaliser le bilan des actions mécaniques sur le système mécanique mobile. Le TCI ou le
TMC donne l’équation mécanique. La force de Laplace agit comme une force de freinage
conformément à la loi de Lenz.

9.3 Cadre qui chute dans un champ magnétique localisé

Un cadre conducteur, constitué de 4 segments de longueur a, tombe dans le plan du schéma
sous l’effet de la gravité.

Sa résistance électrique est notée R et son autoinductance L.
L’espace est divisé en deux régions :

• pour x < 0, il n’y a pas de champ magnétique ;

• pour x > 0, il y a un champ magnétique uniforme, stationnaire et orthogonal au plan du
schéma.

Figure 1: Chute d’un cadre.

Etablir les équations différentielles régissant la vitesse v(t) du cadre dans les 3 régions :

• le cadre est entièrement dans la région B⃗ = 0⃗ ;

• le cadre est à cheval sur les régions où B⃗ = 0⃗ et B⃗ ̸= 0⃗.

• le cadre est entièrement dans la région où B⃗ ̸= 0⃗.
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9.4 Equilibre d’une tige

Une tige métallique OA de masse m, de résistance R et de longueur a oscille sans frottement
(liaison pivot parfaite) autour d’un axe fixe (Oz), perpendiculaire au plan de la figure.

Le moment d’inertie de la tige autour de (Oz) est J = 1
3
ma2.

La tige est en contact en A avec un rail métallique formant ainsi un circuit électrique sont
le seul élément résistant est la tige OA.

Elle est placée dans un champ magnétique uniforme B #»e z normal au plan du système.

Figure 2: Equilibre d’une tige.

1. Déterminer l’équation différentielle vérifiée par l’angle θ(t) avec la verticale.

2. On se limite à de petites oscillations autour de la position d’équilibre. Linéariser l’équation
différentielle précédente.

Déterminer la valeur minimale Bmin de B pour la tige atteigne sa position d’équilibre
sans oscillation.

3. Ecrire sans calcul l’expression du taux de variation de l’énergie mécanique du pendule
dEm

dt
en fonction de l’intensité i(t) qui circule dans la tige.

Retrouver la relation précédente à partir des deux équations électromécaniques couplées
utilisées à la 1ère question.

9.5 Rails de Laplace en pente

On reprend la situation des rails de Laplace, mais au lieu d’être horizontaux, ils font un angle
α avec l’horizontale.

Le champ magnétique est uniforme et stationnaire et dirigé orthogonalement au rail.
On prendra B = 150mT, m = 8, 0 g, ℓ = 12 cm (masse et longueur du barreau mobile),

α = 30◦ et g = 9, 8m.s−2. On néglige les frottements.

1. Faire un schéma en précisant le sens du courant pour que la force permette au barreau
mobile de monter le long des rails.

2. Calculer la valeur de i pour que le barreau monte à vitesse constante (on imagine qu’il a
une vitesse initiale...)

3. Calculer la puissance des forces de Laplace sur le barreau s’il met 0, 5 s pour augmenter
son altitude de 10 cm.
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9.6 Intéraction entre deux tiges

Deux tiges T1 et T2 identiques, de masse m, chacune de résistance électrique R
2
, sont mobiles

sans frottement sur deux rails parallèles horizontaux espacés d’une distance a.
La résistance électrique des rails est négligeable devant R ; l’inductance propre du circuit

est négligée.
L’ensemble est plongé dans un champ magnétique uniforme et constant B⃗ = Be⃗z, et un

champ de pesanteur g⃗ = −gu⃗z.
Initialement T2 est immobile et T1 se déplace vers T2 avec la vitesse v⃗0 = v0u⃗x.
Les deux tiges restent parallèles à u⃗y lors de leur mouvement.

Figure 3: Deux tiges en intéraction.

1. Expliquer sans calcul pourquoi la tige T1 ralentit alors que la tige T2 se met en mouvement.

2. Etablir une équation électrique reliant i(t), intensité du courant dans le circuit, à v1(t) et
v2(t). On note v⃗1 = v1(t)u⃗x et v⃗2 = v2(t)u⃗x les vitesses des tiges T1 et T2.

3. Etablir deux équations mécaniques.

4. En déduire un système d’équations différentielles couplées sur v1(t) et v2(t).

Pour découpler les équations différentielles précédentes, on introduit la fonction somme
σ(t) et la fonction différence δ(t) définies par :

σ(t) = v1(t) + v2(t)

δ(t) = v1(t)− v2(t)

(a) Montrer que :

dσ

dt
= 0

dδ

dt
+

δ

τ
= 0

Déterminer l’expression de τ .

(b) Résoudre pour déterminer les solutions σ(t) et δ(t).
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(c) En déduire v1(t) et v2(t).

(d) Représenter sur un même schéma l’allure des graphes de v1(t) et v2(t).

5. Calculer l’intensité du courant i(t) qui circule dans les deux tiges.

6. Calculer la charge totale Q qui circule entre t = 0 et t → ∞.

7. Déduire de i(t) l’énergie EJ dissipée par effet Joule entre t = 0 et t → ∞.

8. Calculer la variation ∆Em d’énergie mécanique du système entre t = 0 et t → ∞. Com-
menter.
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10 Inductance d’un circuit

10.1 Inductance propre

♡ Le flux propre ϕp est le flux de
#»

B à travers le circuit qui crée lui-même ce champ. Il est
proportionnel au champ

#»

B, lui-même proportionnel au courant i (qui peut dépendre du temps).
L’inductance propre ou autoinductance L (en H) est le facteur de proportionalité positif
déterminé uniquement par la géométrie du circuit :

ϕp = Li

avec [L] = [µ0].L

d’où [µ0] = H.m−1

En effet, d’après le théorème d’Ampère :

[B] =
[µ0].[i]

L
[ϕp] = [B].L2 = [L].[i]

[L].[i] = [µ0].[i].L

10.2 Inductance mutuelle

10.2.1 Définition

Considérons deux circuits (C1) et (C2) parcourus respectivement par les courants i1 et i2.
L’orientation des courants i1 et i2 détermine celle des surfaces des circuits (C1) et (C2).
Le flux noté ϕ1→2 de

#»

B1 créé par (C1) à travers (C2) est proportionnel à B1 et donc à i1. On
définit l’inductance mutuelle M par :

ϕ1→2 = M12i1

de même ϕ2→1 = M21i2

avec M12 = M21 = M

Le signe de l’inductance mutuelle M (en H) dépend de l’orientation relative des deux circuits.
En revanche l’inductance propre L est toujours positive. La valeur absolue de M dépend de la
géométrie de l’ensemble.

Exprimons les flux magnétique totaux à travers chaque circuit :

ϕ1 = ϕp1 + ϕ2→1 = L1i1 +Mi2

ϕ2 = ϕp2 + ϕ1→2 = L2i2 +Mi1

10.2.2 Exemple

Soit le circuit (C1) constitué d’un fil rectiligne infiniment long confondu avec l’axe (Oz) et
parcouru par le courant d’intensité i1 positif dans le sens de (Oz).
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Soit le circuit (C2) constitué d’un tore d’axe (Oz), de rayon intérieur R de section carrée de
côté a et parcouru par le courant d’intensité i2.

On a montré que le fil crée
#»

B1 =
µ0i1
2πr

#»u θ

On a montré que le tore crée
#»

B2 =
#»
0 à l’extérieur et

#»

B2 = µ0Ni2
2πr

#»n 2 à l’intérieur du tore.
On a pris le sens de rotation de i2 lié à #»n 2 = − #»n 1 = − #»u θ par la règle de la main droite.

Le flux de
#»

B1 à travers les N spires du tore vaut avec dS2 = dr dz :

ϕ1→2 = N

ˆ
(1 spire)

#»

B1 · dS2
#»n 2

ϕ1→2 = −N

ˆ
(1 spire)

#»

B1 · dS2
#»u θ

ϕ1→2 = −N
µ0i1
2π

ˆ R+a

R

dr

r

ˆ +a
2

−a
2

dz

ϕ1→2 = −Nµ0i1
2π

[ln(r)]R+a
R [z]

+a
2

−a
2

ϕ1→2 = −i1
µ0Na

2π
ln

(
R + a

R

)
= Mi1

M = −µ0Na

2π
ln

(
R + a

R

)
M est proportionnel au nombre N de spires.

z

i1

(C1)

R

i1

i1

i1

i1

i2 i2

a

(C2)

×#»n 2 • #»n 2

•#»u θ =
#»n 1 r
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On peut aussi calculer M à partir de :

ϕ2→1 =

ˆ
(C1)

#»

B2 · dS1
#»n 1

ϕ2→1 = −
ˆ
(C2))

#»

B2int · dS2
#»n 2

ϕ2→1 = −µ0Ni2
2π

ˆ R+a

R

dr

r

ˆ +a
2

−a
2

dz

ϕ2→1 = −Nµ0i2
2π

[ln(r)]R+a
R [z]

+a
2

−a
2

ϕ2→1 = −i2
µ0Na

2π
ln

(
R + a

R

)
= Mi2

M = −µ0Na

2π
ln

(
R + a

R

)

11 Energie magnétique d’un ensemble de circuits
Pour un seul circuit le flux magnétique total ϕ est égal au flux propre ϕp = Li et l’énergie
magnétique vaut Um = 1

2
Li2 = 1

2
ϕi

En général, pour n circuits Um =
n∑

k=1

1
2
ϕkik. Considérons l’exemple de n = 2 circuits :

ϕ1 = ϕp1 + ϕ2→1 = L1i1 +Mi2

ϕ2 = ϕp2 + ϕ1→2 = L2i2 +Mi1

or Um =
1

2
ϕ1i1 +

1

2
ϕ2i2

L’énergie magnétique totale de deux circuits couplés est Um = 1
2
L1i

2
1 +

1
2
L2i

2
2 +Mi1i2

Or l’énergie magnétique totale vaut :

Um =

˚
espace

B2

2µ0

dτ ≥ 0

avec le champ total
#»

B =
#»

B1 +
#»

B2

d’où Um = i22

[
1

2
L1

(
i1
i2

)2

+M
i1
i2

+
1

2
L2

]
≥ 0∀

(
i1
i2

)
le discriminant est ∆ = M2 − L1L2 ≤ 0

d’où |M | ≤
√
L1L2

Si M = 0 alors les deux circuits ne sont pas couplés.
Enrouler les bobines sur une tore ferromagnétique permet de canaliser les lignes de

champ magnétique et ainsi de réaliser un couplage parfait |M | =
√
L1L2.

Sans le tore ferromagnétique, c’est-à-dire dans l’air, le couplage entre les deux bobines est
médiocre. En effet, ce n’est pas le même flux qui traverse chaque spire car les pertes sont
importantes.

Lycée Janson de Sailly 29 F.DESOMBRE



Avec le tore ferromagnétique on montre (par application du théorème d’Ampère) que le
champ magnétique B et donc le flux ϕ = BS à travers une spire est proportionnel à N1i1+N2i2
:

ϕ = λ(N1i1 +N2i2)

au primaire ϕ1 = N1ϕ = L1i1 +Mi2 = λ(N2
1 i1 +N1N2i2)

au secondaire ϕ2 = N2ϕ = L2i2 +Mi1 = λ(N2N1i1 +N2
2 i2)

d’où L1
i1
i2

+M = λN1N2 + λN2
1

i1
i2

et L2
i2
i1

+M = λN1N2 + λN2
2

i2
i1

d’où L1 = λN2
1

L2 = λN2
2

M = λN1N2

On retrouve la condition de couplage parfait |M | =
√
L1L2

11.1 Couplage par mutuelle

On considère deux bobines identiques de résistance R et d’auto-inductance L. On soumet l’une
à un échelon de tension de continue E en fermant l’interrupteur K à l’instant t = 0. Les deux
bobines sont couplées par mutuelle M > 0.

M
K R i1

E R

i2

L L

Etablissons les lois i1(t) et i2(t) des courants qui s’établissent dans les bobines.

11.2 Cas du couplage non parfait M < L

D’après la loi de Faraday :

e1 = −dϕ1

dt
avec ϕ1 = Li1 +Mi2

d’où e1 = −
(
L
di1
dt

+M
di2
dt

)
e2 = −dϕ2

dt
avec ϕ2 = Li2 +Mi1

d’où e2 = −
(
L
di2
dt

+M
di1
dt

)
Le circuit électrique équivalent est le suivant :
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R

e1

i1
e2

i2

E R

D’après la loi des mailles :

E = Ri1 − e1 = Ri1 + L
di1
dt

+M
di2
dt

0 = Ri2 − e2 = Ri2 + L
di2
dt

+M
di1
dt

On pose S(t) = i1(t) + i2(t) et D(t) = i1(t)− i2(t)

E = (L+M)Ṡ +RS

E = (L−M)Ṡ +RD

On pose τ+ = L+M
R

et τ− = L−M
R

> τ+.
L’énergie magnétique totale stockée dans les bobines est :

Um =
1

2
ϕ1i1 +

1

2
ϕ2i2

Um =
1

2
Li21 +

1

2
Li22 +Mi1i2

L’énergie Um(t) est continue à t = 0 d’où i1(t) et i1(t) également. D’où i1(t = 0) = 0 et
i2(t = 0) = 0.

S(t) =
E

R

(
1− exp

(
− t

τ+

))
D(t) =

E

R

(
1− exp

(
− t

τ−

))
i1(t) =

S(t) +D(t)

2
=

E

2R

(
2− exp

(
− t

τ+

)
− exp

(
− t

τ−

))
i2(t) =

S(t)−D(t)

2
=

E

2R

(
− exp

(
− t

τ+

)
+ exp

(
− t

τ−

))
Comme τ− > τ+ le terme exp

(
− t

τ−

)
décroît plus vite que exp

(
− t

τ+

)
, d’où :

i1(t) ≈
E

2R

(
2− exp

(
− t

τ+

))
i2(t) ≈

E

2R

(
− exp

(
− t

τ+

)
+ exp

(
− t

τ−

))
Le graphe de i2(t) présente un minimum pour t0 =

L2−M2

2MR
ln
(
L+M
L−M

)
tel que di2

dt
(t = t0) = 0
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11.3 Cas du couplage non parfait M = L

Um =
L

2
(i21 + i22 + i1i2) =

L

2
(i1 + i2)

2 =
L

2
S2

L’énergie Um(t) est continue à t = 0 d’où S(t) également. Les courants i1(t) et i2(t) ne sont
plus continus à t = 0 ! L’instant t0 n’est plus défini.

E = 2LṠ +RS

E = RD

S(t) =
E

R

(
1− exp

(
−Rt

2L

))
D(t) =

E

R
= cste

i1(t) =
S(t) +D(t)

2
=

E

2R

(
2− exp

(
−Rt

2L

))
i2(t) =

S(t)−D(t)

2
= − E

2R
exp

(
−Rt

2L

)
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