Equations de Maxwell.

PSI.
March 5, 2025

1 Champ magnétique dans un condensateur

Un condensateur plan d’épaisseur e = 10~%m initialement chargé sous la tension U = 100V se
décharge en une durée 7 = 10~3s. En utilisant I’équation de Maxell-Ampére, déterminer ’ordre
de grandeur du champ magnétique induit par cette charge sachant que 1’échelle caractéristique
de ses variations est le rayon R = 1mm de ses armatures.

2 Milieu rendu conducteur

Opérateurs en coordonnées sphériques :
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Une sphére métallique de rayon R; porte initialement une charge )y uniformément répartie
en surface. Une autre sphére métallique de rayon Ry > R; et de méme centre est initialement
non chargée.

Entre les deux se trouve un gaz conducteur. Suite & un flash lumineux, ce gaz devient
conducteur et est caractérisé par sa conductivité v. Le gaz est supposé rester localement neutre
:p=0.

1. On appelle Q(t) la charge portée par la sphére intérieure. Que vaut le champ électrique
entre les deux sphéres ?

2. En déduire la densité volumique de courant.
3. Quel est le champ magnétique engendré 7

4. Vérifier les équations de Maxwell. En déduire une équation différentielle satisfaite par

Q(t).
La résoudre et donner la charge (Q5(t) portée par la seconde sphére.
Calculer les énergies électromagnétiques initiale et finale.

Commenter par un bilan énergétique complet.

o N> o

Expliquer simplement le processus d’ionisation par flash.
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3 Ligne coaxiale

Le cable coaxial ou ligne coaxiale est une ligne de transmission, composée d’un cable a deux
conducteurs de méme axe. L’ame centrale (en cuivre par exemple), est entourée d’un isolant
(matériau diélectrique). Le diélectrique est entouré d’une gaine conductrice tressée (ou feuille
d’aluminium enroulée), nommée blindage, puis d’une enveloppe de matiére plastique, par ex-
emple du PVC. Ce type de cable est utilisé pour la transmission de signaux numériques ou
analogiques a haute ou basse fréquence. Le courant circule dans un sens dans le cylindre mé-
tallique intérieur en étant réparti dans tout son volume. Ce courant revient dans l'autre sens
par le blindage en étant réparti en surface.
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Figure 1: Cable coaxial.

On donne en cylindriques :
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Une ligne coaxiale est constituée de deux cylindres C et C5 infinis d’épaisseur trés faible,
de rayons a et b, parcourus par des intensités I et —I. On note V; et V5 les potentiels des deux
cylindres et on néglige toute (résistance) chute de tension le long de la ligne.

&

Figure 2: Cable coaxial.

1. Déterminer le champ magnétique en tout point.
2. Justifier le caractére radial du champ électrique, de quelle(s) coordonnée(s) dépend-il ?

3. On postule une dépendance en £ vis-a-vis de la distance r & l'axe (Oz). Déterminer la
constante K.

4. Calculer le vecteur de Poynting en tout point situé entre les deux conducteurs.

5. En déduire I’expression du flux de ce vecteur a travers un plan de section droite. L’exprimer
en fonction de Vi, V5 et I.
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4 Solénoide

On considére un solénoide infini, d’axe (Oz), de rayon R, comportant n spires par unité de
longueur et parcouru par le courant ().
On désire trouver une approximation du champ électromagnétique.

j

Figure 3: Solénoide.

1. En supposant que I'expression du champ magnétique s’identifie a celle obtenue en statique,
exprimer celui-ci a 'intérieur du solénoide.

2. Expliquer pourquoi le champ électrique est nécessairement non nul.
3. Quelle est la forme du champ électrique ?

4. Intégrer une équation de Maxwell sur un disque de rayon r < R et en déduire I’expression
du champ électrique.

5. Montrer qu’il s’agit d’une solution approximative, I’'une des quatre équations de Maxwell
n’étant pas vérifiée.

5 Bilan énergétique de la charge d’un condensateur

Les aramatures d’un condensateur plan, constituées de deux disques conducteurs, de surfaces
S = ma? et de rayon a, de méme axe (Oz) et séparés d’'une distance e sont reliées a un générateur
de fem & par une résistance R.

Initialement le condensateur est déchargé. A un instant quelconque ou la tension & ses
bornes vaut V (t), ses armatures portent respectivement les charges ¢(t) = CV(t) et —¢(t) ou
C= % est la capacité du condensateur.

On néglige les effets de bords, de telle sorte qu’en coordonnées cylindriques le champ élec-
tromagnétique dans le condensateur est en lére approximation de la forme :

e
o]

Figure 4: Condensateur plan.
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Le champ électrique est nul a 'extérieur du condensateur.

1. En utilisant les lois de I’électrocinétique, déterminer V'(t) et montrer que le condensateur
recoit au cours de 'opération une énergie :

U, — %052 (7)

2. A un instant quelconque, déterminer le champ E(t) en utilisant le théoréme de Gauss sur
la surface (%) représentée en pointillés sur la figure de gauche et B(r,t) en appliquant
le théoréme d’Ampére généralisé au contour (C') (cercle de rayon r < a et d’axe (0z))
représenté en pointillés sur la figure de droite.

3. En déduire la puissance électromagnétique P regue par l'intérieur du condensateur, puis
I’énergie électromagnétique U,,,, emmagasinée par le condensateur au cours de sa charge.

Comparer avec I’énergie U, déterminée a la question précédente.

4. Retrouver U,,, en utilisant la densité d’énergie électromagnétique u.,, dans I’état initial
et dans I’état final.

5. En utilisant I’équation de Maxwell-Faraday, montrer que les champs déterminés a la lére

. . - d?q
questlon ne peuvent convenir que si Pl

6 Foudre en boule

On cherche a rendre compte de I’évolution d’une boule constituée d’un nombre N de particules
portant une méme charge ¢ plongée dans 'air. Ces charges engendrent un champ électrique
variable E = E(r, t)i,.

Sous l'effet de ce champ, les charges qui se déplacent dans I’air acquiérent un vecteur vitesse
U= uﬁ ou la constante p appelée mobilité des charges est du signe de q.

On note p(t) la densité volumique de c%es ; on suppose qu’elle reste uniforme et on note

po sa valeur initiale. On rappelle que div(OM) = 3.
1. Exprimer E(r,t) en fonction de e, p(t) et r pour r < R.

- o
2. Exprimer j en fonction de p, €g, p(t) et du vecteur OM. En déduire le champ magnétique
B.
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3. Déduire de I’équation de conservation de la charge que p(t) est solution d’une équation
différentielle du ler ordre & variables séparables et la résoudre.

4. En déduire I'expression de R(t) puis retrouver le résultat en envisageant le mouvement
d’une charge située a chaque instant au bord de la boule chargée.

7 Deécharge d’un condensateur dans ’air

On constate expérimentalement qu'une boule conductrice de rayon R, uniformément chargée
et abandonnée dans 'air avec une charge ¢y se décharge.

Pour interpréter ce phénoméne, on suppose que 'air est un milieu faiblement conducteur
de conductivité o : la densité de charge p y est nulle et la densité de courants j = oE y est
fournie par la loi d’Ohm.

L’origine de l'espace étant prise au centre O de la boule, on adopte des coordonnées
iphériques de centre O et on cherche un champ électromagnétique de la forme E=E (r, t)i,, B =

0.

1. Déterminer E(r,t) en fonction de ¢(t), €q et r.

2. Déterminer ¢(t) en fonction de qq, o, g9 et t. Pourquoi les expériences d’électrostatique
sont-elles plus difficiles a réaliser lorsque 'air est humide ?

8 Bilan énergétique d’un solenoide dans ’ARQS

Un solénoide de longueur [ et d’axe (Oz) comprend N spires circulaires de rayon a parcourues
par un courant d’intensité /(¢). On se place dans 'ARQS.

1. On néglige les effets de bords. Rappeler 'expression du champ magnétique a I'intérieur
du solénoide. Chercher le champ électrique associé sous la forme Ey(r)ty en exploitant
la loi de Faraday pour un contour (C') bien choisi.

2. En déduire la puissance électromagnétique P.,, entrant dans le solenoide.

3. Exprimer I’énergie magnétique U,, du solénoide. Comparer ‘Hd]—tm a P.,, et commenter.

9 Faisceau d’électrons

On envisage une répartition de charges dans un cylindre d’axe (Oz) et de rayon a comprenant
une densité volumique n,(r) de protons fixes liés & un support et une densité volumique n.
d’électrons libres, mobiles avec une vitesse constante v = wvi,. On note (E, E) le champ
électromagnétique créé.

1. Exprimer la densité de charges p et la densité de courants j Vérifier ’équation locale de
conseration de la charge.

2. On néglige toute autre force entre particules que les forces électromagnétiques. En déduire
une relation entre F, U et B.

-

P 7L o7 , .
3. On rappelle que div(@ Ab) = b-rotd — drotb. Quelles sont les équations locales dont sont
solutions F et B ?

En déduire I'expression de n.(r) en fonction de ny(r), v et c.
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10 Contraction de Lorentz-Fitzgerald

On considére deux faisceaux de protons cylindriques paralléles confondus avec les axes z = 0
et r = a.
Les protons ont une charge ¢ et une vitesse ¥ = vii, dans le référentiel (R) = (Ozyz) et les
dq

faisceaux ont dans ce référentiel une densité linéique A = 2. Dans le référentiel (R') li¢ aux

protons, les faisceaux ont a priori une densité linéique A\ # .

1. Déterminer le champ électromagnétique créé par un faisceau de protons en tout point de
I'espace d’une part, dans (R), et, d’autre part, dans (R’).

2. Exprimer la force linéique d’intéraction entre les deux faisceaux d’une part, dans (R), et,
d’autre part, dans (R').

3. En admettant que la charge d’un élément de longueur a la méme valeur dans (R) et
dans (R'), en déduire ’expression du rapport Cﬁl—i. Pourquoi parle-t-on de contraction des
longueurs 7

11 Champ créé par émission de charges

Un matériau radioactif assimilé au plan d’équation z = 0 émet & partir de I'instant ¢ = 0
des charges ¢ symétriquement avec une vitesse £vi,. On note 0°N = adtdrdy le nombre de
charges émises pendant dt par un élément de plaque de surface dxdy avec a constante.

On suppose que les charges conservent leur vitesse initiale.

1. On se place dans le domaine z > vt. Montrer que p(M,t) = 0 et j(M,t) = 0.

2. On se place dans le domaine 0 < z < vt. Pendant quelle durée ont été émises les charges
qui se situent a I'instant ¢ dans une colonne de section dxdy entre les cotes z et z+dz 7 En
déduire les expressions de p(M,t) et de j(M,t). Donner les expressions correspondantes
pour z < 0.

3. Quelle est, a 'instant ¢, la charge surfacique o(t) de la plaque ?

4. Déterminer le champ électromagnétique dans le domaine z > 0 puis dans le domaine
z < 0.

5. Calculer I'énergie électromagnétique Cfigsz contenue dans une colonne de section dxdy

s’étendant de z = —o00 & 2z = +oo. Commenter.

12 Symétries du champ en régime variable

Une boule radioactive émet des particules alpha portant une charge +2e radialement de maniére
isotrope. Montrer que le champ magnétique créé en un point M repéré par ses coordonnées
sphériques (7,6, ¢) est nul et que le champ électrique est de la forme E = E(r, t)u,.

13 Atome d’hydrogéne

On adopte pour I'atome d’hydrogéne un modeéle planétaire classique ou ’électron posséde une
trajectoire circulaire de rayon a ~ 10~ "m.
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1. Evaluer 'ordre de grandeur de la période 7' du mouvement. Peut-on faire ’ARQS ?

2. On remplace I’électron par une spire circulaire de rayon a parcourue par un courant moyen
I. Calculer I. Chercher 'expression de la norme B du champ magnétique B créé par
I’électron sur le proton sous la forme d’'un monéme B = pglPa? et calculer B.

3. Calculer le rapport de I’énergie magnétique volumique sur 1’énergie électrique volumique
au niveau du proton.

14 Impact de la foudre sur les circuits

La foudre peut engendrer des tensions perturbatrices dans les circuits électriques. L’allure du
courant /() dans le canal de foudre est donnée ci-dessous.

1. Justifier qu’on peut utiliser les lois de ’ARQS.

2. Interpréter la perturbation et indiquer & quel moment elle est la plus forte.

15 Plaque chargée en mouvement

Une plaque plane isolante de masse m et de grande surface uniformément chargée en surface
avec une densité o et assimilée au plan infini z = 0 est lancée en translation & l'instant t = 0
avec une vitesse vgti,. On note v(t)i, sa vitesse a I'instant ¢ > 0. On donne les expressions du
champ électromégnétique créé dans les domaines 0 < x < ct et © > ct :

- o HoCo T,
E t) = —il, — t—=
(0<x<ct) 260%6 5 v( C)uz (8)
— g
FE t) = —Uy, 9
(x > ct) 26Ou 9)
Blo<z<ct)= %v(t -5, (10)
C
Bz >ct)=0 (11)

1. Tester la pertinence de ces expressions (symétries, invariances et homogénéité).
2. Donner les expressions correspondantes dans le domaine x < 0.

3. En déduire la composante selon i, de la force subie par la plaque, puis en supposant
qu’elle ne subit aucune autre force, ’expression de la vitesse v(t) en fonction de vy, t, po,
m, o, cet S.
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4. Exprimer la partie variable de ’énergie électromagnétique de 'espace situé de part et
d’autre de la plaque de surface S et interpréter 'évolution de v(t).
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