
Equations de Maxwell.

PSI.

March 5, 2025

1 Champ magnétique dans un condensateur
Un condensateur plan d’épaisseur e = 10−6m initialement chargé sous la tension U = 100V se
décharge en une durée τ = 10−3s. En utilisant l’équation de Maxell-Ampère, déterminer l’ordre
de grandeur du champ magnétique induit par cette charge sachant que l’échelle caractéristique
de ses variations est le rayon R = 1mm de ses armatures.

2 Milieu rendu conducteur
Opérateurs en coordonnées sphériques :
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Une sphère métallique de rayon R1 porte initialement une charge Q0 uniformément répartie
en surface. Une autre sphère métallique de rayon R2 > R1 et de même centre est initialement
non chargée.

Entre les deux se trouve un gaz conducteur. Suite à un flash lumineux, ce gaz devient
conducteur et est caractérisé par sa conductivité γ. Le gaz est supposé rester localement neutre
: ρ = 0.

1. On appelle Q(t) la charge portée par la sphère intérieure. Que vaut le champ électrique
entre les deux sphères ?

2. En déduire la densité volumique de courant.

3. Quel est le champ magnétique engendré ?

4. Vérifier les équations de Maxwell. En déduire une équation différentielle satisfaite par
Q(t).

5. La résoudre et donner la charge Q2(t) portée par la seconde sphère.

6. Calculer les énergies électromagnétiques initiale et finale.

7. Commenter par un bilan énergétique complet.

8. Expliquer simplement le processus d’ionisation par flash.
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3 Ligne coaxiale

Le câble coaxial ou ligne coaxiale est une ligne de transmission, composée d’un câble à deux
conducteurs de même axe. L’âme centrale (en cuivre par exemple), est entourée d’un isolant
(matériau diélectrique). Le diélectrique est entouré d’une gaine conductrice tressée (ou feuille
d’aluminium enroulée), nommée blindage, puis d’une enveloppe de matière plastique, par ex-
emple du PVC. Ce type de câble est utilisé pour la transmission de signaux numériques ou
analogiques à haute ou basse fréquence. Le courant circule dans un sens dans le cylindre mé-
tallique intérieur en étant réparti dans tout son volume. Ce courant revient dans l’autre sens
par le blindage en étant réparti en surface.

Figure 1: Câble coaxial.

On donne en cylindriques :
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Une ligne coaxiale est constituée de deux cylindres C1 et C2 infinis d’épaisseur très faible,
de rayons a et b, parcourus par des intensités I et −I. On note V1 et V2 les potentiels des deux
cylindres et on néglige toute (résistance) chute de tension le long de la ligne.

Figure 2: Câble coaxial.

1. Déterminer le champ magnétique en tout point.

2. Justifier le caractère radial du champ électrique, de quelle(s) coordonnée(s) dépend-il ?

3. On postule une dépendance en K
r

vis-à-vis de la distance r à l’axe (Oz). Déterminer la
constante K.

4. Calculer le vecteur de Poynting en tout point situé entre les deux conducteurs.

5. En déduire l’expression du flux de ce vecteur à travers un plan de section droite. L’exprimer
en fonction de V1, V2 et I.
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4 Solénoïde
On considère un solénoïde infini, d’axe (Oz), de rayon R, comportant n spires par unité de
longueur et parcouru par le courant I(t).

On désire trouver une approximation du champ électromagnétique.

Figure 3: Solénoïde.

1. En supposant que l’expression du champ magnétique s’identifie à celle obtenue en statique,
exprimer celui-ci à l’intérieur du solénoïde.

2. Expliquer pourquoi le champ électrique est nécessairement non nul.

3. Quelle est la forme du champ électrique ?

4. Intégrer une équation de Maxwell sur un disque de rayon r < R et en déduire l’expression
du champ électrique.

5. Montrer qu’il s’agit d’une solution approximative, l’une des quatre équations de Maxwell
n’étant pas vérifiée.

5 Bilan énergétique de la charge d’un condensateur
Les aramatures d’un condensateur plan, constituées de deux disques conducteurs, de surfaces
S = πa2 et de rayon a, de même axe (Oz) et séparés d’une distance e sont reliées à un générateur
de fem E par une résistance R.

Initialement le condensateur est déchargé. A un instant quelconque où la tension à ses
bornes vaut V (t), ses armatures portent respectivement les charges q(t) = CV (t) et −q(t) où
C = Sε0

e
est la capacité du condensateur.

On néglige les effets de bords, de telle sorte qu’en coordonnées cylindriques le champ élec-
tromagnétique dans le condensateur est en 1ère approximation de la forme :

Figure 4: Condensateur plan.
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E⃗ = E(t)u⃗z (5)

B⃗ = B(r, t)u⃗θ (6)

Le champ électrique est nul à l’extérieur du condensateur.

1. En utilisant les lois de l’électrocinétique, déterminer V (t) et montrer que le condensateur
reçoit au cours de l’opération une énergie :

Uc =
1

2
CE2 (7)

2. A un instant quelconque, déterminer le champ E(t) en utilisant le théorème de Gauss sur
la surface (Σ) représentée en pointillés sur la figure de gauche et B(r, t) en appliquant
le théorème d’Ampère généralisé au contour (C) (cercle de rayon r < a et d’axe (Oz))
représenté en pointillés sur la figure de droite.

3. En déduire la puissance électromagnétique P reçue par l’intérieur du condensateur, puis
l’énergie électromagnétique Uem emmagasinée par le condensateur au cours de sa charge.

Comparer avec l’énergie Uc déterminée à la question précédente.

4. Retrouver Uem en utilisant la densité d’énergie électromagnétique uem dans l’état initial
et dans l’état final.

5. En utilisant l’équation de Maxwell-Faraday, montrer que les champs déterminés à la 1ère
question ne peuvent convenir que si d2q

dt2
= 0.

6 Foudre en boule
On cherche à rendre compte de l’évolution d’une boule constituée d’un nombre N de particules
portant une même charge q plongée dans l’air. Ces charges engendrent un champ électrique
variable E⃗ = E(r, t)u⃗r.

Sous l’effet de ce champ, les charges qui se déplacent dans l’air acquièrent un vecteur vitesse
v⃗ = µE⃗ où la constante µ appelée mobilité des charges est du signe de q.

On note ρ(t) la densité volumique de charges ; on suppose qu’elle reste uniforme et on note
ρ0 sa valeur initiale. On rappelle que div(

−−→
OM) = 3.

1. Exprimer E(r, t) en fonction de ε0, ρ(t) et r pour r ≤ R.

2. Exprimer j⃗ en fonction de µ, ε0, ρ(t) et du vecteur
−−→
OM . En déduire le champ magnétique

B⃗.
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3. Déduire de l’équation de conservation de la charge que ρ(t) est solution d’une équation
différentielle du 1er ordre à variables séparables et la résoudre.

4. En déduire l’expression de R(t) puis retrouver le résultat en envisageant le mouvement
d’une charge située à chaque instant au bord de la boule chargée.

7 Décharge d’un condensateur dans l’air
On constate expérimentalement qu’une boule conductrice de rayon R, uniformément chargée
et abandonnée dans l’air avec une charge q0 se décharge.

Pour interpréter ce phénomène, on suppose que l’air est un milieu faiblement conducteur
de conductivité σ : la densité de charge ρ y est nulle et la densité de courants j⃗ = σE⃗ y est
fournie par la loi d’Ohm.

L’origine de l’espace étant prise au centre O de la boule, on adopte des coordonnées
sphériques de centre O et on cherche un champ électromagnétique de la forme E⃗ = E(r, t)u⃗r, B⃗ =
0⃗.

1. Déterminer E(r, t) en fonction de q(t), ε0 et r.

2. Déterminer q(t) en fonction de q0, σ, ε0 et t. Pourquoi les expériences d’électrostatique
sont-elles plus difficiles à réaliser lorsque l’air est humide ?

8 Bilan énergétique d’un solenoïde dans l’ARQS
Un solénoïde de longueur l et d’axe (Oz) comprend N spires circulaires de rayon a parcourues
par un courant d’intensité I(t). On se place dans l’ARQS.

1. On néglige les effets de bords. Rappeler l’expression du champ magnétique à l’intérieur
du solénoïde. Chercher le champ électrique associé sous la forme E⃗θ(r)u⃗θ en exploitant
la loi de Faraday pour un contour (C) bien choisi.

2. En déduire la puissance électromagnétique Pem entrant dans le solenoïde.

3. Exprimer l’énergie magnétique Um du solénoïde. Comparer dUm

dt
à Pem et commenter.

9 Faisceau d’électrons
On envisage une répartition de charges dans un cylindre d’axe (Oz) et de rayon a comprenant
une densité volumique np(r) de protons fixes liés à un support et une densité volumique ne

d’électrons libres, mobiles avec une vitesse constante v⃗ = vu⃗z. On note (E⃗, B⃗) le champ
électromagnétique créé.

1. Exprimer la densité de charges ρ et la densité de courants j⃗. Vérifier l’équation locale de
conseration de la charge.

2. On néglige toute autre force entre particules que les forces électromagnétiques. En déduire
une relation entre E⃗, v⃗ et B⃗.

3. On rappelle que div(⃗a∧ b⃗) = b⃗ · −→rot⃗a− a⃗
−→rot⃗b. Quelles sont les équations locales dont sont

solutions E⃗ et B⃗ ?

En déduire l’expression de ne(r) en fonction de np(r), v et c.
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10 Contraction de Lorentz-Fitzgerald

On considère deux faisceaux de protons cylindriques parallèles confondus avec les axes x = 0
et x = a.

Les protons ont une charge q et une vitesse v⃗ = vu⃗z dans le référentiel (R) = (Oxyz) et les
faisceaux ont dans ce référentiel une densité linéique λ = dq

dz
. Dans le référentiel (R′) lié aux

protons, les faisceaux ont a priori une densité linéique λ′ ̸= λ.

1. Déterminer le champ électromagnétique créé par un faisceau de protons en tout point de
l’espace d’une part, dans (R), et, d’autre part, dans (R′).

2. Exprimer la force linéique d’intéraction entre les deux faisceaux d’une part, dans (R), et,
d’autre part, dans (R′).

3. En admettant que la charge d’un élément de longueur a la même valeur dans (R) et
dans (R′), en déduire l’expression du rapport dz′

dz
. Pourquoi parle-t-on de contraction des

longueurs ?

11 Champ créé par émission de charges

Un matériau radioactif assimilé au plan d’équation z = 0 émet à partir de l’instant t = 0
des charges q symétriquement avec une vitesse ±vu⃗z. On note δ2N = αdtdxdy le nombre de
charges émises pendant dt par un élément de plaque de surface dxdy avec α constante.

On suppose que les charges conservent leur vitesse initiale.

1. On se place dans le domaine z > vt. Montrer que ρ(M, t) = 0 et j⃗(M, t) = 0⃗.

2. On se place dans le domaine 0 < z < vt. Pendant quelle durée ont été émises les charges
qui se situent à l’instant t dans une colonne de section dxdy entre les cotes z et z+dz ? En
déduire les expressions de ρ(M, t) et de j⃗(M, t). Donner les expressions correspondantes
pour z < 0.

3. Quelle est, à l’instant t, la charge surfacique σ(t) de la plaque ?

4. Déterminer le champ électromagnétique dans le domaine z > 0 puis dans le domaine
z < 0.

5. Calculer l’énergie électromagnétique dUem

dxdy
contenue dans une colonne de section dxdy

s’étendant de z = −∞ à z = +∞. Commenter.

12 Symétries du champ en régime variable

Une boule radioactive émet des particules alpha portant une charge +2e radialement de manière
isotrope. Montrer que le champ magnétique créé en un point M repéré par ses coordonnées
sphériques (r, θ, φ) est nul et que le champ électrique est de la forme E⃗ = E(r, t)u⃗r.

13 Atome d’hydrogène

On adopte pour l’atome d’hydrogène un modèle planétaire classique où l’électron possède une
trajectoire circulaire de rayon a ≈ 10−10m.
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1. Evaluer l’ordre de grandeur de la période T du mouvement. Peut-on faire l’ARQS ?

2. On remplace l’électron par une spire circulaire de rayon a parcourue par un courant moyen
I. Calculer I. Chercher l’expression de la norme B du champ magnétique B⃗ créé par
l’électron sur le proton sous la forme d’un monôme B = µ0I

paq et calculer B.

3. Calculer le rapport de l’énergie magnétique volumique sur l’énergie électrique volumique
au niveau du proton.

14 Impact de la foudre sur les circuits
La foudre peut engendrer des tensions perturbatrices dans les circuits électriques. L’allure du
courant I(t) dans le canal de foudre est donnée ci-dessous.

1. Justifier qu’on peut utiliser les lois de l’ARQS.

2. Interpréter la perturbation et indiquer à quel moment elle est la plus forte.

15 Plaque chargée en mouvement
Une plaque plane isolante de masse m et de grande surface uniformément chargée en surface
avec une densité σ et assimilée au plan infini x = 0 est lancée en translation à l’instant t = 0
avec une vitesse v0u⃗z. On note v(t)u⃗z sa vitesse à l’instant t > 0. On donne les expressions du
champ électromégnétique créé dans les domaines 0 < x < ct et x > ct :

E⃗(0 < x < ct) =
σ

2ϵ0
u⃗x −

µ0cσ

2
v(t− x

c
)u⃗z (8)

E⃗(x > ct) =
σ

2ϵ0
u⃗x (9)

B⃗(0 < x < ct) =
µ0σ

2
v(t− x

c
)u⃗y (10)

B⃗(x > ct) = 0⃗ (11)

1. Tester la pertinence de ces expressions (symétries, invariances et homogénéité).

2. Donner les expressions correspondantes dans le domaine x < 0.

3. En déduire la composante selon u⃗z de la force subie par la plaque, puis en supposant
qu’elle ne subit aucune autre force, l’expression de la vitesse v(t) en fonction de v0, t, µ0,
m, σ, c et S.
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4. Exprimer la partie variable de l’énergie électromagnétique de l’espace situé de part et
d’autre de la plaque de surface S et interpréter l’évolution de v(t).
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