
OEM dans le vide.

PSI.

March 16, 2025

Dans ce chapitre, on étudie le champ électromagnétique (E⃗, B⃗) dans le vide (ρ = 0; j⃗ = 0⃗)
c’est-à-dire loin de ses sources (atomes, antennes...) très localisées.

1 Rappel :

1.1 Les équations de Maxwell dans le vide :

Les équations de Maxwell dans le vide sont les suivantes :

MG : div(E⃗) = 0 (1)

MF : −→rot(E⃗) = −∂B⃗
∂t

(2)

MΦ : div(B⃗) = 0 (3)

MA : −→rot(B⃗) = µ0ε0
∂E⃗

∂t
(4)

1.2 Equations de propagation dans le vide :

On en déduit les équations de propagation de d’Alembert vectoriel dans le vide de E⃗ et B⃗ :

∆⃗E⃗ − 1

c2
∂2E⃗

∂t2
= 0⃗ (5)

∆⃗B⃗ − 1

c2
∂2B⃗

∂t2
= 0⃗ (6)

en posant : c =
√

1

ε0µ0

(7)

Les solutions sont des OPPH E⃗ = E0 cos(ωt− kz)u⃗x seulement si l’équation se réduit à
l’équation de d’Alembert scalaire :

∆Ex −
1

c2
∂2Ex

∂t2
= 0 (8)

avec : ∆Ex =
∂2Ex

∂z2
(9)

En effet, si le champ dépend de deux variables cartésiennes, les solutions de l’équation de
propagation vectoriel ne seront pas des OPPH car l’OEM n’est pas plane.
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1.3 En cartésiennes :

En cartésiennes (seulement !) on peut retrouver l’expression de tous les opérateurs avec
l’opérateur ∇⃗. Ainsi le laplacien est défini par :

∆ = ∇⃗ · ∇⃗ (10)

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(11)

Ainsi (5) donne 3 équations de d’Alembert scalaires découplées :

∂2Ex

∂x2
+
∂2Ex

∂y2
+
∂2Ex

∂z2
− 1

c2
∂2Ex

∂t2
= 0 (12)

∂2Ey

∂x2
+
∂2Ey

∂y2
+
∂2Ey

∂z2
− 1

c2
∂2Ey

∂t2
= 0 (13)

∂2Ez

∂x2
+
∂2Ez

∂y2
+
∂2Ez

∂z2
− 1

c2
∂2Ez

∂t2
= 0 (14)

puisque a priori :

Ex = Ex(x, y, z) (15)
Ey = Ey(x, y, z) (16)
Ez = Ez(x, y, z) (17)

Il en est de même pour B⃗.

2 OPPH dans le vide :

OPPH signifie Onde Plane Progressive Harmonique :

• L’onde est progressive car elle se propage (au contraire une onde stationnaire ne se
propage pas) ;

• sinusoïdal est synonyme d’harmonique ;

• en optique, l’onde est dite plane car une surface d’onde est plane i.e si sa phase est
de la forme ψ(x, t) = ωt− kx.

• en physique des ondes, l’onde est dite plane si son amplitude et sa phase ne dépendent que
d’une seule variable cartésienne et du temps. Ainsi, l’onde a(M, t) = AM(x, y, z, t) cos(ωt− kx)
est plane au sens de l’optique mais pas de la physique des ondes. En cartésiennes,
l’équation d’un plan est par exemple x = cste.

On appelle OPPH une solution des équations de Maxwell dans le vide dont toutes les
composantes du champ électromagnétique sont de la forme :
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a(M, t) = A cos
(
ωt− k⃗ · r⃗ − φ

)
(18)

avec : r⃗ =
−−→
OM = ru⃗r (19)

le vecteur d’onde est : k⃗ = ku⃗ (20)

Les 6 composantes du champ électromagnétique ont même vecteur d’onde k⃗ = ku⃗, même
pulsation ω mais des amplitudes A et phase φ a priori différentes.

2.1 Grandeurs complexes :

Soit une OPPH :

E⃗ = E⃗0 cos
(
ωt− k⃗ · r⃗ − φ

)
(21)

E⃗ = E⃗0 exp j(ωt− kxx− kyy − kzz − φ) (22)

On en déduit :

∂

∂t
= jω (23)

et :

∂E⃗

∂x
= −jkxE⃗ (24)

∂E⃗

∂y
= −jkyE⃗ (25)

∂E⃗

∂z
= −jkzE⃗ (26)

D’où :

∇⃗ = −jk⃗ (27)

Remarque :

Si on avait posé : E⃗ = E⃗0 cos
(
−ωt+ k⃗ · r⃗ − φ

)
(28)

alors on aurait eu :
∂

∂t
= −jω (29)

et : ∇⃗ = jk⃗ (30)

Attention ! Si l’onde est progressie harmonique mais non plane alors ∇⃗ ≠ jk⃗
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2.2 Relation de structure :

En complexes, les équations de Maxwell s’écrivent :

MG : ∇⃗ · E⃗ = 0 (31)

MF : ∇⃗ ∧ E⃗ = −∂B⃗
∂t

(32)

MΦ : ∇⃗ · B⃗ = 0 (33)

MA : ∇⃗ ∧ B⃗ = µ0ε0
∂E⃗

∂t
(34)

Or (27) et (23) d’où :

MG : − jk⃗ · E⃗ = 0 (35)

MF : − jk⃗ ∧ E⃗ = −jωB⃗ (36)

MΦ : − jk⃗ · B⃗ = 0 (37)

MA : − jk⃗ ∧ B⃗ = µ0ε0jωE⃗ (38)

avec : µ0ε0 =
1

c2
(39)

2.3 Champs transverses :

♡ Les équations de MG et MΦ montrent que les OPPH sont transversales (ou trans-
verses) :

u⃗ · E⃗ = 0 (40)

u⃗ · B⃗ = 0 (41)

2.4 Relation de dispersion :

Considérons MF et MA ou l’équation de propagation :

u⃗ ∧ k

ω
(u⃗ ∧ E⃗) = − ω

kc2
E⃗ (42)

(u⃗ · E⃗)u⃗− (u⃗ · u⃗)E⃗ = − ω2

k2c2
E⃗ (43)

or (40) d’où : − E⃗ = − ω2

k2c2
E⃗ (44)

soit : k2 =
ω2

c2
(45)

La relation de dispersion est en général la relation entre k et ω obtenue à partir de
l’équation de progagation. Dans le cas des OEM dans le vide, on a :

k = ±ω
c

(46)
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♡ La vitesse de phase vφ est définie par :

vφ =
ω

k
(47)

Pour une OPPH se propageant dans le vide vφ est indépendant de ω. C’est
pourquoi le vide est un milieu non dispersif.

vφ = c (48)

♡ D’une façon générale, tous les phénomènes de propagation régis par une équation de
d’Alembert son non dispersifs.

(36) donne : B⃗ =
u⃗ ∧ E⃗
c

(49)

considérons la partie réelle : Re(B⃗) =
u⃗ ∧ Re(E⃗)

c
(50)

♡ D’où la relation de structure d’une OPPH dans le vide :

B⃗ =
u⃗ ∧ E⃗
c

(51)

(u⃗, E⃗, B⃗) est un trièdre direct ; B⃗ et E⃗ sont en phase et :

E(M, t)

B(M, t)
= c (52)

Figure 1: OemPPH : E⃗ et B⃗ sont transversaux et en phase.
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2.5 Généralisation aux ondes non harmoniques :

Si on superpose des OPPH dans le vide se propageant dans la même diretion u⃗ et
ayant des ω différentes, alors l’onde résultante a aussi la structure d’une OPPH.

En effet :

u⃗ · E⃗ω = 0 (53)∑
ω

u⃗ · E⃗ω = 0 (54)

u⃗ · (
∑
ω

E⃗ω) = 0 (55)

d’où :

u⃗ · E⃗ = 0 (56)

B⃗ =
∑
ω

B⃗ω (57)

B⃗ =
∑
ω

u⃗ ∧ E⃗ω

c
(58)

B⃗ =
u⃗ ∧ (

∑
ω E⃗ω)

c
(59)

d’où :

B⃗ =
u⃗ ∧ E⃗
c

(60)

3 Polarisation des OPPH :

La polarisation de la lumière représente son caractère vectoriel.

3.1 Définition :

♡ Par définition, la direction de polarisation est la direction du champ électrique E⃗.

On appelle plan de polarisation le plan défini par E⃗ et le vecteur d’onde k⃗.

3.2 Polarisation elliptique :

Une OPPH se propageant dans le sens +u⃗x, polarisée elliptiquement, a un champ électrique E⃗
de la forme :
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Figure 2: Polarisation elliptique gauche (PEg) et droite (PEd).

Ex = 0 (61)
Ey = E0y cos(ωt− kx) (62)
Ez = E0z cos(ωt− kx− φ) (63)

En un point x fixé, E⃗ décrit au cours du temps une ellipse. En x = 0 on a un champ
analogue aux tensions suivantes visualisées sur l’oscilloscope :

sur la voie 1X : u1(t) = U1m cos(ωt) (64)
sur la voie 2Y : u2(t) = U2m cos(ωt− φ) (65)

φ représente le déphasage de u1(t) par rapport à u2(t). En XY, on visualise une ellipse qui
se réduit à :

• un cercle si U1m = U2m ;

• une droite si φ = 0 ou φ = ±π

On peut toujours effectuer une rotation de sorte que les axes u⃗y et u⃗z coïncident avec les
axes de l’ellipse.

♡ Le champ E⃗ d’une onde polarisée elliptiquement (PE) peut alors s’écrire sous la forme
:

Ex = 0 (66)
Ey = E0y cos(ωt− kx) (67)
Ez = ±E0z sin(ωt− kx) (68)

Pour déterminer le sens de parcours on se place en x = 0 et on regarde dans la direction
opposée à la direction de propagation. Entre t = 0 et t = T

4
, si E⃗ tourne dans le sens

anti-horaire (cas du signe +) alors la polarisation elliptique est gauche (PEg) sinon (cas du
signe −) elle est droite (PEd).

Lycée Janson de Sailly 7 F.Desombre



Attention !

Il y a un changement de sens de rotation quand on passe de la convention exp j(ωt− kx) à
la convention exp j(−ωt+ kx).

3.3 Polarisation circulaire :

♡ Dans le cas particulier d’une polarisation circulaire (PC), E0x = E0y = E0 :

Ex = 0 (69)
Ey = E0 cos(ωt− kx) (70)
Ez = ±E0 sin(ωt− kx) (71)

Figure 3: Polarisation circulaire gauche (PCg) (+) et droite (PCd) (−).

3.4 Polarisation rectiligne :

Dans le cas particulier d’une polarisation rectiligne (PR), les deux composantes de E⃗ sont en
phase ou en opposition de phase soit φ = 0 ou φ = ±π :

Ex = 0 (72)
Ey = E0y cos(ωt− kx) (73)
Ez = E0z cos(ωt− kx) (74)

la norme du champ est : E0 =
√
E2

0y + E2
0z (75)

♡ Dans le cas d’une polarisation rectiligne (PR), le champ est de la forme :

E⃗ = E⃗0 cos(ωt− kx) (76)
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Figure 4: Polarisation rectiligne.

Le cas le plus général est la polarisation elliptique. Or, une OPPH (PE) peut toujours
être considérée comme la superposition de deux OPPH (PR) telles que leurs directions de
polarisation sont perpendiculaires :

E⃗ = E0y cos(ωt− kx)u⃗y + E0z sin(ωt− kx)u⃗z (77)

L’OPPH (PR) constitue le maillon élémentaire de la théorie des OEM.

4 Propagation de l’énergie des OPPH :

4.1 Moyennes temporelles :

Exprimons la moyenne temporelle du vecteur de Poynting.

Par définition : R⃗ =
E⃗ ∧ B⃗
µ0

(78)

or une OPPH est telle que : B⃗ =
u⃗ ∧ E⃗
c

(79)

d’où : R⃗ =
E⃗ ∧ (⃗u⃗ ∧ E⃗)

µ0c
(80)

or la formule du double produit vectoriel est : a⃗ ∧ (⃗b ∧ c⃗) = (⃗a · c⃗)⃗b− (⃗a · b⃗)c⃗ (81)

d’où : R⃗ =
1

µ0c
[(E⃗ · E⃗)u⃗− (E⃗ · u⃗)E⃗] (82)

l’OPPH est transverse d’où : R⃗ =
E2

µ0c
u⃗ (83)

or (7) :
1

µ0c
= ε0c (84)

R⃗ = ε0E
2cu⃗ (85)

or (52) : B =
E

c
(86)

d’où : R⃗ =
B2

µ0

cu⃗ (87)

On en déduit la moyenne temporelle :
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< R⃗ · u⃗ >= ε0 < E2 > c =
< B2 >

µ0

c (88)

Remarque :

< R⃗ · u⃗ > s’exprime en W.m−2 et correspond à l’intensité lumineuse I en optique. On
retrouve bien que I est proportionnelle à < E2 >.

En optique, les détecteurs sont sensibles à la moyenne temporelle < R⃗ · u⃗ > car le temps
de détection est beaucoup plus grand que la période T = 1

ν
≈ qlq10−15s des OEM du domaine

visible.

Dans le cas général d’une polarisation elliptique :

< E2 > =< E2
0y cos

2(ωt− kx) + E2
0z sin

2(ωt− kx) > (89)
< E2 > = E2

0y < cos2(ωt− kx) > +E2
0z < sin2(ωt− kx) > (90)

or : < cos2(ωt− kx) > =< sin2(ωt− kx) >=
1

2
(91)

d’où : < E2 > =
1

2
(E2

0y + E2
0z) (92)

< E2 > =
E2

0

2
(93)

On en déduit la densité volumique d’énergie électromagnétique uem :

Par définition : uem =
1

2
ε0E

2 +
1

2µ0

B2 (94)

or (52) d’où :
1

2µ0

B2 =
1

2c2µ0

E2 (95)

or (7) d’où :
1

2µ0

B2 =
1

2
ε0E

2 (96)

Finalement, on constate qu’il y a équipartition des énergies électrique et magnétique
dans une OPPH :

uem = ε0E
2 =

B2

µ0

(97)

Finalement, on constate qu’en moyenne l’énergie électromagnétique d’une OPPH
est répartie uniformément dans l’espace :

< R⃗ · u⃗ >=< uem > c =
ε0E

2
0

2
c =

B2
0

2µ0

c (98)

Une intégration sur tout l’espace conduirait à une énergie électromagnétique infinie :

Uem =

˚
espace

< uem > dτ (99)

Uem =< uem > Vespace (100)
Uem → ∞ (101)

Lycée Janson de Sailly 10 F.Desombre



On montre ainsi le caractère non physique des OPPH. D’autre part, on constate que
les contributions des 2 OPPH PR qui constituent l’onde PE sont additives (92). L’OPPH PR
est donc le maillon élémentaire de la théorie des OEM dans le vide, y compris pour ses aspects
énergétiques.

En effet, l’étude des interférences en optique a montré que la lumière est constituée de trains
d’ondes. Un train d’ondes est une superposition d’OPPH de fréquence différentes.

Attention ! Aucune grandeur énergétique ne peut être complexe car R⃗ et uem
sont quadratiques et donc non linéaires .

4.2 Ordre de grandeurs :

Il faut être capable de donner l’odg de flux énergétiques surfaciques moyens (laser He-Ne, Soleil,
téléphone portable ...) et en déduire l’odg du champ électrique associé.

• Fort ensoleillement :

< ∥R⃗∥ > ≈ 1kW.m−2 (102)

d’où : E0 ≈
√

2µ0c < ∥R⃗∥ > (103)

E0 ≈
√
2× 4π10−7 × 3.108.103 (104)

soit : E0 ≈ 1kV.m−1 (105)

• Le laser He-Ne donne les mêmes ordres de grandeurs. En effet :

sa puissance est : P ≈ 1mW (106)
répartie sur une surface : S ≈ 1mm2 (107)

d’où : < ∥R⃗∥ > ≈ 10−3

(10−3)2
(108)

< ∥R⃗∥ > ≈ 1kW.m−2 (109)

• Un téléphone portable :

sa puissance est : P ≈ 1mW (110)
répartie sur une sphère de surface : S = 4πd2 (111)

à d = 10cm : < ∥R⃗∥ > ≈ 10−3

4π(10.10−2)2
(112)

< ∥R⃗∥ > ≈ 8mW.m−2 (113)

d’où : E0 ≈
√
2× 4π10−7 × 3.108 × 8.10−3 (114)

soit : E0 ≈ 2V.m−1 (115)
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4.3 Vitesse de propagation de l’énergie :

de (98) on déduit : < R⃗ > =< uem > cu⃗ (116)

analogue à : j⃗m = ρv⃗ (117)

L’énergie électromagnétique dUem qui traverse dSu⃗ pendant la durée élémentaire dt est :

dUem =< R⃗ > ·dSu⃗dt (118)

dUem = ∥ < R⃗ > ∥dSdt (119)

D’autre part, cette énergie dUem se retrouve accumulée dans le cylindre de section dS et de
hauteur vedt où v⃗e = veu⃗ est la vitesse de propagation de l’énergie :

dUem =< uem > dSvedt (120)

en identifiant avec (119) : < uem > dSvedt = ∥ < R⃗ > ∥dSdt (121)

d’où : ve =
∥ < R⃗ > ∥
< uem >

(122)

dans le cas des OPPH dans le vide (98) donne : ve = c (123)

5 Le photon :

A toute OEM on peut associer un corpuscule appelé photon qui décrit les échanges entre
matière et rayonnement.

• ♡ Un photon est le quantum d’énergie :

E = hν = ℏω (124)

avec : ℏ =
h

2π
(125)

la constante de Planck vaut : h = 6, 62.10−34J.s (126)

• ♡ Un photon a pour quantité de mouvement :

p⃗ =
E

c
u⃗ =

h

λ
u⃗ (127)

car :
ν

c
=

1

λ
(128)

d’autre part : k⃗ =
2π

λ
u⃗ (129)

d’où : p⃗ = ℏk⃗ (130)

Calculer le nombre moyen de photons qui traversent chaque seconde la section d’un laser He-Ne.
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P = E
dN

dt
(131)

soit :
dN

dt
=

P
E

(132)

avec : P ≈ 1mW (133)
et : λ = 632nm (134)
dN

dt
=

1.10−3.632.10−9

6, 62.10−34.3.108
(135)

soit :

dN

dt
= 3.1015photons/s (136)

Ce nombre élevé justifie l’approche ondulatoire.

6 Etude expérimentale de la polarisation :
Les expériences de polarisation de la lumière attestent du caractère vectoriel des ondes lu-
mineuses. Au début du XIXième siècle, Fresnel introduit le vecteur vibration lumineuse E⃗.
Dans le vide, la polarisation se conserve au cours de la propagation. Seul un milieu optique-
ment actif peut modifier l’état de polarisation de la lumière.

6.1 Polariseur (PCSI) :

Un polariseur (ou polaroïd) est un verre dichroïque qui possède deux directions privilégiées
(milieu anisotrope) orthogonales entre elles : la lame est transparente si E⃗ est parallèle à v⃗
(isolante perpendiculairement aux chaînes de polymères) et totalement absorbante (conductrice
parallèlement aux chaînes de polymères ainsi le champ est absorbé) si E⃗ est orthogonal à v⃗. Il
en résulte que le polariseur ne transmet que la composante de E⃗ selon v⃗ :

E⃗t = (E⃗ · v⃗)v⃗ (137)

6.2 Lumière naturelle :

La lumière solaire est non polarisée. Mais, sa diffusion par l’atmosphère la polarise partielle-
ment.

Une lampe à incandescence émet une lumière naturelle.
Selon le type de LASER, la lumière émise peut être polarisée, non polarisée ou partiellement

polarisée.

La lumière naturelle est non polarisée car l’état de polarisation varie alétoirement d’un
train d’ondes au suivant.

C’est φ(t) qui varie aléatoirement dans le temps sur une durée supérieure à la période T de
l’onde et inférieure au temps de réponse du capteur.
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Un polariseur placé devant un faisceau de lumière naturelle transmet le champ E cos θv⃗ où
θ est l’angle aléatoire que fait le E⃗ de chaque train d’onde avec la direction v⃗ du polariseur.

Le capteur de lumière est sensible à :

I = k < E2
0 cos

2 θ > (138)
I = kE2

0 < cos2 θ > (139)

or θ est aléatoire donc : < cos2 θ > =
1

2
(140)

d’autre part l’intensité incidente est : I0 = kE2
0 (141)

donc : I =
IO
2

(142)

Un polariseur transmet 50% de la lumière naturelle ce qui lui donne une couleur grise.

6.3 Loi de Malus :

Figure 5: Loi de Malus.

On considère le montage expérimental constitué d’ :

• une source de lumière naturelle associée à un collimateur (pour obtenir un faisceau d’ondes
planes) ;

• un premier polariseur (P1) dont le rôle est de polariser rectilignement la lumière dans
la direction v⃗1 :

E⃗ = E0 cos(ωt− kx)v⃗1 (143)
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• un analyseur (P2) est un polariseur de direction v⃗2 faisant un angle α (réglable) avec (P1).
Le champ transmis par (P2) est la projection de E⃗ sur la direction v⃗2 de (P2) :

E⃗ ′ = (E⃗ · v⃗2)v⃗2 (144)

E⃗ ′ = E0 cos(ωt− kx)(v⃗1 · v⃗2)v⃗2 (145)

E⃗ ′ = E0 cos(ωt− kx) cosαv⃗2 (146)

• un détecteur de lumière (photorésistance ou photodiode) qui mesure l’intensité lumineuse
I transmise par l’association de (P1) et (P2). Or, I est proportionnelle à < E ′2 > soit :

I = a < E2
0 cos

2(ωt− kx) cos2 α > (147)
I = a < E2

0 cos
2(ωt− kx) > cos2 α (148)

posons : Imax = a < E2
0 cos

2(ωt− kx) > (149)

La loi de Malus exprime les variations d’intensité lumineuse mesurées à la sortie de
l’analyseur quand on fait varier l’angle α entre le polariseur et l’analyseur :

I = Imax cos
2 α (150)

L’ extinction I = 0 est obtenue lorsque le polariseur et l’analyseur sont croisés i.e
pour α = 90◦.

On analyse une lumière de polarisation inconnue en faisant tourner l’analyseur (P2)

pour obtenir l’extinction. On en déduit alors que E⃗ est orthogonal à v⃗2.

Exemple 1 : on fait tourner le polariseur éclairé par la lumière d’un écran LCD d’un
ordinateur. On constate qu’il y a une extinction. On en déduit que l’écran LCD émet une
lumière polarisée.

Exemple 2 : Quand on utilise la barette CCD reliée à CALIENS, on doit limiter l’intensité
lumineuse sur le capteur pour empêcher le signal de saturer. On utilise pour cela un jeu de
polariseur-analyseur dont on règle l’angle α pour ajuster l’intensité lumineuse selon la loi de
Malus. Si la source lumineuse est déjà polarisée alors le polariseur est inutile, l’analyseur suffit.

6.3.1 Synthèse :

Soit le montage expérimental constitué de :

• une source (S) de lumière naturelle (avec un collimateur) émettant des OPPH se propageant
dans la direction u⃗x.

• un polariseur (P ) a pour rôle de polariser rectilignement la lumière dans sa direction de
polarisation v⃗. A la sortie de (P ) :

E⃗ = E0 cos(ωt− kx)v⃗ (151)
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Figure 6: Effet d’une lame λ
4

ou λ
2

sur la polarisation .

• une lame quart d’onde (L) dont les lignes neutres sont orientées d’une façon quelconque
par rapport à v⃗ et constituent les axes de référence.

Le champ incident (PR) sur la lame quart d’onde (L) peut s’écrire :

Ex = 0 (152)
Ey = E0 cosα cos(ωt− kx) (153)
Ez = E0 sinα cos(ωt− kx) (154)

Le champ transmis E⃗ ′ par la lame quart d’onde (L) peut s’écrire :

E ′
x = 0 (155)

E ′
y = E0 cosα cos(ωt− kx) (156)

E ′
z = E0 sinα cos

(
ωt− kx− π

2

)
(157)

On constate que les 2 composantes du champ électrique ne sont plus en phase : l’onde n’est
plus polarisée rectilignement à la sortie de la lame.

La lame quart d’onde (L) a transformé la polarisation rectiligne (PR) en une
polarisation elliptique (PE) :

E ′
x = 0 (158)

E ′
y = E0 cosα cos(ωt− kx) (159)

E ′
z = E0 sinα sin(ωt− kx) (160)

Les lignes neutres de la lame sont les axes de l’ellipse.

La polarisation elliptique (PE) se réduit à :

• une polarisation rectiligne (PR) si α = nπ
2

;

• une polarisation circulaire (PC) si α = (2n+ 1)π
4
.
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6.3.2 Analyse :

Considérons une OEM de polarisation elliptique d’axes u⃗y et u⃗z arrivant sur un analyseur (P ′)
suivi d’un photodétecteur.

La direction de (P ′) est :

v⃗ = cosαu⃗y + sinαu⃗z (161)

Le champ incident (PE) sur (P ′) est de la forme :

Ex = 0 (162)
Ey = a cos(ωt− kx) (163)
Ez = b sin(ωt− kx) (164)

Le champ transmis E⃗ ′ par (P ′) est :

E⃗ ′ = (E⃗ · v⃗)v⃗ (165)

soit : E⃗ ′ = [a cosα cos(ωt− kx) + b sinα sin(ωt− kx)]v⃗ (166)

On constate donc que la (PE) est donc transformée en (PR) par un polariseur.

Le détecteur est sensible à la moyenne quadratique du champ E⃗ ′ :
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< E ′2 > =< [a cosα cos(ωt− kx) + b sinα sin(ωt− kx)]2 > (167)
< E ′2 > = a2 cos2 α < cos2(ωt− kx) > +b2 sin2 α < sin2(ωt− kx) >

(168)

< E ′2 > =
a2

2
cos2 α +

b2

2
sin2 α (169)

car : < cos2(ωt− kx) > =< sin2(ωt− kx) =
1

2
(170)

et : < cos(ωt− kx) sin(ωt− kx) > = 0 (171)

< E ′2 > =
a2

2
cos2 α +

b2

2
(1− cos2 α) (172)

le détecteur mesure l’intensité : I = γ < E ′2 > (173)

soit : I = γ
b2

2
+
γ

2
(a2 − b2) cos2 α (174)

l’intensité maximale est : Imax =
γ

2
a2 (175)

l’intensité minimale est : Imin =
γ

2
b2 (176)

Figure 7: Analyse d’une (PE).

• Si (PE) alors a ̸= b soit Imax ̸= Imin et Imin ̸= 0.

• Si (PC) alors a = b soit Imax = Imin : I(α) indépendant de α.

• Si la lumière est non polarisée alors I(α) indépendant de α.

• Si (PR) alors il existe une direction α qui donne l’extinction Imin = 0 et la (PR) est
orthogonale à cette direction.

En effet, dans le cas de la (PR) :

E ′
x = 0 (177)

E ′
y = a cosα cos(ωt− kx) (178)

E ′
z = b sinα cos(ωt− kx) (179)

d’où : I =
γ

2
(a2 + b2) cos2 α (180)
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6.3.3 Distinction entre (PC) et lumière non polarisée :

Pour distinguer une lumière (PC) d’une lumière non polarisée, on intercale entre la source de
lumière et l’analyseur une lame λ

4
qui transforme la (PC) en (PR). On reconnaît la (PR) par

l’existence d’une extinction. Au contraire, la lame ne polarise pas la lumière non polarisée :
I(α) indépendant de α.

Si (PC) alors :

Ex = 0 (181)
Ey = E0 cos(ωt− kx) (182)
Ez = E0 sin(ωt− kx) (183)

Après la lame λ
4

le champ devient :

Ex = 0 (184)
Ey = E0 cos(ωt− kx) (185)

Ez = E0 sin
(
ωt− kx− π

2

)
(186)

soit :

Ex = 0 (187)
Ey = E0 cos(ωt− kx) (188)
Ez = −E0 cos(ωt− kx) (189)

On reconnaît une (PR) puisque le champ est E⃗ = E⃗0 cos(ωt− kx) avec E⃗0 :

E0x = 0 (190)
E0y = E0 (191)
E0z = −E0 (192)
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La suite est hors programme PSI

6.4 Synthèse et analyse d’une polarisation elliptique :

Les lames à retard sont des lames à faces parallèles constituées d’un cristal biréfringent.
Elles peuvent être constituées de quartz qui est une variété cristalline de la silice SiO2 ou de
carbonate de calcium cristallisé dans la variété Spath d’Islande.

6.4.1 Lame quart d’onde et lame demi-onde :

On éclaire la lame avec un faisceau de lumière parallèle en incidence normale pour éviter
toute réfraction sur la lame.

Lampe blanche + condenseur (lentille de courte focale) + diaphragme à iris placé dans le
plan focal objet d’une lentille convergente + filtre coloré. Le condenseur concentre le faisceau
sur le diaphragme qui joue le rôle de source étendue.

ou :
Lame blanche + lentille convergente telle que le filament soit l’objet dans le plan focal objet.
ou :
Laser + objectif de microscope (lentille convergente de courte focale) + lentille convergente

telle que F ′
1 = F2. On réalise ainsi un élargisseur de faisceau (f ′

2 > f ′
1).

Figure 8: Lame à retard.

Une lame quart d’onde ou demi-onde :

• possède deux directions privilégiées u⃗y et u⃗z, orthogonales entre elles, appelées lignes
neutres de la lame et parallèles aux faces de la lame.

• laisse invariante la direction de polarisation d’une onde polarisée rectilignement sur ses
lignes neutres.
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Une lame λ
4

retarde de T
4
, soit π

2
rad, la composante de E⃗ sur la ligne neutre lente u⃗z par

rapport à la composante sur la ligne neutre rapide u⃗y. Ainsi le champ transmis E⃗ ′ par la lame
λ
4

est lié au champ incident par :

E ′
y(t) = Ey(t) (193)

E ′
z(t) = Ez(t−

T

4
) (194)

Une lame demi-onde retarde de T
2
, soit πrad, la composante de E⃗ sur la ligne neutre lente

u⃗z par rapport à la composante sur la ligne neutre rapide u⃗y. Ainsi le champ transmis E⃗ ′ par
la lame λ

2
est lié au champ incident par :

E ′
y(t) = Ey(t) (195)

E ′
z(t) = Ez(t−

T

2
) = −Ez(t) (196)

On conclut que l’effet de la lame λ0

2
est de transformer E⃗ en son symétrique de par rapport

à l’axe rapide.

A la sortie de la lame d’épaisseur e, le déphasage des deux composantes du champ sont
déphasées de :

φ =
2π

λ
δ (197)

avec la différence de marche : δ = (ny − nz)e (198)

vitesse de propagation sur l’axe rapide : vy =
c

ny

(199)

vitesse de propagation sur l’axe lent : vz =
c

nz

(200)

Dans le cas du Spath d’Islande :

L’axe rapide est tel que : ny = 1, 47 (201)
L’axe lent est tel que : nz = 1, 66 (202)

La biréfringence est définie par : ∆n = nz − ny (203)

La lame 1/2 onde est taillée pour épaisseur e telle que φ = π + 2πp.
La lame 1/4 onde est taillée pour épaisseur e telle que φ = π

2
+ pπ.

Une lame n’est quart d’onde ou demi-onde que pour une pulsation donnée. L’utilisation
d’une telle lame exige donc de travailler en lumière monochromatique en utilisant un filtre
coloré ou un laser.

6.4.2 Détermination des axes d’une lame :

• Croiser (P ) et (A).

• Introduire la lame à retard entre (P ) et (A).
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• Tourner la lame pour rétablir l’extinction : les axes de la lame coïncident avec les
direstions v⃗p et v⃗a.

Un trait repère l’axe lent d’une lame connue.
Pour distinguer l’axe lent de l’axe rapide d’une lame λ

4
(en l’absence de repère) :

• Intercaler successivement 2 lames λ
4
(dont l’une est connue) entre (P ) et (A) initialement

croisés et tourner chaque lame pour rétablir l’extinction. Les axes des lames coïncident
alors avec vp et v⃗a.

• Les axes des lames peuvent être en coïncidence (axe lent sur axe lent) ou en anticoïnci-
dence (axe lent sur axe rapide).

• Si les axes sont en coïncidence alors l’association des 2 lames λ
4

équivaut à une lame λ
2
.

• Si les axes sont en anti coïncidence alors l’association des 2 lames λ
4

n’introduit aucun
retard et donc tout se passe comme s’il n’y avait aucune lame.

• Tourner (P ) de α = 20◦ :

E⃗1 = E0 cos(α) cos(ωt− kx)u⃗y + E0 sin(α) cos(ωt− kx)u⃗z (204)

• Si, pour rétablir l’extinction, il faut tourner (A) de :

– −α, alors il s’agit d’une coïncidence (en bleu) : la lame λ
2

transforme E⃗ en son
symétrique par rapport à l’axe rapide ;

E⃗2 = E0 cos(α) cos(ωt− kx)u⃗y − E0 sin(α) cos(ωt− kx)u⃗z (205)

– +α, alors il s’agit d’une anticoïncidence (en rouge).

6.4.3 Expériences :

Lame λ
2

:

• Placer le polariseur (P ) puis la lame λ
2

orientée d’une façon quelconque. On a une (PR)
transformée en une (PR) symétrique par rapport à l’axe rapide. On la met en évidence
en obtenant l’extinction (Imin = 0) par rotation de (A).

Lame λ
4

:

• Placer le polariseur (P ) puis la lame λ
4

orientée d’une façon quelconque. On obtient une
(PE).

• Par rotation de (A) on a une intensité variable avec absence d’extinction (Imin ̸= 0).

Deux lames λ
4

:

• Placer le polariseur (P ) puis la lame λ
4

en plaçant ses lignes neutre à π
4
. On obtient une

(PC).

• Introduire une 2nde lame λ
4

orientée d’une façon quelconque. On obtient une (PR) qu’on
prouve en obtenant l’extinction (Imin = 0) par rotation de (A).
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Figure 9: Identification des axes d’une lame λ/4.

7 Annexe mathématique :

L’équation paramétrique d’une ellipse est :

x(t) = a cos(ωt) (206)
y(t) = b sin(ωt) (207)

L’ellipse se réduit à un cercle dans le cas particulier où a = b.
L’équation cartésienne d’une ellipse est obtenue avec :

cos2(ωt) + sin2(ωt) = 1 (208)

d’où :
x2

a2
+
y2

b2
= 1 (209)

Dans le cas particulier du cercle :

x2 + y2 = a2 (210)

L’équation paramétrique d’une droite est de la forme :

x(t) = a cos(ωt) (211)
y(t) = b cos(ωt) (212)

On en déduit l’équation cartésienne d’une droite :

y =
b

a
x (213)
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Figure 10: Analyse d’une polarisation inconnue.
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