OEM dans le vide.

PSI.
March 16, 2025

=,

Dans ce chapitre, on étudie le champ électromagnétique (E , E) dans le vide (p = 0,7 = 0)
c’est-a-dire loin de ses sources (atomes, antennes...) trés localisées.

1 Rappel :

1.1 Les équations de Maxwell dans le vide :

Les équations de Maxwell dans le vide sont les suivantes :

MG : div(E) = 0 (1)
MF : 1ot (E) = —%—f 2)
M® : div(B) =0 (3)
MA : rot(B) = /Lo€oaa—f (4)

1.2 Equations de propagation dans le vide :

On en déduit les équations de propagation de d’Alembert vectoriel dans le vide de EetB:

- - 10°E .
-~ 10°B

1
en posant : ¢ =4/ —— (7)
Eoto

Les solutions sont des OPPH E = Ej cos(wt — kz)u, seulement si I’équation se réduit a
I’équation de d’Alembert scalaire :

1 0*E,
2
avec : AFE, = a@ix (9)

En effet, si le champ dépend de deux variables cartésiennes, les solutions de I’équation de
propagation vectoriel ne seront pas des OPPH car 'OEM n’est pas plane.
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1.3 En cartésiennes :

En cartésiennes (seulement !) on peut retrouver l'expression de tous les opérateurs avec
lopérateur V. Ainsi le laplacien est défini par :

A=V-V (10)
o2 0* O
A:@‘Fa—?ﬂ"—@ (11)

Ainsi donne 3 équations de d’Alembert scalaires découplées :

0’E, n 0’E, O0*E, 10%E,

_ =0 12
0x? 0y? + 022 ¢ ot? (12)
0*E, 0*E, 0*E, 10%E,
_ = 1
Ox? * 0y? * 0z2 % ot? 0 (13)
0’E, 0°E, O°E, 10°E,
R =0 14
0x? * Oy? * 022 2 Ot? (14)
puisque a priori :
E,=FE.(x,y,z) (15)
Ey = Ey(r,y,2) (16)
E,=FE.(z,y,z) (17)

Il en est de méme pour B.

2 OPPH dans le vide :

OPPH signifie Onde Plane Progressive Harmonique :

e L’onde est progressive car elle se propage (au contraire une onde stationnaire ne se
propage pas) ;

e sinusoidal est synonyme d’harmonique ;

e en optique, 'onde est dite plane car une surface d’onde est plane i.e si sa phase est
de la forme ¥(z,t) = wt — kx.

e cn physique des ondes, I'onde est dite plane si son amplitude et sa phase ne dépendent que
d’une seule variable cartésienne et du temps. Ainsi, 'onde a(M,t) = Ay(z,y, 2,t) cos(wt — kzx)
est plane au sens de l'optique mais pas de la physique des ondes. En cartésiennes,
I’équation d’un plan est par exemple x = cste.

On appelle OPPH une solution des équations de Maxwell dans le vide dont toutes les
composantes du champ électromagnétique sont de la forme :
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Les 6 composantes du champ électromagnétique ont méme vecteur d’onde k= ki, méme
pulsation w mais des amplitudes A et phase ¢ a priori différentes.

2.1 Grandeurs complexes :

Soit une OPPH :

Ezﬁgcos<wt—E~F— Lp) (21)
E =E,expj(wt — kyx — kyy — k.2 — @) (22)
On en déduit :
0
R 23
5 = (23)
et :
OE ,
= k. E 24
oy = “IkE (24)
OE ,
— = —jk,E 25
OE .
— = —jk,E 26
5, = kL (26)
D’ou :
V = —jk (27)
Remarque :
Si on avait posé¢ : E = Ej cos(—wt +k-7— gp) (28)
alors on aurait eu : 5= —jw (29)
et: V =jk (30)

Attention ! Sil’onde est progressie harmonique mais non plane alors v # 7 k
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2.2 Relation de structure :

En complexes, les équations de Maxwell s’écrivent :

Or et d’ou :

MG:V-E=0
h@:ﬁAE:—%z
ot
M®:V-B=0
R OE
MA:VAB= —
D Nogoat
MG : —jE'EZO
MF : —jE/\E:—ij
M®: —jk-B=0
MA : —jE/\B:/LO&TijE
1
avec ILL()E():—Q
c

2.3 Champs transverses :

(35)
(36)
(37)
(38)
(39)

@ Les équations de MG et M® montrent que les OPPH sont transversales (ou trans-

verses) :

£
S =
I

Il
o o

£l

2.4 Relation de dispersion :

Considérons MF et MA ou I’équation de propagation :

(40)
(41)

(42)
(43)
(44)

(45)

La relation de dispersion est en général la relation entre k et w obtenue a partir de

I’équation de progagation. Dans le cas des OEM dans le vide, on a :

k=42
&

(46)
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QO La vitesse de phase v, est définie par :

w
Yo =7 (47)
Pour une OPPH se propageant dans le vide v, est indépendant de w. C’est
pourquoi le vide est un milieu non dispersif.
v, =cC (48)
QO D’une fagon générale, tous les phénoménes de propagation régis par une équation de
d’Alembert son non dispersifs.
- GAE
donne : B = e (49)
c
_ @ ARe(E
considérons la partie réelle : Re(B) = A Re(E) (50)
c
@ D’ou la relation de structure d’une OPPH dans le vide :
. GANE
B=1 (51)
c
(, E, E) est un triedre direct ; B et E sont en phase et :
E(M,1)
= 52
B(Mb) e
Figure 1: OemPPH : E et B sont transversaux et en phase.
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2.5 Généralisation aux ondes non harmoniques :

Si on superpose des OPPH dans le vide se propageant dans la méme diretion « et
ayant des w différentes, alors ’onde résultante a aussi la structure d’'une OPPH.

En effet :
i -E,=0 (53)
Y i-E,=0 (54)
d’ou :
i-E=0 (56)
B-Y B (57)
a iNE,
B=Y" - (58)
T E
C
d’ou :
. GIAE
B=t0 (60)
C

3 Polarisation des OPPH :

La polarisation de la lumiére représente son caractére vectoriel.

3.1 Définition :

@ Par définition, la direction de polarisation est la direction du champ électrique E.

On appelle plan de polarisation le plan défini par E et le vecteur d’onde k.

3.2 Polarisation elliptique :

Une OPPH se propageant dans le sens +1,, polarisée elliptiquement, a un champ électrique E
de la forme :
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Polarisation elliptique Polarisation elliptique
gauche (PE,) droite (PE,)

Figure 2: Polarisation elliptique gauche (PE,) et droite (PEy).

E, =0 (61)
E, = Ey, cos(wt — k) (62)
E. = Ey, cos(wt — kx — ) (63)

En un point z fixé, E décrit au cours du temps une ellipse. En x = 0 on a un champ
analogue aux tensions suivantes visualisées sur 1’oscilloscope :

sur la voie 1X : uy(t) = Uy, cos(wi) (64)
sur la voie 2Y : uy(t) = Usy, cos(wt — ) (65)

¢ représente le déphasage de wuy(t) par rapport a uq(t). En XY, on visualise une ellipse qui
se réduit a :

e un cercle si Uy, = Uap, ;

e une droite si ¢ =0 ou ¢ = =7

On peut toujours effectuer une rotation de sorte que les axes i, et u, coincident avec les
axes de 'ellipse.

Q Le champ E d’une onde polarisée elliptiquement (PE) peut alors s’écrire sous la forme

E, =0 (66)
E, = Ey, cos(wt — k) (67)
E, = £Ey, sin(wt — kz) (68)

Pour déterminer le sens de parcours on se place en z = 0 et on regarde dans la direction
opposée a la direction de propagation. Entre t = 0 et t = %, si E tourne dans le sens
anti-horaire (cas du signe +) alors la polarisation elliptique est gauche (PE,) sinon (cas du
signe —) elle est droite (PEy).
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Attention !

Il y a un changement de sens de rotation quand on passe de la convention exp j(wt — kx) a
la convention exp j(—wt + kx).

3.3 Polarisation circulaire :

Q Dans le cas particulier d’une polarisation circulaire (PC), Ey, = Ey, = Ej :

B, =0 (69)

E, = Eycos(wt — kzx) (70)

E, = £Eysin(wt — kx) (71)
z F4

Poiarisation circulaire Polarisation circulaire
gauche (PCQ )] droite (PC_)

Figure 3: Polarisation circulaire gauche (PCy) (4) et droite (PCq) (—).

3.4 Polarisation rectiligne :

Dans le cas particulier d’une polarisation rectiligne (PR), les deux composantes de E sont en
phase ou en opposition de phase soit ¢ =0 ou ¢ = £7 :

E.=0 (72)
E, = Ey, cos(wt — kz) (73)
E. = Ey, cos(wt — kx) (74)
la norme du champ est : Ey = 4/ Ej, + Ej, (75)
Q@ Dans le cas d’'une polarisation rectiligne (PR), le champ est de la forme :
E = E, cos(wt — kz) (76)
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Figure 4: Polarisation rectiligne.

Le cas le plus général est la polarisation elliptique. Or, une OPPH (PFE) peut toujours
étre considérée comme la superposition de deux OPPH (PR) telles que leurs directions de
polarisation sont perpendiculaires :

—

E = Ey, cos(wt — kx)i, + Ey, sin(wt — kx)i, (77)

L’OPPH (PR) constitue le maillon élémentaire de la théorie des OEM.

4 Propagation de I’énergie des OPPH :

4.1 Moyennes temporelles :

Exprimons la moyenne temporelle du vecteur de Poynting.

. EAB
Par définition : R = " (78)
Ho
-~ UAE
or une OPPH est telle que : B = uA (79)
c
don: B = ENWENE) (80)
HoC
or la formule du double produit vectoriel est : @A (bA ) = (@ - &)b— (@-b)C (81)
I T L
dou: R=—[F-E)i— (E-4)E] (82)
HoC
. E?
I’OPPH est transverse d’ou : R = —u (83)
HoC
or (7) : — =¢epc (84)
R = goE%cii (85)
E
or (b2) : B = - (86)
- B2
d'ot: R=—cu (87)
Ho

On en déduit la moyenne temporelle :
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2
<R~ﬁ>:gO<E2>c:<B e (88)
Ho

Remarque :

< R -4 > s'exprime en W.m™2 et correspond & l'intensité lumineuse I en optique. On

retrouve bien que I est proportionnelle & < E? >.

En optique, les détecteurs sont sensibles a la moyenne temporelle < R @ > car le temps
de détection est beaucoup plus grand que la période T' = }/ ~ qlql0~ s des OEM du domaine
visible.

Dans le cas général d’une polarisation elliptique :

< E? > =< Ej, cos*(wt — kx) + Ej, sin®(wt — kx) > (89)
< E? > = Ej, < cos®(wt — kx) > +E§, < sin®(wt — kz) > (90)
1
or : < cos*(wt — kr) > =< sin®*(wt — kx) >= 3 (91)
) . 1
dot: < E*>= §(E§y + E3) (92)
E2
<E*>= 70 (93)

On en déduit la densité volumique d’énergie électromagnétique u.,, :

1 1
Par définition : e, = ~goE? + — B? (94)
2 2410
1 1
52) d’ou: —B? = E? 95
or o 5B = (95)
1 1
or d’ou : Z_MOBQ = §€0E2 (96)

Finalement, on constate qu’il y a équipartition des énergies électrique et magnétique
dans une OPPH :

2
= egB2 = B (97)
Ho

Finalement, on constate qu’en moyenne 1’énergie électromagnétique d’'une OPPH
est répartie uniformément dans 1’espace :

2 2
“ob c= &c (98)
2 2410

Une intégration sur tout ’espace conduirait a une énergie électromagnétique infinie :

Uep = /// < Ueyy, > dT (99)
espace

Uem =< Uem > Vvespace (100)
Usmn — 00 (101)

<R -U>=< Uy, > C=
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On montre ainsi le caractére non physique des OPPH. D’autre part, on constate que
les contributions des 2 OPPH PR qui constituent 'onde PE sont additives . L’OPPH PR
est donc le maillon élémentaire de la théorie des OEM dans le vide, y compris pour ses aspects
énergétiques.

En effet, I’étude des interférences en optique a montré que la lumiére est constituée de trains
d’ondes. Un train d’ondes est une superposition d’OPPH de fréquence différentes.

Attention !  Aucune grandeur énergétique ne peut étre complexe car R et u.,
sont quadratiques et donc non linéaires .

4.2 Ordre de grandeurs :

Il faut étre capable de donner I'odg de flux énergétiques surfaciques moyens (laser He-Ne, Soleil,
téléphone portable ...) et en déduire 'odg du champ électrique associé.

e Fort ensoleillement :

< ||IR|| > ~ 1kW.m ™2 (102)
doi s By~ \/2p0c < [R]| > (103)
Ey ~ V2 x 47107 x 3.108.103 (104)
soit : By~ 1kV.m™ (105)

e Le laser He-Ne donne les mémes ordres de grandeurs. En effet :
sa puissance est : P ~ IlmW (106)
répartie sur une surface : S ~ Imm? (107)

o - N 1073
< IR >~ 1kW.m™? (109)
e Un téléphone portable :
sa puissance est : P ~ ImW (110)
répartie sur une sphére de surface : S = 4rd? (111)
- 1073

ad=10cm : <||R|| >~ ————= 112
* em: <IRI>=~ o107y (112)
< |R| >~ 8mW.m™2 (113)
d’otl : Ey ~ V2 x 4710-7 x 3.108 x 8.10-3 (114)
soit : By~ 2V.m ™! (115)
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4.3 Vitesse de propagation de I’énergie :
de on déduit : < R > =< ey, > cil (116)
analogue & : jo, = pU (117)

L’énergie électromagnétique dU,,, qui traverse dSu pendant la durée élémentaire dt est :

AUpp, =< R > -dSiidt (118)
AUp = || < R > ||dSdt (119)

D’autre part, cette énergie dU,,, se retrouve accumulée dans le cylindre de section dS et de
hauteur v.dt ou v, = v.u est la vitesse de propagation de 1’énergie :

AUy, =< Ugpy, > dSvdt (120)
en identifiant avec (T19) : < ey > dSvedt = || < R > ||dSdt (121)
Qo s v, = =R >l (122)
< Uem >
dans le cas des OPPH dans le vide donne : v, =c (123)

5 Le photon :

A toute OEM on peut associer un corpuscule appelé photon qui décrit les échanges entre
matiére et rayonnement.

e O Un photon est le quantum d’énergie :

E = hv = hw (124)
h
D= — 125
avec o (125)
la constante de Planck vaut : h = 6,62.107** J.s (126)
e O Un photon a pour quantité de mouvement :
E h
F= —i=—1 127
p=—i=d (127)
v 1
- == 128
car: — =+ (128)
-~ 2
d’autre part : k = ;ﬁ (129)
dot : §= hk (130)

Calculer le nombre moyen de photons qui traversent chaque seconde la section d’un laser He-Ne.
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dN

=b— 131
& dt (131)
P
it: —- =& 132
OV T E (132)
avec : P~ 1mW (133)
et : A =632nm (134)
dN 1.1073.632.107?
@y .
dt  6,62.10-34.3.10° (135)
soit :
dN
o 3.10%photons /s (136)

Ce nombre élevé justifie 'approche ondulatoire.

6 Etude expérimentale de la polarisation :

Les expériences de polarisation de la lumiére attestent du caractére vectoriel des ondes lu-
mineuses. Au début du XIXiéme siecle, Fresnel introduit le vecteur vibration lumineuse E.
Dans le vide, la polarisation se conserve au cours de la propagation. Seul un milieu optique-
ment actif peut modifier I’état de polarisation de la lumiére.

6.1 Polariseur (PCSI) :

Un polariseur (ou polaroid) est un verre dichroique qui posséde deux directions privilégiées
(milieu anisotrope) orthogonales entre elles : la lame est transparente si E est paralléle a @
(isolante perpendiculairement aux chaines de polymeéres) et totalement absorbante (conductrice
parallélement aux chaines de polymeéres ainsi le champ est absorbé) si E est orthogonal a v. 1l
en résulte que le polariseur ne transmet que la composante de E selon 7 :

—

E, = (E 07 (137)

6.2 Lumiére naturelle :

La lumiére solaire est non polarisée. Mais, sa diffusion par I’atmosphére la polarise partielle-
ment.

Une lampe a incandescence émet une lumiére naturelle.

Selon le type de LASER, la lumiére émise peut étre polarisée, non polarisée ou partiellement
polarisée.

La lumiére naturelle est non polarisée car ’état de polarisation varie alétoirement d’'un
train d’ondes au suivant.

C’est () qui varie aléatoirement dans le temps sur une durée supérieure a la période T de
I’onde et inférieure au temps de réponse du capteur.
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Un polariseur placé devant un faisceau de lumiére naturelle transmet le champ E cos v ol
0 est I'angle aléatoire que fait le E de chaque train d’onde avec la direction ¢ du polariseur.
Le capteur de lumiére est sensible a :

I =Fk< Ejcos’0 > (138)

I =kE5 < cos® > (139)

or 6 est aléatoire donc : < cos®f > = % (140)
d’autre part l'intensité incidente est : Iy = K} (141)
donc : I = I?O (142)

Un polariseur transmet 50% de la lumiére naturelle ce qui lui donne une couleur grise.

6.3 Loi de Malus :

Figure 5: Loi de Malus.

On consideére le montage expérimental constitué d’ :

e une source de lumiére naturelle associée & un collimateur (pour obtenir un faisceau d’ondes
planes) ;

e un premier polariseur (P;) dont le role est de polariser rectilignement la lumiére dans
la direction v :

E = Eycos(wt — kz)v (143)
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e un analyseur (F,) est un polariseur de direction 7, faisant un angle « (réglable) avec (P).
Le champ transmis par (P,) est la projection de E sur la direction v de (FPs) :

E = (E - )0y (144)
E, = E() cos(wt - kl’) (171 . ’(72)772 (145)
E' = Eycos(wt — kz) cos il (146)

e un détecteur de lumiére (photorésistance ou photodiode) qui mesure I'intensité lumineuse
7 transmise par l'association de (P;) et (P»). Or, Z est proportionnelle & < E” > soit :

T =a < Ej cos®*(wt — kx) cos®> a > (147)
T = a < E} cos*(wt — k) > cos® a (148)
posons : Lyaw = a < Ej cos?(wt — kx) > (149)

La loi de Malus exprime les variations d’intensité lumineuse mesurées a la sortie de
I’analyseur quand on fait varier I'angle o entre le polariseur et ’analyseur :
T = Tppaz OS> (150)

L’ extinction Z = 0 est obtenue lorsque le polariseur et ’analyseur sont croisés i.e
pour a = 90°.

On analyse une lumiére de polarisation inconnue en faisant tourner ’analyseur (F2)
pour obtenir I’extinction. On en déduit alors que F est orthogonal a v5.

Exemple 1 : on fait tourner le polariseur éclairé par la lumieére d’un écran LCD d’un
ordinateur. On constate qu’il y a une extinction. On en déduit que ’écran LCD émet une
lumiére polarisée.

FExemple 2 : Quand on utilise la barette CCD reliée & CALIENS, on doit limiter I'intensité
lumineuse sur le capteur pour empécher le signal de saturer. On utilise pour cela un jeu de
polariseur-analyseur dont on régle 'angle o pour ajuster I'intensité lumineuse selon la loi de
Malus. Si la source lumineuse est déja polarisée alors le polariseur est inutile, 'analyseur suffit.

6.3.1 Synthése :

Soit le montage expérimental constitué de :

e une source () de lumiére naturelle (avec un collimateur) émettant des OPPH se propageant
dans la direction .

e un polariseur (P) a pour role de polariser rectilignement la lumiére dans sa direction de
polarisation ¢. A la sortie de (P) :

E = Fycos(wt — kz)v (151)
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Figure 6: Effet d'une lame % ou % sur la polarisation .

e une lame quart d’onde (L) dont les lignes neutres sont orientées d’une fagon quelconque
par rapport a ¥ et constituent les axes de référence.

Le champ incident (PR) sur la lame quart d’onde (L) peut s’écrire :

E, =0 (152)
E, = Eycosacos(wt — kz) (153)
E. = Eysin a cos(wt — kx) (154)

Le champ transmis E’ par la lame quart d’onde (L) peut s’écrire :

E. =0 (155)
E;, = Ejcos o cos(wt — kx) (156)
E! = Eysinacos <wt — kx — g) (157)

On constate que les 2 composantes du champ électrique ne sont plus en phase : 'onde n’est
plus polarisée rectilignement & la sortie de la lame.

La lame quart d’onde (L) a transformé la polarisation rectiligne (PR) en une
polarisation elliptique (PE) :

E.=0 (158)
E;, = Ejcos o cos(wt — kx) (159)
E! = Eysin asin(wt — kx) (160)

Les lignes neutres de la lame sont les axes de l'ellipse.
La polarisation elliptique (PFE) se réduit a :
e une polarisation rectiligne (PR) si a = n7 ;

e une polarisation circulaire (PC') si a = (2n +1)7.
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6.3.2 Analyse :

Considérons une OEM de polarisation elliptique d’axes i, et @, arrivant sur un analyseur (')
suivi d’un photodétecteur.

La direction de (P’) est :

U = cos auily + sin at, (161)

Le champ incident (PFE) sur (P') est de la forme :

E, =0 (162)
E, = acos(wt — kx) (163)
E, = bsin(wt — kx) (164)

Le champ transmis E’ par (P') est :

E' = (E-0)7 (165)
soit : E' = [acos acos(wt — kx) + bsin asin(wt — k)]0 (166)

On constate donc que la (PE) est donc transformée en (PR) par un polariseur.

Le détecteur est sensible a la moyenne quadratique du champ E
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< E”? > =< [acosacos(wt — kz) + bsin asin(wt — kx)]* > (167)
< E? > = a’cos’ a < cos*(wt — kx) > +b%sin® a < sin®(wt — kx) >

(168)
a’ b?
<E?>= ECOSQOH- Esinzoz (169)
1
car : < cos*(wt — kx) > =< sin®(wt — kx) = 3 (170)
et : < cos(wt — kz)sin(wt — kz) > =10 (171)
2 2
<E*>= % cos® a + 5(1 — cos? a) (172)
le détecteur mesure l'intensité : 7 =y < E” > (173)
b2
soit : Z = gy + %(a2 — b?) cos® (174)
I'intensité maximale est : Z,,40 = T a2 (175)
I'intensité minimale est : Z,,;, = %62 (176)
]
S
I |
. : : o
n/2 n 2 Inm

Figure 7: Analyse d'une (PE).

e Si (PE) alors a # b s0it Zyar # Zinin €t Ziin 7 0.

Si (PC) alors a = b soit Z00 = Zinin : Z(«) indépendant de .

Si la lumiére est non polarisée alors Z(«) indépendant de a.

Si (PR) alors il existe une direction a qui donne 'extinction Z,,;, = 0 et la (PR) est
orthogonale & cette direction.

En effet, dans le cas de la (PR) :

(177)
E,, = acos acos(wt — k) (178)
E! = bsin a cos(wt — kx) (179)
d'ou: 7 = %(a2 + b%) cos® a (180)

E. =0
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6.3.3 Distinction entre (PC) et lumiére non polarisée :

Pour distinguer une lumiére (PC) d’une lumiére non polarisée, on intercale entre la source de
lumiére et I'analyseur une lame 4 qui transforme la (PC) en (PR). On reconnait la (PR) par
Iexistence d’une extinction. Au contraire, la lame ne polarise pas la lumiére non polarisée :
Z(«) indépendant de a.

Si (PC) alors :

E, =0 (181)
E, = Ejcos(wt — kx) (182)
E, = Eysin(wt — kx) (183)

Aprés la lame % le champ devient :

E, =0 (184)
E, = Eycos(wt — kx) (185)
E. = Osin(wt — kx — g) (186)
soit :

E, =0 (187)
E, = Eycos(wt — k) (188)
E, = —Eycos(wt — kx) (189)

On reconnait une (PR) puisque le champ est E = E cos(wt — kz) avec E :
Epe =0 (190)
Eoy = Ey (191)
EOZ = —Eo (192)
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La suite est hors programme PSI

6.4 Synthése et analyse d’une polarisation elliptique :

Les lames a retard sont des lames a faces paralléles constituées d’un cristal biréfringent.
Elles peuvent étre constituées de quartz qui est une variété cristalline de la silice Si0O5 ou de
carbonate de calcium cristallisé dans la variété Spath d’Islande.

6.4.1 Lame quart d’onde et lame demi-onde :

On éclaire la lame avec un faisceau de lumiére paralléle en incidence normale pour éviter
toute réfraction sur la lame.

Lampe blanche + condenseur (lentille de courte focale) + diaphragme a iris placé dans le
plan focal objet d’une lentille convergente + filtre coloré. Le condenseur concentre le faisceau
sur le diaphragme qui joue le role de source étendue.

ou :

Lame blanche + lentille convergente telle que le filament soit 'objet dans le plan focal objet.

ou :

Laser + objectif de microscope (lentille convergente de courte focale) + lentille convergente
telle que F| = F5. On réalise ainsi un élargisseur de faisceau (f5 > fi).

axe lent

Figure 8: Lame a retard.

Une lame quart d’onde ou demi-onde :

e possede deux directions privilégiées i, et u,, orthogonales entre elles, appelées lignes
neutres de la lame et paralléles aux faces de la lame.

e laisse invariante la direction de polarisation d'une onde polarisée rectilignement sur ses
lignes neutres.
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Une lame 2 retarde de L, soit srad, la composante de E sur la ligne neutre lente u, par

4 4
rapport a la composante sur la ligne neutre rapide ,. Ainsi le champ transmis £’ par la lame

A ., . . .
7 est li¢ au champ incident par :

Ey(t) = Ey(t) (193)

E(1) = B~ %) (194)

Une lame demi-onde retarde de %, soit mrad, la composante de E sur la ligne neutre lente

U, par rapport & la composante sur la ligne neutre rapide u,. Ainsi le champ transmis E’ par

la lame % est lié au champ incident par :

Ey(t) = By (1 (195)
T

Ag

5 est de transformer E en son symétrique de par rapport

On conclut que effet de la lame
a l'axe rapide.

A la sortie de la lame d’épaisseur e, le déphasage des deux composantes du champ sont
déphasées de :

o =0 (197)
avec la différence de marche : 6 = (n, —n,)e (198)
vitesse de propagation sur l’axe rapide : v, = < (199)

Ny
vitesse de propagation sur I'axe lent : v, = < (200)

n,

Dans le cas du Spath d’Islande :

L’axe rapide est tel que : n, = 1,47 (201)
L’axe lent est tel que : n, = 1,66 (202)
La biréfringence est définie par : An =n, —n, (203)

La lame 1/2 onde est taillée pour épaisseur e telle que ¢ = 7 + 27p.
La lame 1/4 onde est taillée pour épaisseur e telle que ¢ = 7 + pr.

Une lame n’est quart d’onde ou demi-onde que pour une pulsation donnée. L’utilisation
d’une telle lame exige donc de travailler en lumiére monochromatique en utilisant un filtre
coloré ou un laser.

6.4.2 Deétermination des axes d’une lame :
e Croiser (P) et (A).

e Introduire la lame a retard entre (P) et (A).
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e Tourner la lame pour rétablir l'extinction : les axes de la lame coincident avec les
direstions v, et ¥,.

Un trait repére 'axe lent d’une lame connue.

Pour distinguer 'axe lent de I’axe rapide d’une lame 2

7 (en I'absence de repére) :
e Intercaler successivement 2 lames 2 (dont I'une est connue) entre (P) et (A) initialement
croisés et tourner chaque lame pour rétablir 'extinction. Les axes des lames coincident

alors avec v, et v,.

e Les axes des lames peuvent étre en coincidence (axe lent sur axe lent) ou en anticoinci-
dence (axe lent sur axe rapide).

e Si les axes sont en coincidence alors ’association des 2 lames % équivaut a une lame %

e Si les axes sont en anti coincidence alors I’association des 2 lames 2 n’introduit aucun

4
retard et donc tout se passe comme s’il n’y avait aucune lame.

e Tourner (P) de v = 20° :

E\ = Eycos(a) cos(wt — kx)it, + Eqsin(a) cos(wt — k)i, (204)
e Si, pour rétablir I'extinction, il faut tourner (A) de :

— —a, alors il s’agit d'une coincidence (en bleu) : la lame % transforme E en son
symétrique par rapport a l'axe rapide ;

E\y = Eycos(a) cos(wt — kx)i, — Eysin(a) cos(wt — kx)i, (205)

— +a, alors il s’agit d’une anticoincidence (en rouge).

6.4.3 Expériences :

AL

Lame 5

e Placer le polariseur (P) puis la lame % orientée d’une fagon quelconque. On a une (PR)

transformée en une (PR) symétrique par rapport a ’axe rapide. On la met en évidence
en obtenant l'extinction (I,,;, = 0) par rotation de (A).

Lame % :
e Placer le polariseur (P) puis la lame % orientée d’une facon quelconque. On obtient une
(PE).

e Par rotation de (A) on a une intensité variable avec absence d’extinction (I, # 0).

Deux lames 2 :
e Placer le polariseur (P) puis la lame 2
(PC).

en plagant ses lignes neutre a 7. On obtient une

e Introduire une 2nde lame % orientée d’une fagon quelconque. On obtient une (PR) qu’on

prouve en obtenant 'extinction (I,,;,, = 0) par rotation de (A).
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(P)
(oxe. Aﬂfm\dﬂ )

Scanné avec CamScanner

Figure 9: Identification des axes d’une lame A/4.

7 Annexe mathématique :

L’équation paramétrique d’une ellipse est :

z(t) = acos(wt) (206)
y(t) = bsin(wt) (207)

L’ellipse se réduit a un cercle dans le cas particulier ou a = b.
L’équation cartésienne d’une ellipse est obtenue avec :

cos?(wt) + sin*(wt) = 1 (208)
S
dousﬁ—l—ﬁ:l (209)

Dans le cas particulier du cercle :

22 4+ y* = d? (210)

L’équation paramétrique d’une droite est de la forme :
z(t) = acos(wt) (211)
y(t) = beos(wt) (212)

On en déduit I’équation cartésienne d’une droite :

b
S 213
Y ax (213)
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Lumiére inconnue

}
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repére la direction
de polarisation
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elliptique

Une lame quart d'onde
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des axes de I'ellipse,

de l'excentricité et du
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|
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]
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du sens de rotation

Figure 10: Analyse d’une polarisation inconnue.

Scanné avec CamScanner

Lycée Janson de Sailly

24

F.Desombre



	Rappel : 
	Les équations de Maxwell dans le vide : 
	Equations de propagation dans le vide : 
	En cartésiennes : 

	OPPH dans le vide : 
	Grandeurs complexes : 
	Relation de structure : 
	Champs transverses : 
	Relation de dispersion : 
	Généralisation aux ondes non harmoniques : 

	Polarisation des OPPH : 
	Définition : 
	Polarisation elliptique : 
	Polarisation circulaire : 
	Polarisation rectiligne : 

	Propagation de l'énergie des OPPH : 
	Moyennes temporelles : 
	Ordre de grandeurs : 
	Vitesse de propagation de l'énergie : 

	Le photon : 
	Etude expérimentale de la polarisation : 
	Polariseur (PCSI) : 
	Lumière naturelle : 
	Loi de Malus : 
	Synthèse : 
	Analyse : 
	Distinction entre (PC) et lumière non polarisée : 

	Synthèse et analyse d'une polarisation elliptique : 
	Lame quart d'onde et lame demi-onde : 
	Détermination des axes d'une lame : 
	Expériences : 


	Annexe mathématique : 

