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Dans ce chapitre, on étudie la propagation des OEM dans les milieux matériels. On se
limitera aux métaux et aux plasmas.

1 OEM dans les plasmas et les métaux
Quand on chauffe un solide, 3 transitions de phase succesives peuvent avoir lieu :

• solide → liquide ;

• liquide → gaz ;

• gaz → plasma.

♡ L’état plasma est donc considéré comme le 4ième état de la matière. Un plasma est
un gaz ionisé se comportant comme un fluide conducteur. C’est l’état le plus représenté
dans l’univers.

1.1 Exemples de plasma

L’ionosphère est un exemple de plasma. C’est une couche de l’atmosphère située à plus de 50 km
d’altitude. Le gaz est partiellement ionisé par le rayonnement UV du Soleil. On l’assimile à
un plasma peu dense, de densité d’électrons variant entre 1010m−3 et 1012m−3 en raison de
processus d’ionisation induits par le rayonnement UV le jour, et de recombinaison électron-ion
la nuit.

Un écran plasma Les écrans à plasma fonctionnent de façon similaire aux tubes d’éclairage
fluorescents. Ils utilisent l’électricité pour illuminer un gaz. Le gaz utilisé est un mélange de
gaz nobles (argon 90% et xénon 10%). Pour qu’il émette de la lumière on lui applique un
courant électrique qui le transforme en plasma, un fluide ionisé dont les atomes ont perdu un
ou plusieurs de leurs électrons et ne sont plus électriquement neutres, alors que les électrons
ainsi libérés forment un nuage autour. Le gaz est contenu dans les cellules, correspondant aux
sous-pixels (luminophores). Chaque cellule est adressée par une électrode ligne et une électrode
colonne ; en modulant la tension appliquée entre les électrodes et la fréquence de l’excitation,
il est possible de définir l’intensité lumineuse (en pratique on utilise jusqu’à 256 valeurs).

Remarque :

En physiologie, le plasma désigne la partie liquide du sang. Par analogie, un gaz ionisé est
appelé plasma.
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1.2 Conductivité d’un plasma électriquement neutre

1.2.1 Modèle du plasma électriquement neutre

Un plasma est un milieu peu dense (et donc proche du vide) constitué :

• d’électrons, de masse me et de charge (−e), de densité volumique ne ;

• d’ions, de masse M et de charge Ze (cas de l’ionisation totale de l’atome), de densité
volumique ni :

M ≈ Amp (1)

où A est le nombre de masse et mp la masse d’un proton.

On obtient un plasma en portant un gaz à une température T telle que l’énergie d’agitation
thermique kBT soit supérieure à l’énergie d’ionisation Ei :

or Ei ≈ 1 eV = 1, 6.10−19 J (2)

d’où T >
Ei

kB
(3)

soit T >
1, 6.10−19

1, 38.10−23
(4)

T > 104K (5)

Quand une OEM se propage dans le plasma, les électrons et les ions sont soumis à la force
de Lorentz f⃗ = q(E⃗ + v⃗ ∧ B⃗) engendrée par le champ électromagnétique. Comme le plasma
est peu dense (très dilué), on peut supposer que le champ électromagnétique a une structure
proche de celle du vide, soit :

B⃗ =
u⃗ ∧ E⃗
c

(6)

soit
B

E
=

1

c
(7)

d’où
∥qv⃗ ∧ B⃗∥
∥qE⃗∥

≈ Bv

E
≈ v

c
(8)

on supppose les particules non relativistes v << c (9)

On en déduit que la force magnétique est négligeable devant la force électrique.

Remarque : Dans les plasmas très chauds, l’agitation thermique est telle que la vitesse des
particules peut ne plus être négligeable devant c. Les effets relativistes doivent alors être pris
en compte.

D’autre part, comparons l’accélération d’un ion avec celle d’un électron en utilisant la RFD
:
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Mai = ∥ZeE⃗∥ (10)

et meae = ∥eE⃗∥ (11)

d’où
ai
ae

=
Zme

M
(12)

or (1)
ai
ae

=
Z

A

me

mp

(13)

or Z < A (14)

d’où
ai
ae
<
me

mp

(15)

or
mp

me

= 1836 (16)

d’où
ai
ae
< 5.10−4 << 1 (17)

Le mouvement des ions est donc négligeable et donc ni est constant par rapport au temps.
Si de plus on suppose que la distribution des ions est homogène en l’absence d’onde alors celle-ci
le reste : ni est une constante.

Le plasma globalement neutre. Mais on considèrera une OEM transverse qui arrive du
vide en incidence normale sur le plasma et donc on aura bien dans le plama ∇ · #»

E = 0 d’où
ρ ̸= 0. Le plasma est localement neutre en présence d’une OEM transverse.

or ρ = −ene + Zeni (18)
d’où ne(M, t) = Zni (19)

La densité volumique d’électrons ne est donc aussi constante.

la densité de courant est définie par j⃗(M, t) =
∑
i

niqiv⃗i (20)

soit j⃗(M, t) = ne(−e)v⃗e + ni(Ze)⃗0 (21)

j⃗(M, t) = −neev⃗e(M, t) (22)

1.2.2 Densité de courants

On recherche le champ v⃗e(M, t). D’après la RFD appliquée à un électron :

me
dv⃗e
dt

= −eE⃗ (23)

le plasma est dilué et donc les interactions à courte portée (les collisions binaires coulombi-
ennes) entre charges sont négligées. Cela revient à ce que l’énergie cinétique des particules soit
très supérieure à leur énergie potentielle d’interaction électrique ec/ep >> 1. C’est la même
hypothèse que pour un gaz parfait. Un plasma vérifie donc PV = NRT et U = (3/2)NkBT .
C’est pourquoi le plasma est dit sans intéraction.
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♡ Un plasma peu dense est dit sans intéraction car les collisions y sont négligeables.

Au contraire, dans un métal les intéractions avec les impuretés du réseau cristallin sont
modélisées par une force de friction −m v⃗

τ
. La constante τ est caractéristique de ces intéractions.

On développe la dérivée particulaire dv⃗e
dt

:

d’où : me(
∂v⃗e
∂t

+ (v⃗e ·
#      »

grad)v⃗e) = −eE⃗ (24)

L’accélération convective est négligeable devant l’accélération locale car :

∥(v⃗e ·
#      »

grad)v⃗e∥
∥∂v⃗e

∂t
∥

≈
v2e
λ
ve
T

(25)

or λ = cT (26)

∥(v⃗e ·
#      »

grad)v⃗e∥
∥∂v⃗e

∂t
∥

≈ ve
c
<< 1 (27)

On en déduit me
∂v⃗e
∂t

= −eE⃗ (28)

or (22) − me

ene

∂j⃗

∂t
= −eE⃗ (29)

Finalement :

∂j⃗

∂t
=
e2ne

me

E⃗ (30)

En régime sinusoïdal forcé :

jωj⃗ =
e2ne

me

E⃗ (31)

Attention ! Ne pas confondre le nombre complexe j tel que j2 = −1 avec la densité de
courant j⃗.

♡ La conductivité est :

• réelle pour un métal dans le domaine de validité de la loi d’Ohm :

j⃗ = σE⃗ (32)

• imaginaire pur pour un plasma sans collisions :

j⃗ = σE⃗ (33)
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Dans un plasma sans collisions :

σ =
e2ne

jωme

(34)

On introduit une conductivité complexe en faisant une analogie avec la loi d’Ohm locale.

1.2.3 Interprétation énergétique

j⃗

E⃗
= −j e

2ne

ωme

(35)

arg(
j⃗

E⃗
) = arg(−j) (36)

arg(
j⃗

E⃗
) = −π

2
(37)

d’où j⃗(M, t) = j⃗0 cos
(
ωt− kx− π

2

)
(38)

soit j⃗(M, t) = j⃗0 sin(ωt− kx) (39)

et E⃗(M, t) = E⃗0 cos(ωt− kx) (40)
or < cos(ωt− kx) sin(ωt− kx) > = 0 (41)

♡ Un plasma sans collisions n’absorbe pas les OEM : il n’y a pas d’effet Joule car la
puissance moyenne transférée par le champ électromagnétique aux porteurs de charges est
nulle. En effet :

< j⃗ · E⃗ > = 0 (42)

soit <
dPchamp→porteurs

dτ
> = 0 (43)

1.3 OEM dans un plasma ou un métal :

1.3.1 Structure des OEM

Les équations de Maxwell étant linéaires, elles s’écrivent en complexe :

MG divE⃗ = ∇⃗ · E⃗ =
ρ

ε0
(44)

MF −→rotE⃗ = ∇⃗ ∧ E⃗ = −∂B⃗
∂t

(45)

Mϕ divB⃗ = ∇⃗ · B⃗ = 0 (46)

MA −→rotB⃗ = ∇⃗ ∧ B⃗ = µ0j⃗ + ε0µ0
∂E⃗

∂t
(47)

D’autre part, le plama ou le métal reste localement neutre (??) et est caractérisé par la loi
(33).
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On cherche des solutions de la forme OPPH c’est-à-dire un champ électromagnétique de la
forme :

E⃗(M, t) = E⃗0 exp
(
jωt− jk⃗ · r⃗

)
(48)

et B⃗(M, t) = B⃗0 exp
(
jωt− jk⃗ · r⃗

)
(49)

Ainsi :

∇⃗ = −jk⃗ = −jku⃗ (50)

et
∂

∂t
= jω (51)

Les équations de Maxwell donnent :

MG − jku⃗ · E⃗ = 0 (52)

MF − jku⃗ ∧ E⃗ = −jωB⃗ (53)

Mϕ − jku⃗ · B⃗ = 0 (54)

MA − jku⃗ ∧ B⃗ = µ0σE⃗ + ε0µ0jωE⃗ (55)

♡ Les équations scalaires Maxwell-Gauss (MG) et Maxwell-flux (Mϕ) montrent que le
champ électromagnétique est transversal :

E⃗⊥u⃗ (56)

et B⃗⊥u⃗ (57)

De l’équation de Maxwell-Faraday (MF), on a :

B⃗ =
ku⃗ ∧ E⃗
ω

(58)

1.3.2 Relation de dispersion

D’après MA et (58) :

−j k
2

ω
u⃗ ∧ (u⃗ ∧ E⃗) = (µ0σ + ε0µ0jω)E⃗ (59)

or u⃗ ∧ (u⃗ ∧ E⃗) = (u⃗ · E⃗)u⃗− (u⃗ · u⃗)E⃗ (60)

or (56) d’où u⃗ · E⃗ = 0 (61)

d’où u⃗ ∧ (u⃗ ∧ E⃗) = −E⃗ (62)

− k2

jω
E⃗ = (µ0σ + ε0µ0jω)E⃗ (63)

La relation de dispersion du milieu (plasma ou métal) est la suivante :
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k2 =
ω2

c2
− µ0jωσ (64)

Posons k = k′ + jk′′ (65)
or les champs sont de la forme A(M, t) = AM exp(jωt− jkx− jφ) (66)

d’où A(M, t) = AM exp(jωt− j(k′ + jk′′)x− jφ) (67)
A(M, t) = AM exp(−jφ) exp(k′′x) exp(jωt− jk′x) (68)

or le champ réel est A(M, t) = Re(A(M, t)) (69)

Les champs sont de la forme :

A(M, t) = AM exp(k′′x) cos(ωt− k′x− φ) (70)

1.3.3 Vitesse de phase

♡ La partie réelle de k donne le terme cos(ωt− k′x− φ) identique à une OPPH. D’où la
vitesse de phase :

vφ(ω) =
ω

k′(ω)
(71)

en posant k = k′ + jk′′ (72)

A priori vφ dépend de ω et donc le milieu est dispersif.

1.3.4 Absorption

Selon le signe de k′′ et le sens de propagation, le terme exp(k′′x) correspond soit à une ampli-
fication (cas du LASER) soit à un amortissement.

♡ Dans un milieu absorbant il y a amortissement dans le sens de propagation avec une
distance caractéristique :

δ =
1

|k′′|
(73)

1.3.5 Indice complexe

♡ L’indice complexe d’un milieu pour les OEM est défini par :

k =
nω

c
(74)

avec n = n′ + jn′′ (75)

d’où (58) B⃗ =
nu⃗ ∧ E⃗

c
(76)
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L’indice d’absorption n′′ est la partie imaginaire de n.
Dans un milieu transparent, nous admettrons que n s’identifie avec l’indice optique :

n′ = n =
c

v
(77)

n′′ = 0 (78)

A(M, t) = AM exp
(
n′′ωx

c

)
cos

(
ωt− n′ωx

c
− φ

)
(79)

soit : ϕ = n′ωx

c
= kn′x =

2π

λ
n′x (80)

ϕ est le retard de phase introduit par la différence de chemin n′x parcouru.

♡ Dans un milieu transparent i.e non absorbant v = c
n

représente une vitesse de phase
puisque :

vφ =
c

n′ (81)

On admettra que dans les milieux diélectriques tels que l’air, le verre ou l’eau,
comme dans les plasmas et les métaux, on peut définir un indice complexe. Et donc la relation
de structure (58) y est validée.

1.4 OEM dans les plasmas

1.4.1 Pulsation plasma

La pulsation plasma ωp délimite deux cas : k réel et k imaginaire pur. Exprimons ωp en
exploitant la relation de dispersion (64) et (34) :

k2 =
ω2

c2
− µ0

e2ne

me

(82)

k2 =
1

c2
(ω2 − µ0c

2e2ne

me

) (83)

or µ0c
2 =

1

ε0
(84)

k2 =
1

c2
(ω2 − e2ne

ε0me

) (85)

d’où :

ωp =

√
e2ne

ε0me

(86)
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♡ La pulsation plasma ωp est la pulsation de coupure du plasma définie par :

k2 =
ω2 − ω2

p

c2
(87)

Domaine de transparence si k réel si k2 > 0 soit ω > ωp (88)
Domaine réactif si k imaginaire pur si k2 < 0 soit ω < ωp (89)

(90)

1.4.2 Domaine de transparence

Dans le domaine de transparence du plasma, le plasma n’est pas absorbant :

k′′ = 0 (91)

k = k′ =

√
ω2 − ω2

p

c
(92)

la vitesse de phase est vφ(ω) =
ω

k(ω)
= c

√
ω2

ω2 − ω2
p

(93)

or (74) n =
ck

ω
(94)

soit n(ω) =

√
1−

ω2
p

ω2
(95)

Figure 1: Vitesse de phase des ondes progressives.

En HF ω > ωp, la propagation d’une OPPH sans atténuation ni amplification est
possible. Le plasma est transparent (non absorbant) et dispersif :

vφ(ω) =
ω

k(ω)
(96)

avec vφ > c (97)

et n(ω) =
c

vφ(ω)
< 1 (98)
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La vitesse de phase est la vitesse du plan de phase, objet non matériel, purement math-
ématique. Et donc ce résultat n’est pas en contradiction avec la théorie de la relativité
restreinte qui dit que :

v < c (99)

En très HF ω >> ωp, le plasma devient non dispersif et se comporte comme le vide :

k → ω

c
(100)

Les électrons n’intéragissent plus avec le champ E⃗ car ils ne suivent plus ses oscillations.

1.4.3 Cas des ondes évanescentes

Dans le domaine réactif du plasma, k est imaginaire pur car ω < ωp :

k2 = −
ω2
p − ω2

c2
< 0 (101)

k2 = j2
ω2
p − ω2

c2
(102)

k2 = (jk′′)2 = −k′′2 (103)
et k′ = 0 (104)

or (73) k′′2 =
1

δ2
(105)

k′′ = ±1

δ
(106)

Il en résulte une onde de la forme :

A(M, t) = AM exp(k′′x) cos(ωt+ φ) (107)

L’onde est dite évanescente car elle est atténuée :

• selon +u⃗x si k′′ < 0 ;

• selon −u⃗x si k′′ > 0.

On remarque que les variations spatiales et temporelles sont factorisées, comme avec une
onde stationnaire. Mais, une onde évanescente ne présente pas de nœuds et de ventre à cause
de exp(k′′x).

La relation de stucture (58) donne :

B⃗ =
jk′′u⃗ ∧ E⃗

ω
(108)

On constate que E⃗ et B⃗ vibrent en quadrature de phase : E⃗ vibre en cos(ωt− ψ) et B⃗
vibre en cos

(
ωt− ψ + π

2

)
= sin(ωt− ψ) . Par conséquent la moyenne temporelle du vecteur de

Poynting est nulle car :

< cos(ωt− ψ) sin(ωt− ψ) >= 0 (109)
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♡ Dans le domaine réactif, ω < ωp, le plasma est la siège d’une onde évanescente qui
ne se propage pas. C’est une onde stationnaire amortie qui ne transporte en moyenne
aucune énergie électromagnétique.

En conclusion, une OemPPH ne peut se propager dans le plasma que si ω > ωp. Le plasma
constitue donc un filtre passe-haut.

1.5 Effet de peau dans les conducteurs ohmiques

1.5.1 Rappel

Avec le modèle de Drude où les collisions des électrons avec le réseau sont modélisées par une
force de friction f⃗ = −m v⃗

τ
, nous avons obtenu l’expression de la conductivité σ d’un conducteur

ohmique soumis à un champ E⃗ :

• uniforme et stationnaire :

σ0 =
ne2τ

me

(110)

avec pour le cuivre τ ≈ 10−14 s (111)
et σ0 ≈ 108Ω−1.m−1 (112)

• variable :

σ =
σ0

1 + jωτ
(113)

d’où la conductivité est réelle σ ≈ σ0 (114)

si f <<
1

2πτ
= fM (115)

soit f << 1014Hz (116)

1.5.2 Relation de dispersion

Or un conducteur ohmique est un milieu localement neutre (ρ = 0) où la relation de dispersion
est (64). Comparons les deux termes dans le cas où σ est réelle :

ω2

c2

µ0σω
=

2πf

µ0c2σ
(117)

or f < fM (118)

pour le cuivre
ω2

c2

µ0σω
<

2π.1014

4π.10−7(3.108)2108
(119)

ω2

c2

µ0σω
< 6.10−5 (120)

On en déduit que dans le domaine d’utilisation du conducteur ohmique f < fM , la relation
de dispersion s’écrit :
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k2 = −jµ0σω (121)

soit k2 = µ0σω exp
(
−j π

2

)
(122)

d’où k = ±√
µ0σω exp

(
−j π

4

)
(123)

soit k = ±(1− j)√
2

√
µ0σω (124)

k = ±(1− j)

δ
= k′ + jk” (125)

d’où |k′| =|k′′| = 1

δ
(126)

1.5.3 Effet de peau

On considère une propagation du champ électromagnétique dans le demi-espace infini x > 0
dans le sens des x croissants. La seule solution acceptable est celle qui ne diverge pas (cas du
signe +) :

a(M, t) = AM exp
(
−x
δ

)
cos

(
ωt− x

δ
+ φ

)
(127)

obtenue pour k′ + jk′′ =
1

δ
− j

δ
(128)

♡ On appelle effet de peau le phénomène par lequel une onde électromagnétique
ne pénètre dans un conducteur ohmique qu’au voisinage de sa surface. Elle est
atténuée sur une distance δ appelée épaisseur de peau qui représente aussi l’échelle de la
propagation :

δ =
1

|k′′|
=

√
2

µ0σω
(129)

♡ Pour le cuivre :

à : f = 50Hz (130)
δ = 7mm (131)

car σ = 108Ω−1m−1 (132)

Dans les fils électriques en cuivre dont l’épaisseur est de l’ordre du mm, les courants se
répartissent donc uniformément.

En effet :

δ =

√
2

4π.10−7.108.2.π.50
(133)

mais à f = 5GHz = 5.109Hz δ = 0, 7mm (134)

Plus le métal est conducteur (σ élevé) et plus la fréquence f de OEM est grande plus
l’épaisseur de peau δ est faible.
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Figure 2: Effet de peau en fonction de la fréquence.

♡ Le conducteur parfait est le cas limite pour lequel les OEM ne pénètrent pas. L’effet
de peau y est négligeable :

δ → 0 (135)
avec ω ̸= 0 d’où σ → ∞ (136)

E⃗int = 0⃗ (137)

B⃗int = 0⃗ (138)

Les courants j⃗ et les charges ρ ne peuvent être que surfaciques.

D’après (MF), ∂B⃗
∂t

génère E⃗ et donc induit des courants (de Foucault) dans le conducteur.
Ces courants créent un champ magnétique propre (autoinduction) dont l’effet est de s’opposer
aux variations de B⃗ d’après la loi de modération de Lenz. Ce champ propre n’est pas du tout
négligeable au-delà de δ. En DC (régime permanent continu) il n’y a pas d’autoinduction.

1.5.4 Caractère diffusif de l’effet de peau

D’après la relation de dispersion (121) :
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(−jk)2 = µ0σjω (139)

(−jk)2E⃗ = µ0σjωE⃗ (140)

(∇⃗ · ∇⃗)E⃗ = µ0σ
∂E⃗

∂t
(141)

∆⃗E⃗ − µ0σ
∂E⃗

∂t
= 0 (142)

posons D =
1

µ0σ
(143)

δ =

√
DT

π
(144)

δ ≈
√
DT (145)

Une autre façon d’établir l’équation de diffusion est de revenir aux équations de Maxwell
dans le conducteur dans l’ARQS :

−→rotB⃗ = µ0σ0E⃗ +
�
�

�
��

µ0ϵ0
∂E⃗

∂t
(146)

d’où −→rot(−∂B⃗
∂t

) = −µ0σ0
∂E⃗

∂t
+ 0⃗ (147)

or (MF) d’où −→rot(−→rot(E⃗)) = −µ0σ0
∂E⃗

∂t
(148)

#      »

grad(div(E⃗))− ∆⃗E⃗ = −µ0σ0
∂E⃗

∂t
(149)

or (MG) d’où 0⃗− ∆⃗E⃗ = −µ0σ0
∂E⃗

∂t
(150)

♡ On reconnaît une équation de diffusion analogue à une équation de diffusion thermique
:

∆⃗E⃗ − 1

D

∂E⃗

∂t
= 0 (151)

∆T − 1

Dth

∂T

∂t
= 0 (152)

L’effet de peau est plutôt un phénomène diffusif qu’un phénomène de propagation.

♡T ≈ δ2

D
(153)

Les phénomènes diffusifs présentent une dissymétrie de comportement entre l’espace
et le temps : ils ne sont efficaces qu’à petite échelle spatiale.

1.5.5 Limitation de l’effet de peau

L’effet de peau est en général nuisible car il augmente la résistance et donc les pertes par effet
Joule en diminuant la section S traversée par le courant (R = 1

γ
l
S
).
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Les méthodes pour diminuer l’effet de peau sont les suivantes :

• diviser le conducteur en plusieurs conducteurs associés en parallèle et isolés entre eux,
chaque “brin” ayant un rayon inférieur à δ.

• plaquer le conducteur avec de l’argent (métal qui possède la plus grande conductivité). La
composante continue du courant circule dans tout le volume et la composante alternative
HF ne circule que dans la pellicule d’argent.

• adopter une géométrie tubulaire : l’épaisseur du tube creux est de l’ordre de δ.

1.5.6 Aspect énergétique :

Le vecteur de Poynting est défini par :

R⃗ =
E⃗ ∧ B⃗
µ0

(154)

Or la relation de structure est B⃗ =
k⃗ ∧ E⃗
ω

(155)

or k =
1− j

δ
=

√
2

δ
exp

(
−j π

4

)
(156)

d’où B⃗ = exp
(
−j π

4

) u⃗x ∧ E⃗
δω

(157)

d’où arg(
B

E
) = −π

4
̸= ±π

2
(158)

donc < ∥R⃗∥ > ̸= 0 (159)

D’autre part, la puissance moyenne fournie par le champ électromagnétique aux porteurs
de charge est positive :

< j⃗ · E⃗ >= σ < E2 > (160)

L’amortissement de l’OEM :

• est dû au transfert de puissance du champ électromagnétique vers les porteurs de charge.

• provoque l’effet Joule.

2 Propagation d’un paquet d’ondes dans un milieu peu
dispersif et non absorbant

Par exemple, un plasma en HF est faiblement dispersif et non absorbant.

2.1 Notion de paquet d’ondes

Un signal physique réel f0(t) émis par une source et destiné à propager une information a une
extension temporelle ∆t = τ et une extension spatiale ∆x limitées (finies).

Pour étudier un signal réel, on utilise la transformée de Fourier, qui est essentiellement une
projection du signal sur la base continue que sont les OPPH, restreinte aux OPPH qui vérifient
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la relation de dispersion. Ensuite, par linéarité, on fait évoluer indépendemment chaque OPPH
et on obtient l’évolution du signal.

Lors d’un changement de milieu c’est la pulsation ω qui se conserve et non pas k.
C’est pourquoi on choisit de décomposer le signal dans l’espace des ω plutôt que dans l’espace
des k.

D’après l’analyse de Fourier dans l’espace des ω les composantes de Fourier du signal réel
occupent une largeur spectrale ∆ω centrée sur ω0 tel que :

♡ La relation de Fourier :

τ∆ω ≈ 1 (161)
ou τ∆ω ≈ 2π (162)

avec la pulsation moyenne ω0 >> ∆ω (163)

De même dans l’espace des k les composantes de Fourier occupent une largeur spectrale ∆k
centrée sur k0 tel que :

∆x∆k ≈ 1 (164)
ou ∆x∆k ≈ 2π (165)

avec la pulsation moyenne k0 >> ∆k (166)

Figure 3: Paquet d’ondes avec une enveloppe gaussienne.

En HF, le plasma est faiblement dispersif et donc on peut développer la relation de dispersion
à l’ordre 1 au voisinage de ω0 :

k(ω) = k(ω0) + (ω − ω0)
dk

dω
(ω = ω0) (167)

soit k(ω) = k0 +
1

vg
(ω − ω0) (168)
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Figure 4: Propagation non dispersive d’un paquet d’onde.

Ce signal f0(t) pénètre en x = 0 dans le milieu. Les différentes composantes de Fourier sont
des OPPH qui se propagent à des vitesses vφ(ω) différentes car le milieu est dispersif. On en
déduit le signal après une propagation sur la distance x :

A(x = 0, t) = f0(t) =
∑
ω

dF0(ω) exp(jωt) (169)

A(x, t) =
∑
ω

dF0(ω) exp

(
jω(t− x

vφ
)

)
(170)

2.2 Ordre 0 : milieu non dispersif

Si le milieu est non dispersif (à l’ordre 0), c’est le cas de l’équation de d’Alembert, la relation
de dispersion est linéaire. Le signal est reconstitué en x tel qu’il était en x = 0 avec un retard
dû à la propagation égal à x

v
. Le paquet d’onde se déplace en bloc entier à la même vitesse

vg = vφ.

2.3 Battements :

Considérons la superposition de deux OPPH de même amplitude AM , en phase en x = 0 et de
pulsations voisines :
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A1(x = 0, t) = AM cos(ω′t) (171)
A2(x = 0, t) = AM cos(ω′′t) (172)

avec ω′ = ω0 −
δω

2
(173)

et ω′′ = ω0 +
δω

2
(174)

de (168) on déduit k′ = k0 −
1

vg

δω

2
(175)

et k′′ = k0 +
1

vg

δω

2
(176)

d’où k0 =
k′ + k′′

2
(177)

et
δω

vg
= k′′ − k′ (178)

après propagation sur x A1(x, t) = AM cos(ω′t− k′x) (179)
et A2(x, t) = AM cos(ω′′t− k′′x) (180)

la superposition donne A(x, t) = A1(x, t) + A2(x, t) (181)
A(x, t) = AM [cos(ω′t− k′x) + cos(ω′′t− k′′x)] (182)

A(x, t) = 2AM cos

(
δω

2
(t− x

vg
)

)
cos(ω0t− k0x) (183)

On reconnaît des battements spatiaux : la porteuse (l’onde moyenne) est une OPPH
en cos(ω0t− k0x) qui se propage à vφ = ω0

k0
. L’enveloppe qui constitue les battements est une

OPPH de vitesse vg = (dω
dk
)ω0 différente de la vitesse de phase vφ de la porteuse :

Il en résulte que le paquet d’ondes en se propage en se déformant par glissement
de phase. La porteuse glisse à l’intérieur à l’intérieur de l’enveloppe.

Figure 5: La déformation des battements entre deux instants.

On constate qu’entre les deux instants considérés, l’enveloppe est translatée de ∆x = 6,
alors que l’onde moyenne est translatée de ∆x = 1 (on le voit en x = 0).

2.4 Ordre 1 : glissement de phase

Soit le paquet d’onde décrit par le signal :

A(x, t) =
∑
ω

dF0(ω) exp(jωt− jkx) (184)
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Le spectre de Fourier de ce paquet d’onde est centré sur la pulsation moyenne ω0 et sa
largeur est ∆ω << ω0.

Dans un milieu peu dispersif, on peut effectuer un développement de Taylor de k(ω)
au voisinage de ω0 :

k(ω) = k(ω0) + (ω − ω0)
dk

dω
(ω = ω0) (185)

soit k(ω) = k(ω0) + (ω − ω0)
1

vg
(186)

k(ω) = k0 + (ω − ω0)
1

vg
(187)

en posant
dk

dω
(ω = ω0) =

1

vg
(188)

et k0 = k(ω0) (189)
développons ωt− kx = (ω − ω0)t− (k − k0)x+ (ω0t− k0x) (190)

or (187) ωt− kx = (ω − ω0)t− (ω − ω0)
x

vg
+ (ω0t− k0x) (191)

ωt− kx = (ω − ω0)(t−
x

vg
) + (ω0t− k0x) (192)

Le paquet d’onde se propageant dans un milieu peu dispersif s’écrit :

A(x, t) =
∑
ω

dF0(ω) exp

[
j(ω − ω0)(t−

x

vg
)

]
exp(jω0t− jk0x) (193)

soit : A(x, t) = E(x, t) exp(jω0t− jk0x) (194)

Dans l’expression du paquet d’ondes :

• l’enveloppe E(x, t) =
∑

ω dF0(ω) exp
[
j(ω − ω0)(t− x

vg
)
]
= E(t− x

vg
) du paquet d’ondes

est une OPP non harmonique se propageant à la vitesse de groupe vg ;

• la porteuse est une OPPH se propageant à la vitesse de phase vφ = ω0

k0
.

Comme la relation de dispersion n’est pas linéaire vg ̸= vφ. La porteuse et l’enveloppe
ne se propagent pas à la même vitesse. La porteuse "glisse" à l’intérieur de l’enveloppe. On
parle de dispersion normale lorsque vφ > vg : la porteuse se déplace plus vite que l’enveloppe.
Les crêtes de la porteuse (repère vert) avancent à une vitesse différente des crêtes de l’onde
enveloppe (repère rouge).

♡ L’information est transportée par l’enveloppe du paquet d’ondes à la vitesse
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Figure 6: Propagation d’un paquet d’onde dans un milieu faiblement dispersif.

appelée de groupe vg définie par :

vg = (
dω

dk
)(ω = ω0) (195)

alors que vφ =
ω0

k0
(196)

si le milieu est dispersif vg ̸= vφ (197)
sinon vg = vφ (198)

On a toujours vg < c (199)
alors qu’il est possible d’avoir vφ > c (200)

Ni l’enveloppe du paquet d’ondes ni la porteuse ne se déforment (car le milieu n’est pas
absorbant). La déformation du paquet d’onde est lié au glissement de la porteuse
ce qui crée un décalage entre les deux. La vitesse de groupe est aussi la vitesse de
propagation de l’énergie transportée par le paquet d’ondes.

Le point vert suit la crête de l’onde moyenne et le point rouge suit la crête de l’enveloppe.
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2.5 Propagation d’un paquet d’ondes dans un plasma

La vitesse de groupe dans un plasma en HF se détermine à partir de la relation de dispersion :

k2c2 = ω2 − ω2
p (201)

en différentiant 2c2kdk = 2ωdω (202)

soit
dω

dk
= c2

k

ω
(203)

or vφ =
ω

k
(204)

d’où vg =
c2

vφ
(205)

or (93) vg = c

√
1−

ω2
p

ω2
< c (206)

2.6 Ordre 2 : étalement du paquet d’onde

Nous avons établi qu’à l’ordre 1 le paquet d’onde se déforme par glissement de phase. La vitesse
de l’enveloppe était vg constante.

A l’ordre 2, la vitesse de groupe vg = vg(ω) n’est plus constante, l’enveloppe se déforme.

∆vg
∆k

≈
(
dvg
dk

)
k0

(207)

relation de Fourier ∆k ≈ 1

∆x0
(208)

Finalement, pendant t le paquet d’onde d’extension spatiale ∆x0 s’étale de :

t∆vg =
t

∆x0

(
d2ω

dk2

)
k0

L’étalement du paquet d’onde est donc une déformation du paquet d’onde liée à
(

dvg
dk

)
k0

=(
d2ω
dk2

)
k0

̸= 0.
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Figure 7: Etalement d’un paquet d’onde.
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3 Interfaces entre deux milieux :

3.1 Expression des champs électromagnétiques :

L’interface x = 0 sépare deux milieux d’indices complexes n1 et n2 différents. On considère
une onde incidente arrivant sur ce dioptre en incidence normale. Comme toutes
les équations sont linéaires, on considère l’onde de base qu’est l’OPPH polarisée
rectilignement tangentiellement à l’interface :

E⃗i = E0i exp(jωt− jk1x)u⃗y (209)

avec : k1 =
n1ω

c
(210)

Les expériences d’optique nous montrent que l’onde incidente donne en général naissance à
une onde réfléchie et une onde transmise. Supposons que ces trois ondes possèdent la même
polarisation :

E⃗r = E0r exp(jωt+ jk1x)u⃗y (211)

E⃗tr = E0tr exp(jωt− jk2x)u⃗y (212)

avec : k2 =
n2ω

c
(213)

On déduit les champs magnétiques de la relation de structure appliquée à CHAQUE
OPPH et non pas à l’onde globale (n’est en général pas une OPPH) dans le milieu (1) :

B⃗i =
n1u⃗x ∧ E⃗i

c
(214)

B⃗i =
n1E0i

c
exp(jωt− jk1x)u⃗x ∧ u⃗y (215)

soit : B⃗i =
n1E0i

c
exp(jωt− jk1x)u⃗z (216)

B⃗r =
n1(−u⃗x) ∧ E⃗r

c
(217)

B⃗r =
n1E0i

c
exp(jωt+ jk1x)(−u⃗x ∧ u⃗y) (218)

soit : B⃗r = −n1E0r

c
exp(jωt+ jk1x)u⃗z (219)

B⃗tr =
n2u⃗x ∧ E⃗tr

c
(220)

B⃗tr =
n2E0tr

c
exp(jωt− jk2x)u⃗x ∧ u⃗y (221)

soit : B⃗tr =
n2E0tr

c
exp(jωt− jk2x)u⃗z (222)

(223)

3.2 Coefficients de réflexion et de transmission de E⃗ :
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On admet la continuité des champs électrique E⃗ et magnétique B⃗ à l’interface entre deux
milieux :

A tout instant t : E1(x = 0, t) = E2(x = 0, t) (224)
et : B1(x = 0, t) = B2(x = 0, t) (225)

On se place dans le cas où il n’y a pas de courant surfacique #»
j s =

#»
0 . Dans un conducteur réel

le courant n’est que volumique.

Le champ électromagnétique total dans le milieu (1) résulte de la superposition de l’onde
incidente et de l’onde réfléchie :

E0i + E0r = E0tr (226)
n1E0i − n1E0r = n2E0tr (227)

(228)

Posons : r1→2 =
E0r

E0i

(229)

et : t1→2 =
E0tr

E0i

(230)

En divisant (226) par E0i et (227) par n1E0i on obtient :

1 + r1→2 = t1→2 (231)

et : 1− r1→2 =
n2

n1

t1→2 (232)

(231)+(232) donne : 2 = t1→2(1 +
n2

n1

) (233)

(231)-(232) donne : r1→2 =
t

2
(1− n2

n1

) (234)

Les coefficients de réflexion r1→2 et de transmission t1→2 du champ électrique E⃗ sont :

t1→2 =
E0tr

E0i

=
2n1

n1 + n2

(235)

et : r1→2 =
E0r

E0i

=
n1 − n2

n1 + n2

(236)

En général ces coefficients sont complexes de sorte que le déphasage entre les champs sont
quelconques.
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♡ Quand une OEM arrive en incidence normale sur un dioptre optique séparant deux milieux
transparents, les indices sont réels. On en déduit que les champs sont tous en phase sauf :

si n1 < n2(ex : air → verre) la réflexion introduit un déphasage de π = arg(−1) =
arg(r1→2).

3.3 Cas d’une interface vide-plasma pour ω > ωp :

3.3.1 Coefficients de réflexion et de transmission en puissance :

Dans le vide : n1 = 1 (237)

Dans le plasma (95) avec ω > ωp : n2 = n =

√
1−

ω2
p

ω2
(238)

(235) s’écrit : t1→2 =
2

1 + n
(239)

(236) s’écrit : r1→2 =
1− n

1 + n
(240)

A l’interface (x = 0) les champs s’écrivent :

(216) : B⃗i =
E0i

c
exp(jωt)u⃗z (241)

(219) : B⃗r = −E0r

c
exp(jωt)u⃗z (242)

(222) : B⃗tr =
nE0tr

c
exp(jωt)u⃗z (243)

Choisissons l’origine des temps de sorte que E0i soit réel. Il en résulte que E0r et E0tr sont
aussi réels car r1→2 et t1→2 sont alors réels. On en déduit les champs réels à l’interface (x = 0)

pour ensuite exprimer les vecteurs de Poynting R = E⃗∧B⃗
µ0

. En effet, les grandeurs énergétiques
étant quadratiques elles ne peuvent pas être définies en complexe

E⃗i = E0i cos(ωt)u⃗y (244)

E⃗r = E0r cos(ωt)u⃗y (245)

E⃗tr = E0tr cos(ωt)u⃗y (246)

B⃗i =
E0i

c
cos(ωt)u⃗z (247)

B⃗r = −E0r

c
cos(ωt)u⃗z (248)

B⃗tr =
nE0tr

c
cos(ωt)u⃗z (249)

< R⃗i · u⃗x >=<
dPi

dS
> =

E2
0i < cos2(ωt) >

cµ0

=
E2

0i

2cµ0

(250)

< R⃗r · (−u⃗x) >=<
dPr

dS
> =

E2
0r < cos2(ωt) >

cµ0

=
E2

0r

2cµ0

(251)

< R⃗tr · u⃗x >=<
dPtr

dS
> =

nE2
0tr < cos2(ωt) >

cµ0

=
nE2

0tr

2cµ0

(252)

Divisons (251) puis (252) par (250).

Lycée Janson de Sailly 25 F.Desombre



Les coefficients de réflexion R1→2 respectivement T1→2 en puissance dans le cas d’une inter-
face entre le vide et un milieu d’indice réel n :

R1→2 =
< dPr

dS
>

< dPi

dS
>

=
E2

0r

E2
0i

= r21→2 = (
1− n

1 + n
)2 (253)

T1→2 =
< dPtr

dS
>

< dPi

dS
>

=
nE2

0tr

E2
0i

= nt21→2 =
4n

(1 + n)2
(254)

La conservation de la puissance moyenne se traduit par :

R1→2 + T1→2 = 1 (255)

En tenant compte de (95) on obtient les graphes de R1→2(ω) et T1→2(ω); On constate que :

• en très HF, ω → ∞, n → 1 : l’onde incidente est intégralement transmise car il n’y a
plus d’interface.

• si ω → ωp alors n→ 0 d’où R1→2 → 1 et T1→2 → 0 : il y a réflexion totale.

Figure 8: Dans le domaine de transparence du plasma : pas d’interface et réflexion totale à ωp.

3.4 Cas d’une interface vide-plasma pour ω < ωp

D’après (87) dans le domaine réactif du plasma (ω < ωp) alors k et n sont imaginaires purs :
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k = jk′′ = ±j
√
ω2
p − ω2

c
(256)

or si k” > 0 alors : exp(k”x) → ∞ (257)

donc on ne retient que : k = −j
√
ω2
p − ω2

c
(258)

or : n = jn′′ =
jk′′c

ω
(259)

d’où : n′′ = −
√
ω2
p

ω2
− 1 (260)

dans le vide : n1 = 1 (261)
dans le plasma : n2 = n = jn′′ (262)

d’où d’après (236) : r1→2 =
1− jn′′

1 + jn′′ (263)

et d’après (235) : t1→2 =
2

1 + jn′′ (264)

Dans ce cas, le plasma est le siège d’une onde évanescente qui ne transporte aucune énergie
électromagnétique. Donc :

T 1→2 = 0 (265)
d’après (255) on déduit : R1→2 = 1 (266)

soit avec (253) : |r1→2| =|1− jn′′

1 + jn′′ |
2 = 1 (267)

d’où : r1→2 = exp(−jφ) (268)

car :
φ

2
= arg(1 + jn′′) = − arg(1− jn′′) (269)

soit : φ = 2arctan(n′′) (270)

On constate donc que la réflexion est totale et introduit un déphasage de φ. Ainsi à
l’interface x = 0 les champs s’écrivent :

E⃗i = E0i cos(ωt)u⃗y (271)

et : E⃗r = E0r cos(ωt− φ)u⃗y (272)

3.5 Cas d’une interface vide-conducteur ohmique

Pour un conducteur ohmique sa conductivité σ est réelle tant que f < 1014Hz et la relation de
dispersion (64) s’approxime à :

k2 = −µ0σjω (273)

soit avec (129) : k2 = −2j

δ2
(274)

d’où : k =
1− j

δ
(275)
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En effet on considére une onde progressive selon +u⃗x.
L’approximation est valable si :

ω2

c2
<< µ0σω (276)

d’où :
ω2

c2
<<

2

δ2
(277)

ω

c
<<

√
2

δ
(278)

2π

λ
<<

√
2

δ
(279)

2πδ

λ
<<

√
2 (280)

posons : ε =
2πδ

λ
(281)

ε << 1 (282)
soit : λ >> δ (283)

or (74) : n =
kc

ω
(284)

soit : n =
(1− j)λ

2πδ
(285)

n =
(1− j)

ε
(286)

(236) s’écrit : r1→2 =
1− n

1 + n
=

1− (1−j
ε
)

1 + (1−j
ε
)
= −1− j − ε

1− j + ε
(287)

(235) s’écrit : t1→2 =
2

1 + n
=

2

1 + (1−j)
ε

=
2ε

1− j + ε
(288)

Le modèle du conducteur parfait est obtenu avec la limite δ → 0 et ω ̸= 0. Il n’y a
pas d’onde transmise dans le métal en régime variable. L’onde réfléchie est de même
amplitude que l’onde incidente et déphasée de π.

soit : ε→ 0 (289)
d’où : r1→2 = −1 (290)

et : t1→2 = 0 (291)

3.6 Cas d’une interface vide-métal en optique

En optique f ≈ 1015Hz > 1014Hz = fM et donc on ne peut plus approximer la conductivité σ
du métal à un réel. On doit reprendre la relation de dispersion (64) en tenant compte de (113)
:
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k2 =
ω2

c2
− µ0jω

σ0
1 + jωτ

(292)

or : ωτ ≈ 63 >> 1 (293)

d’où : k2 =
ω2

c2
− µ0σ0

τ
(294)

soit : k2 =
ω2 − ω2

p

c2
(295)

avec : ωp =

√
µ0c2

σ0
τ

=

√
σ0
ε0τ

(296)

pour le cuivre : ωp =

√
36π109108

10−14
= 3.1016rad.s−1 (297)

or en optique : λ > 400nm (298)

soit : ω =
2πc

λ
<

2π3.108

4.10−7
(299)

ω < 2.1015rad.s−1 (300)
on constate que : ω < ωp (301)

Tout se passe comme si le métal se comportait comme un plasma dans son
domaine réactif. On en déduit que l’onde transmise est une onde évanescente. Or,
l’onde évanescente ne transporte aucune énergie. Il y a réflexion totale puisque toute la
puissance incidente est cédée à l’onde réfléchie (266).

En optique, la réflexion sur un miroir parfait provoque un déphasage de π.

r1→2 =
1− jn′′

1 + jn′′ = exp(−jφ) (302)

pour le cuivre : |φ| = 2| arctann′′| = 160◦ (303)

car : − n′′ =

√
ω2
p

ω2
− 1 (304)

D’autre part, le métal se comporte comme un plasma dans son domaine de transparence si
ω > ωp :

λ <
2πc

ωp

(305)

pour le cuivre : λ < 0, 1µm (306)

Les métaux sont donc transparents aux UV. Une mince feuille de métal (l’or par
exemple) laisse passer les UV comme une simple vitre.

3.7 Polarisation par réflexion vitreuse :

Soit une OEM incidente non polarisée qui arrive avec un angle i1 sur un dioptre séparant
deux milieux d’indices réels n1 et n2. Décomposons le champ électrique incident E⃗i en une
composante parallèle au plan d’incidence E⃗ipar et l’autre perpendiculaire au plan d’incidence
E⃗iper : Le plan d’incidence et défini comme le plan contenant la direction incidente k⃗i et la
normale au dioptre au point d’incidence.

E⃗i = E⃗ipar + E⃗iper (307)
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Figure 9: Réflexion vitreuse.

On constate expérimentalement que le coefficient de réflexion R12 en puissance dépend de
la polarisation de l’onde. En incidence normale (i1 = 0) on a :

R12par(i1 = 0) = R12perp(i1 = 0) = (
n1 − n2

n1 + n2

)2 (308)

A l’incidence de Brewster la lumière réfléchie est polarisée rectilignement (perpendiculaire
au plan d’incidence) alors que la lumière incidente n’est pas polarisée.

Les lunettes de soleil à verres polarisants éliminent les rayons réfléchis à l’incidence de
Brewster. Ainsi, elles permettent d’éliminer les reflets provoqués par les grandes surfaces telles
que la mer et la neige.

Figure 10: Angle de Brewster iB.

L’incidence de Brewster iB est telle le rayon transmis est perpendiculaire au rayon réfléchi :
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d’après la 2nde loi de Descartes : n1 sin iB = n2 sin i2 (309)

or : π = iB + i2 +
π

2
(310)

soit : n1 sin iB = n2 sin
(π
2
− iB

)
(311)

n1 sin iB = n2 cos(iB) (312)

d’où : tan iB =
n2

n1

(313)

Figure 11: A l’angle de Brewster iB les rayons réfracté et réfléchi sont perpendiculaires.

Figure 12: Les verres polarisants éliminent les reflets.
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4 Réflexion d’une OemPPH sur un plan conducteur parfait
en incidence normale

4.1 OEM dans un métal réel

On rappelle que dans un conducteur réel d’épaisseur de Peau δ l’OEM qui peut se propager est
de la forme :

k =
1

δ
(1− j)

#»

E tr = E0 exp
(
−x
δ

)
exp

(
ωt− x

δ

)
#»u y

#»

E tr = E0 exp
(
−x
δ

)
cos

(
ωt− x

δ

)
#»u y

#»

Btr =
k #»u x

ω
∧ #»

E tr

#»

Btr =
E0

δω
exp

(
−x
δ

)
[cos

(
ωt− x

δ

)
+ sin

(
ωt− x

δ

)
] #»u z

< Rtr · #»u x >t =
E2

O

2µ0δω
exp

(
−2

x

δ

)
Le courant est réparti dans un volume d’épaisseur δ. Il n’y a pas de courant surfacique.

4.2 OEM incidente

On considère une OemPPH incidente se propageant dans le vide selon (Ox). Elle arrive en
incidence normale en x = 0 sur l’interface vide/métal parfait. L’onde incidente est de la forme
:

#»

E i = E0 exp(jωt− jkx) #»u y

#»

Bi =
k #»u x

ω
∧ #»

E i =
#»u x

c
∧ #»

E i

#»

Bi =
E0

c
exp(jωt− jkx) #»u z

4.3 Conducteur parfait

D’après l’étude du conducteur réel on constate que dans le cas du conducteur parfait les champs
transmis sont nuls. L’onde incidente est totalement réfléchie (r = −1, R = 1, T = 0). Toute
l’énergie électromagnétique incidente se retrouve donc sous forme d’onde réfléchie.

Un conducteur parfait a une conductivité σ infinie et donc une épaisseur de peau δ nulle. Le
seul courant électrique possible ne peut être que confiné sur une épaisseur δ nulle c’est-à-dire
sur la surface du conducteur. Il s’agit d’une densité surfacique de courant #»

j s (en A.m−1).
Quand l’OEM incidente arrive sur le métal parfait

#»

E i met en mouvement les charges du
métal et provoque donc un courant #»

j s. Ces charges accélérées rayonnent un champ électromag-
nétique qui dans le métal est en opposition de phase avec l’onde incidente. Leur superposition
conduit à l’absence d’onde transmise. On cherche donc une OEM réfléchie de la forme :

#»

Er = E0ry exp(jωt+ jkx) #»u y + E0rz exp(jωt+ jkx) #»u z
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4.4 Relation de passage pour le champ électrique

D’après la relation de passage pour le champ électrique à l’interface vide/métal parfait :

#»

E2 −
#»

E1 =
σ

ϵ0
#»n 1→2

#»

E tr(x = 0+)− [
#»

E i(x = 0−) +
#»

Er(x = 0−)] =
σ

ϵ0
#»u x

projection selon (Ox) σ = 0

projection selon (Oz) E0rz = 0

projection selon (Oy) E0ry = −E0

La réflexion normale sur un métal parfait introduit un déphasage de π.

#»

Er = −E0 exp(jωt+ jkx) #»u y

#»

Br = −
#»u x

c
∧ #»

Er

#»

Br =
E0

c
exp(jωt+ jkx) #»u z

4.5 Onde stationnaire dans le vide

On en déduit l’onde totale dans le vide issue de la superposition des OEM incidente et réfléchie
:

#»

E tot =
#»

E i +
#»

Er = E0[cos(ωt− kx)− cos(ωt+ kx)] #»u y

#»

Btot =
#»

Bi +
#»

Br =
E0

c
[cos(ωt− kx) + cos(ωt+ kx)] #»u z

Le découplage entre les variables x et t définit une onde stationnaire pour l’onde totale
dans le vide :

#»

E tot =
#»

E i +
#»

Er = 2E0 sin(ωt) sin(kx)
#»u y

#»

Btot =
#»

Bi +
#»

Br = 2
E0

c
cos(ωt) cos(kx) #»u z

<
#»

Rtot · #»u x >t =<

#»

E tot ∧
#»

Btot

µ0

>t=
E2

0

4µ0c
< sin(2ωt) > sin(2kx) = 0

L’interface x = 0 constitue un ventre de B et un nœud de E. Deux nœuds consécutifs
d’un champ sont distants de λ

2
. Une onde stationnaire ne se propage pas et donc ne transporte

pas de puissance électromagnétique en moyenne. La puissance électromagnétique reste confinée
entre deux nœuds consécutifs.
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4.6 Courants surfaciques

D’après la relation de passage pour le champ magnétique à l’interface vide/métal parfait :

#»

B2 −
#»

B1 = µ0
#»
j s ∧ #»n 1→2

#»

Btr(x = 0+)− [
#»

Bi(x = 0−) +
#»

Br(x = 0−)] = µ0
#»
j s ∧ #»u x

0− 2E0

c
cos(ωt) = −µ0jsy

La densité surfacique de courant générée par l’OEM incidente sur le métal parfait est :

#»
j s =

2E0

µ0c
cos(ωt) #»u y

4.7 Pression de radiation

La pression de radiation Prad que l’OEM génère sur l’interface résulte des forces de Laplace.
En effet un élément de courant jsydzdy = jsydS plongé dans le champ (extérieur) de l’OEM
incidente en x = 0− est :

δ
#»

F Lap =
#»
j sdzdy ∧

#»

Bi(x = 0−)

δ
#»

F Lap

dS
=

2E0

µ0c
cos(ωt) #»u y ∧

E0

c
cos(ωt) #»u z

< cos2(ωt) >t =
1

2

La moyenne temporelle de la force surfacique de Laplace donne la pression de radiation
:

Prad =
E2

0

µ0c2
= ϵ0E

2
0 = uem
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4.8 Théorie corpusculaire

On peut retrouver la pression de radiation en considérant l’aspect corpusculaire. L’énergie
de l’OEM incidente est transportée par des photons d’énergie E = hν = ℏω conservée à la
réflexion.

La variation de quantité de mouvement d’un photon lors de la réflexion en incidence normale
est :

#»p 1 photon, après − #»p 1 photon, avant =
hν

c
(− #»u x)−

hν

c
#»u x = −2

hν

c
#»u x

Pendant dt il y a δN photons qui arrivent sur la surface dS = dydz. Ils subissent une
variation de quantité de mouvement :

d #»p photons = −δN2
hν

c
#»u x

D’après la 2nde loi de Newton appliquée aux δN photons :

dpphotons

dt
=

#»

F paroi→photons

#»

F paroi→photons = −δN
dt

2
hν

c
#»u x

D’après la loi des actions réciproques (3ième loi de Newton) la force qu’exerce les photons
sur la paroi est :

#»

F photons→paroi =
δN

dt
2
hν

c
#»u x

Or, les δN photons qui arrivent sur la surface dS pendant dt à la vitesse c sont contenus
dans le volume c dt dS. Soit uem la densité volumique d’énergie électromagnétique (incidente
et réfléchie) :

δN2hν = uemc dt dS

δN

dt
2
hν

c
= uem dS

La pression de radiation est la force surfacique :

#»

F photons→paroi = uem dS = Prad dS
#»u x

Prad = uem
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