Programme de colles - Chimie PSI - Semaine du 07/10/2024

Chapitre TC1: Thermochimie du premier principe

- Grandeurs molaires, grandeurs molaires partielles
- État standard d'un corps.
- État standard de référence d'un corps.
- Opérateur de Lewis ; enthalpie de réaction.
- Transfert thermique pour une réaction chimique monotherme monobare
- Transformations endothermique, athermique et exothermique.
- Approximation d'Ellingham (pour $\Delta_r H^0$).
- Enthalpie standard de fusion, solidification, vaporisation, liquéfaction, sublimation, condensation
- Enthalpie standard de formation. Définition. Cas de corps composés, d'ions. Loi de Hess, cycle de Hess.
- Enthalpie standard de combustion.
- Enthalpie standard de dissociation de liaison. Loi de Hess.
- Cycles de Hess.
- Température de flamme. Définition, hypothèses et calcul.

Chapitre TC2: Enthalpie libre et potentiel chimique

- Potentiel thermodynamique.
- Enthalpie libre.
- Transformation isotherme isobare : établissement de $\Delta G = W' TS_c$
- Travail utile récupérable
- G est un potentiel thermodynamique pour les transformations spontanées à T, P constants.
- ❖ Identités thermodynamiques pour *U*, *H*, *G*.
- Equations de Maxwell (pour la thermodynamique).
- Potentiel chimique du corps pur.
 - Ecriture de *dG*
 - o Identifier μ^* à l'enthalpie libre molaire, G(P,T,n)=n $\mu^*(T,P)$
 - Expression générale $\mu^*(T, P) = \mu^0(T) + RT \ln(a)$
 - o Activité d'un corps pur gaz ou état condensé.
 - Théorème de Schwartz
 - O Démonstration de $d\mu^* = -S_m^* dT + V_m^* dP$ (formule pas à connaître)
- Potentiel chimique d'un constituant d'un mélange idéal
 - Ecriture de *dG*
 - o Identifier μ_i à l'enthalpie libre molaire partielle du constituant i. $G = \sum_i n_i \mu_i$
 - Expression générale $\mu_i(T, P, composition) = \mu_i^0(T) + RT \ln(a_i)$
 - o Définition d'un mélange idéal
 - Activité d'un constituant d'un mélange idéal : gaz parfait ; état condensé ; cas d'une solution aqueuse diluée.

Chapitre TC3: Changement d'état du corps pur

- ❖ Vocabulaire des changements d'état.
- \diamond Diagramme (P,T), point critique, point triple.
- Evolution d'un corps pur diphasé à T et P constant : démonstration que le transfert de matière a lieu vers la phase de plus faible potentiel chimique.