Devoir maison 1 correction

Exercice

Corrigé sur Youtube: https://youtu.be/mGQ2hGmh-_8

Problème

- 1. Considérons tr: $M \mapsto \operatorname{tr}(M)$, c'est une forme linéaire non nulle (car $\operatorname{tr}(I_n) = n \neq 0$), donc $K = \operatorname{Ker}(\operatorname{tr})$ est un hyperplan. Ainsi, $\dim(K) = \dim(\mathscr{M}_n(\mathbb{R})) 1 = n^2 1$.
- 2. Soit $C \in L$. Il existe $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ tel que C = AB BA. Comme tr est linéaire et que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

$$\operatorname{tr}(C) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = \operatorname{tr}(AB) - \operatorname{tr}(AB) = 0$$

Ainsi, $C \in K$. Par conséquent, $L \subset K$.

3. Soit $M \in K \cap \text{vect}(I_n)$, alors $M \in K$ donc tr(M) = 0 et $M \in \text{vect}(I_n)$ donc il existe $\lambda \in \mathbb{R}$ tel que $M = \lambda I_n$. Par conséquent,

$$tr(M) = \lambda n = 0$$

Dès lors, $\lambda=0$, et $M=0I_n=0$. Donc $K\cap I_n\subset\{0_n\}$, l'inclusion réciproque étant toujours vraie, on a $K\oplus \operatorname{vect}(I_n)$. Or $\operatorname{vect}(I_n)$ est un espace vectoriel admettant (I_n) comme famille génératrice, comme $I_n\neq 0_n$, (I_n) est libre. Donc $\dim(\operatorname{vect}(I_n))=1$. Donc $\dim(K)+\dim(\operatorname{vect}(I_n))=n^2-1+1=n^2=\dim(\mathscr{M}_n(\mathbb{R}))$. Par conséquent, K et $\operatorname{vect}(I_n)$ sont supplémentaires dans $\mathscr{M}_n(\mathbb{R})$.

4. Soit $M = (m_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$. Remarquons que $M = \sum_{(i,j) \in \llbracket 1 ; n \rrbracket^2} m_{i,j} E_{i,j}$ où $E_{i,j}$ est la matrice élémentaire possédant que des 0 sauf un 1 à la i-ième ligne et j-ième colonne. Alors

$$M \in K \iff m_{n,n} = -\sum_{i=1}^{n-1} m_{i,i}$$

$$\iff M = \sum_{\substack{(i,j) \in [[1:n]]^2 \\ (i,j) \neq (n,n)}} m_{i,j} E_{i,j} - \left(\sum_{i=1}^{n-1} m_{i,i}\right) E_{n,n}$$

$$\iff M = \sum_{i \neq j} m_{i,j} E_{i,j} + \sum_{i=1}^{n-1} m_{i,i} (E_{i,i} - E_{n,n})$$

$$\iff M \in \text{vect}((E_{i,j})_{i \neq j} \cup (E_{i,i} - E_{n,n})_{1 \leqslant i \leqslant n-1})$$

Ainsi, $\mathscr{B}_K = (E_{i,j})_{i \neq j} \cup (E_{i,i} - E_{n,n})_{1 \leq i \leq n-1}$ est une famille génératrice de K. Remarquons que $\dim(K) = n^2 - 1$ et que $|\mathscr{B}_K| = n(n-1) + (n-1) = n^2 - 1$, donc \mathscr{B}_K est une base de K.

Étude d'un exemple en dimension 2.

Dans cette partie **seulement**, on prend n=2.

5. $\mathscr{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$. Soit $M \in \mathscr{M}_2(\mathbb{K})$, d'après la question 3, il existe un unique couple $(A, B) \in K \times \text{vect}(I_2)$ tel que I = A + B. Comme $B \in \text{vect}(I_2)$, il existe $\lambda \in \mathbb{R}$ tel que $B = \lambda I_2$. Dès lors, $M = A + \lambda I_2$, par linéarité de la trace $\text{tr}(M) = \text{tr}(A) + \lambda \text{tr}(I_2) = 2\lambda$. Donc, $\lambda = \text{tr}(M)/2$. Dès lors,

$$B = \frac{\operatorname{tr}(M)}{2}I_2$$
 et $A = M - \frac{\operatorname{tr}(M)}{2}I_2$

On obtient, alors $s(M) = A - B = M - \text{tr}(M)I_2$. Dès lors, $s(E_{1,1}) = E_{1,1} - I_2 = -E_{2,2}$, $s(E_{1,2}) = E_{1,2}$, $s(E_{2,1}) = E_{1,2}$

et
$$s(E_{2,2}) = E_{2,2} - I_2 = -E_{1,1}$$
. Par conséquent, $A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$.

^{1.} Pas besoin d'analyse-synthèse ici, car on ne cherche pas à démontrer l'existence ou l'unicité de A et B. L'existence et l'unicité ont été établies à la question 3.

6. Comme le déterminant est antisymétrique et que le déterminant d'une matrice diagonale est le produit des éléments diagonaux :

$$\det(A) = \begin{cases} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{cases} = -1$$

7. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$M \in K \iff \operatorname{tr}(M) = a + d = 0$$

$$\iff d = -b$$

$$\iff M = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$$

$$\iff M = a(E_{1,1} - E_{2,2}) + bE_{1,2} + cE_{2,1}$$

$$\iff M \in \operatorname{vect}(E_{1,1} - E_{2,2}, E_{1,2}, E_{2,1})$$

Par conséquent, $K = \text{vect}(E_{1,1} - E_{2,2}, E_{1,2}, E_{2,1})$, ainsi $\mathscr{B}_K = (E_{1,1} - E_{2,2}, E_{1,2}, E_{2,1})$ est une famille génératrice de K, comme $|K| = 3 = \dim(K)$, on en conclut que \mathscr{B}_K est une base de K^2

- 8. Comme (I_n) est une base de vect (I_n) , par principe de concaténation de bases de deux sous-espaces supplémentaires, $\mathscr{B}' = (E_{1,1} E_{2,2}, E_{1,2}, E_{2,1}, I_n)$ est une base de $\mathscr{M}_2(K)$.
- 9. Notons que $(E_{1,1}-E_{2,2},E_{1,2},E_{2,1}) \in K^3$, ainsi $s(E_{1,1}-E_{2,2})=E_{1,1}-E_{2,2}, s(E_{1,2})=E_{1,2}, s(E_{2,1})=E_{2,1}$. De plus, comme $I_n \in \text{vect}(I_n), s(I_n)=-I_n$. Donc,

$$B = \operatorname{Mat}_{\mathscr{B}'}(s) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Par la formule de changement de base, A est semblable à B une matrice diagonale. De plus, $A^2 = \operatorname{Mat}_{\mathscr{B}}(s \circ s) = \operatorname{Mat}_{\mathscr{B}}(\operatorname{Id}_{\mathscr{M}_2(\mathbb{R})}) = I_4$. Ainsi, pour tout $q \in \mathbb{N}$, $(A^2)^q = I_4^q = I_4$, donc $A^{2q} = I_4$. En multipliant par A, $A^{2q+1} = A$. Ainsi, pour tout $p \in \mathbb{N}$, $A^p = I_4$ si p est pair et $A^p = A$ si p est impair.

Cas général

Soient E un espace vectoriel de dimension finie n et $f \in \mathcal{L}(E)$. On suppose que chaque droite de E est stable par f.

- 10. Soit $x \in E$:
 - Si $x = 0_E$, alors $f(x) = 0_E = 0 \times 0_E$, donc en posant $\lambda_0 = 0$, on a bien, $f(x) = \lambda_x x$ si $x = 0_E$.
 - Si $x \neq 0_E$, alors D = vect(x) est une droite, elle est donc stable, $f(D) \subset D$. Or $f(x) \in f(D)$, donc $f(x) \in D = \text{vect}(x)$, cela veut dire qu'il existe $\lambda_x \in \mathbb{R}$ tel que $f(x) = \lambda_x x$.
- 11. Soit $\mathscr{B} = (e_1, e_2, \dots, e_n)$. Ainsi, pour tout $i \in [1; n]$, il existe $\lambda_i \in \mathbb{R}$ tel que $f(e_i) = \lambda_i e_i$. Soit $(i, j) \in [1; n]^2$ avec $i \neq j$. Alors, il existe $c \in \mathbb{R}$ tel que $f(e_i + e_j) = c(e_i + e_j)$. De plus, comme f est linéaire,

$$f(e_i + e_j) = f(e_i) + f(e_j) = \lambda_i e_i + \lambda_j e_j$$

Donc $(\lambda_i - c)e_i + (\lambda_j - c)e_j = 0_E$. Comme (e_i, e_j) est une famille libre, on en déduit que $\lambda_i - c = \lambda_j - c = 0$. Donc $\lambda_i = c = \lambda_j$, ainsi, pour tout $i \in [1; n]$, $\lambda_i = \lambda_1$. Notons $\lambda = \lambda_1$. Notons avons ainsi prouvé que pour tout x vecteur de \mathscr{B} , $f(x) = \lambda \operatorname{Id}_E(x)$. Une application linéaire étant uniquement caractérisée par les images des vecteurs d'une base, on en déduit que $f = \lambda \operatorname{Id}_E$. Par conséquent, f est une homothétie.

- 12. Si f n'est pas une homothétie, on peut en déduire qu'il existe $x \in E$ tel que pour tout $\lambda \in \mathbb{R}$, $f(x) \neq \lambda x$. Considérons un tel x et montrons que (x, f(x)) est libre. Soit $(a, b) \in \mathbb{R}^2$, supposons $ax + bf(x) = 0_E$. Supposons que $b \neq 0$, alors $f(x) = \frac{-a}{b}x$ ce qui est absurde. Dès lors b = 0 et ax = 0. Or si $x = 0_E$, alors f(x) = 0x ce qui est impossible. Donc $x \neq 0_E$ ce qui conduit à a = 0, la famille (x, f(x)) est libre.
- 2. Cette méthode est la même qu'à la question 4, à ceci près qu'ici c'est plus simple car moins d'indices à gérer.

13. Si f était une homothétie, alors M, la matrice de f dans une base, serait proportionnelle à I_n . Comme ce cas est exclus, on peut en déduire, par contraposée, que f n'est pas une homothétie. Ainsi, il existe $x \in E$ tel que (x, f(x)) est libre. D'après le théorème de la base incomplète, il existe $(e_3, e_4, \ldots, e_n) \in E^{n-2}$ tel que $\mathscr{B}' = (x, f(x), e_3, e_4, \ldots e_n)$ soit une base de E. Alors,

$$f(x) = 0 \cdot x + 1 \cdot f(x) + 0 \cdot e_3 + \ldots + 0e_n$$

Ainsi, en décomposant les images des vecteurs de \mathscr{B}' par f dans la base \mathscr{B}' , on obtient $\operatorname{Mat}_{\mathscr{B}'}(f) = \left(\frac{0 \mid L}{C \mid M'}\right)$ avec $L \in \mathscr{M}_{1,n-1}(\mathbb{R})$, C une matrice colonne avec n-1 lignes qui ne contient que des 0 sauf un 1 en première position et $M' \in \mathscr{M}_{n-1}(\mathbb{R})$.

- 14. Posons $\mathcal{P}(n)$: «Tout matrice $M \in \mathcal{M}_n(\mathbb{R})$ de trace nulle est semblable à une matrice dont la diagonale est nulle».
 - Si n = 1, considérons $M = (a) \in \mathcal{M}_1(\mathbb{R})$ de trace nulle, alors $\operatorname{tr}(M) = a = 0$, donc M = (0) est semblable à elle même (une matrice dont la diagonale est nulle). Donc $\mathcal{P}(1)$ est vraie.
 - Soit $n \in \mathbb{N}^*$. Supposons $\mathscr{P}(n)$ vraie. Soit $M \in \mathscr{M}_{n+1}(\mathbb{R})$ de trace nulle. Si $M \in \text{vect}(I_{n+1})$ alors M est nulle et est semblable à elle-même. Supposons donc $M \notin \text{vect}(I_{n+1})$, en utilisant la question précédente, il existe $L \in \mathscr{M}_{1,n}(\mathbb{R})$,

$$C \in \mathcal{M}_{n,1}(\mathbb{R})$$
 et $\tilde{M} \in \mathcal{M}_{n,n}(\mathbb{R})$ tel que M soit semblable à $M' = \left(\frac{0 \mid L}{C \mid \tilde{M}}\right)$. Comme la trace est un invariant

de similitude, $\operatorname{tr}(M) = \operatorname{tr}(M') = 0 + \tilde{M}$. On en déduit que \tilde{M} est une matrice carrée de taille n et de trace nulle. On peut donc appliquer $\mathscr{P}(n)$ à \tilde{M} , \tilde{M} est semblable à une matrice dont la diagonale est nulle : il existe

$$P \in GL_n(\mathbb{R})$$
 tel que $\tilde{M} = PNP^{-1}$ où $N \in \mathcal{M}_n(\mathbb{R})$ avec la diagonale de N nulle. Ainsi, $M' = \left(\frac{0 \mid L}{C \mid PNP^{-1}}\right)$.

Posons
$$Q = \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}$$
, alors par compatibilité des produits par blocs, $Q \times \begin{pmatrix} 1 & 0 \\ 0 & P^{-1} \end{pmatrix} = I_{n+1}$. Ce qui prouve que Q

est inversible et que son inverse est $Q^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & P^{-1} \end{pmatrix} = I_{n+1}$. Encore une fois par compatibilité des produits par

blocs, $Q^{-1}\tilde{M}Q = \begin{pmatrix} 0 & \star \\ \star & N \end{pmatrix} = \tilde{N}$ Donc M est semblable \tilde{M} qui elle-même est semblable à \tilde{N} . Par transitivité, M est semblable à \tilde{N} , une matrice ne contenant que des zéros sur la diagonale. Dès lors $\mathscr{P}(n+1)$ est vraie.

- Pour tout $n \in \mathbb{N}^*$, $\mathscr{P}(n)$ est vraie.
- 15. Soit $(M, M', \lambda) \in \mathscr{M}_n(\mathbb{R}) \times \mathscr{M}_n(\mathbb{R}) \times \mathbb{R}$,

$$\varphi(M+\lambda M') = (M+\lambda M')D - D(M+\lambda M') = MD + \lambda M'D - DM + \lambda DM = (MD-DM) + \lambda (M'D-DM') = \varphi(M) + \lambda \varphi(M')$$

Donc φ est linéaire et $\varphi \colon \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$. Donc $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$. Soit $M \in \text{Ker}(\varphi)$, alors MD = DM. Notons $M = (m_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ et $D = (d_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$. Soit $(i,j) \in [[1:n]]^2$ avec $i \ne j$, calculons le coefficient (i,j) de MD = DM:

$$\sum_{k=1}^{n} m_{i,k} d_{k,j} = m_{i,j} d_{j,j} = \sum_{k=1}^{n} d_{i,k} m_{k,j} = d_{i,i} m_{i,j}$$

Ainsi, $m_{i,j}(d_{j,j}-d_{i,i})=0$, comme $i\neq j$, $d_{i,i}\neq d_{j,j}$, donc $m_{i,j}=0$ et ce pour tout (i,j) tel que $i\neq j$. Ainsi, M est une matrice diagonale. En notant Diag_n l'ensemble des matrices diagonales, on a prouvé que $\operatorname{Ker}(\varphi)\subset\operatorname{Diag}_n$. Réciproquement, si $M\in\operatorname{Diag}_n$, alors MD=DM (deux matrices diagonales commutent), $\operatorname{donc}\varphi(M)=MD-DM=0_n$. Donc $M\in\operatorname{Ker}(\varphi)$. On a donc montré que $\operatorname{Diag}_n=\operatorname{Ker}(\varphi)$. Or une base de Diag_n est $\mathscr{B}_D=(E_{i,i})_{1\leq i\leq n}$. Soit $N=(n_{i,j})\in\operatorname{Im}(\varphi)$, alors, il existe $M\in\mathscr{M}_n(\mathbb{R})$ tel que N=MD-DM. Notons que pour tout $i\in [1:n]$, en reprenant le calcul de MD et DM, $n_{i,i}=m_{i,i}d_{i,i}-d_{i,i}m_{i,i}=0$. Ainsi, N est une matrice dont la diagonale est nulle. Notons Z le SEV de $\mathscr{M}_n(\mathbb{R})$ formé de toutes les matrices ayant des éléments diagonaux nuls. On a montré que $\operatorname{Im}(N)\subset Z$. De plus, d'après le théorème du rang, $\operatorname{dim}(\operatorname{Im}(n))=\operatorname{dim}(\mathscr{M}_n(\mathbb{R}))-\operatorname{dim}(\operatorname{Ker}(\varphi))=n^2-n$. Et une base de Z est $\mathscr{B}_Z=(E_{i,j})_{i\neq j}$, donc $\operatorname{dim}(Z)=|\mathscr{B}_Z|=n^2-n$. Par inclusion et égalité des dimension $\operatorname{Im}(\varphi)=Z$ a pour pour base \mathscr{B}_Z .

- 16. Soit $M \in \mathbb{K}[D]$, alors il existe $P \in \mathbb{K}[X]$ tel que M = P(D). Comme combinaison linéaire de matrices diagonales, M est diagonale donc commute avec D. Ainsi, $M \in \text{Ker}(\varphi)$. Par conséquent, $\mathbb{K}[D] \subset \text{Ker}(\varphi)$. Réciproquement,
- 3. \mathscr{B}_D est une famille libre car incluse dans la base canonique de $\mathscr{M}_n(\mathbb{R})$, $\mathscr{B}_D \subset \mathrm{Diag}_n$, donc $\mathrm{vect}(\mathscr{B}_D) \subset \mathrm{Diag}_n$, de plus, toute matrice diagonale M peut s'écrire $M = \sum_{k=1}^n m_{k,k} E_{k,k}$, donc $\mathrm{Diag}_n \subset \mathrm{vect}(\mathscr{B}_D)$.
- 4. En effet, \mathscr{B}_Z (qui n'est pas un canapé) est une famille libre car incluse dans la base canonique, $\mathscr{B}_Z \subset Z$, donc $\text{vect}(\mathscr{B}_Z) \subset Z$. De plus, soit $M = (m_{i,j}) \in Z$. Alors $M = \sum_{i=1}^n \sum_{j=1}^n m_{i,j} E_{i,j} = \sum_{i \neq j} m_{i,j} E_{i,j} \in \text{vect}(\mathscr{B}_Z)$

soit $M \in \text{Ker}(\varphi)$, alors on a vu que M est diagonale. Notons (m_1, m_2, \ldots, m_n) les éléments diagonaux de M et (d_1, d_2, \ldots, d_n) les éléments diagonaux de D. Comme les éléments de (d_1, d_2, \ldots, d_n) sont deux à deux distincts, considérons,

$$P = \sum_{i=1}^{n} m_i \prod_{\substack{k=1\\k \neq i}}^{n} \frac{X - d_k}{d_i - d_k} \in \mathbb{R}[X]$$

Remarquons alors que pour tout $i \in [[1; n]], P(d_i) = m_i$, notons $P = \sum_{k=0}^{n-1} a_k X^k$ Alors

$$P(D) = \sum_{k=0}^{n-1} a_k D^k = \sum_{k=0}^{n-1} a_k \begin{pmatrix} d_1^k & & & \\ 0 & d_2^k & 0 & \\ & & \ddots & \\ & & & d_n^k \end{pmatrix} = \begin{pmatrix} P(d_1) & 0 & & \\ 0 & P(d_2) & 0 & \\ & & \ddots & \\ & & & P(d_n) \end{pmatrix} = M$$

Ceci prouve que $M \in \mathbb{R}[D]$. Ainsi, $\operatorname{Ker}(\varphi) \subset \mathbb{R}[D]$, comme on a déjà montré l'inclusion réciproque, $\operatorname{Ker}(\varphi) = \mathbb{R}[D]$.

17. Soit $M \in K$, alors d'après la question 14, il existe P une matrice inversible et N une matrice avec une diagonale nulle telles que $M = P^{-1}NP$. Comme N a une diagonale nulle, d'après la question 14, $N \in \text{Im}(\varphi)$. Donc il existe $A \in \mathcal{M}_n(\mathbb{R})$ tel que N = AD - DA. Donc

$$M = P^{-1}(AD - DA)P = P^{-1}ADP - P^{-1}ADP = (P^{-1}AP)(P^{-1}DP) - (P^{-1}DP)(P^{-1}AP) \in L$$

On a donc bien montré que $K \subset L$.