
Chapitre 6
ALGORITHME DES k PLUS PROCHES

VOISINS

Dans les journaux et romans de science, le terme « Intelligence Artificielle » est assez galvaudé et proba-
blement mal utilisé, il nourrit beaucoup de fantasmes. Dans ce chapitre, le terme d’algorithme d’apprentissage
désigne le fait d’essayer de faire “apprendre” quelque chose à l’ordinateur, comme reconnaitre des lettres ou
des chiffres, des sons ou des éléments sur une image, mais il ne s’agit pas de croire que l’ordinateur pense par
lui-même !

Ce chapitre donne des idées simples mais efficaces pour aborder les plus faciles des problèmes cités ci-dessus.

Il s’agit pour l’ordinateur de regrouper
des données par similitude et y coller
une étiquette qui ait du sens. On aura
éventuellement besoin d’un jeu de don-
nées de référence. L’algorithme des k-
plus proches voisins (algorithme KNN)
permet répondre partiellement à ce type
de questions.

Table des matières

6 ALGORITHME DES k PLUS PROCHES VOISINS 1
I INTELLIGENCE ARTIFICIELLE ET APPRENTISSAGE . 2
II ALGORITHME DES k PLUS PROCHES VOISINS . 3

II.1 JEU DE DONNÉES DE RÉFÉRENCE . 3
II.2 DISTANCE(S) ENTRE DEUX DONNÉES . 4
II.3 RECHERCHE DE LA RÉFÉRENCE MAJORITAIRE 5
II.4 ALGORITHME DES k PLUS PROCHES VOISINS . 5
II.5 MATRICE DE CONFUSION . 6
II.6 QUELQUES REFLEXIONS . 6

III EXERCICES . 7

1

Lycée de l’Essouriau ALGORITHME KNN Les Ulis

I INTELLIGENCE ARTIFICIELLE ET APPRENTISSAGE

L’intelligence artificielle (IA) est un ensemble de techniques qui permettent à des machines d’accomplir des
tâches qui semblent nécessiter de l’intelligence. Par exemple jouer à un jeu comme les échecs, traduire un texte,
ou être capable “d’apprendre”, c’est à dire de s’améliorer avec de l’entrâınement.

L’apprentissage automatique (en anglais : machine learning) est un domaine de l’intelligence artificielle, qui
permet de donner aux ordinateurs la capacité “d’apprendre” à partir de données, c’est-à-dire d’améliorer leurs
performances à résoudre des tâches (reconnâıtre des chiffres ou un chat sur une image, distinguer des types de
sons) sans être explicitement programmés pour chacune.

Apprentissage supervisé : on dispose d’un ensemble d’apprentissage, qui est un ensemble de données sur
lequelles on connait la réponse à notre problème. On s’en sert pour prédire la réponse pour de nouvelles données.
Ex : On a des photos de chats, de chiens et de chevaux, identifiées comme telles. On reçoit une nouvelle photo
d’animal, et on doit déterminer s’il s’agit d’un chat, d’un chien ou d’un cheval.
Note : l’ensemble d’apprentissage peut parfois être appelé ensemble d’entrâınement (car en anglais on dit training
set), ou jeu de données de référence.

Apprentissage non supervisé : On cherche à structurer les données en groupes de données similaires, sans
savoir d’avance quels seront les types de groupes. Ex : une plateforme de films veut regrouper ses utilisateurs
selon la similiarité de leur profil (intérêt : leur faire des recommandations de films qu’ils ont de grandes chances
d’aimer, car les personnes qui leur sont similaires ont aimé ces films).

Problèmes de classement/étiquetage (en anglais : classification) : on a un ensemble fini de classes/étiquettes
(ex : chat, chien, cheval), et on veut déterminer quelle est la classe/étiquette d’un élément pris en entrée. C’est
en général de l’apprentissage supervisé : on a un ensemble de données dont on connait la classe/étiquette, et on
se sert de cet ensemble d’apprentissage pour déterminer la classe/étiquette d’une nouvelle donnée

Algorithme des K plus proches voisins (ou KNN pour k-Nearest-Neighbor) : algorithme d’apprentissage su-
pervisé qui permet de résoudre des problèmes de classification.

Principe de l’algorithme : On a une notion de distance (ou de similiarité) sur nos données. Etant donnés un
entier k, l’ensemble d’apprentissage connu, et une nouvelle donnée à classer :

— on détermine les k éléments de l’ensemble d’apprentissage les plus proches de la nouvelle donnée

— on attribue à la donnée à classer la classe majoritaire parmi ses k plus proches voisins.

La sortie de l’algorithme n’est pas forcément une réponse exacte : il peut y avoir des éléments dont la classse
réelle n’est pas la classe majoritaire parmi ses k plus proches voisins. De plus la sortie de l’algorithme dépend de
la valeur de k, et aussi de l’ensemble d’apprentissage. On peut chercher à améliorer les performances en ayant
un meilleur ensemble d’apprentissage (quantité mais aussi qualité des données), ou en lançant l’algorithme avec
différentes valeurs de k. De plus l’algorithme peut être plus ou moins adapté à différents types de problèmes.
Par exemple, si on veut déterminer la nationalité d’une personne connaissant sa date de naissance, sa taille
et son poids, les résultats seront probablement très mauvais même avec beaucoup de données dans l’ensemble
d’apprentissage, car pas vraiment de corrélation entre ce qu’on veut déterminer et les autres données. Déterminer
la nationalité connaissant le nom, le prénom et la ville de résidence donnerait probablement de bien meilleurs
résultats...

Pour évaluer l’algorithme : On fait un jeu de test T (données pour lesquelles on a la réponse à notre problème
mais qui ne sont pas dans l’ensemble d’apprentissage). On lance l’algorithme sur chaque élément de T. Chaque
élément t de T a une classe prédite par l’algorithme, qu’on compare à sa classe réelle.

Fabien DÉLEN et Adeline PIERROT 2 PSI 2025-2026

Lycée de l’Essouriau ALGORITHME KNN Les Ulis

Matrice de confusion : Matrice carrée M de taille n× n où n est le nombre de classes, et Mi,j est le nombre
d’éléments de classe i prédits comme étant de classe j. Ainsi la trace de M est le nombre de bons résultats, et
la somme des coefficients de M est le nombre de tests. On peut analyser plus finement les lignes et les colonnes
pour savoir quelles classes sont bien prédites et quelles classes ne sont pas bien prédites.

II ALGORITHME DES k PLUS PROCHES VOISINS

Dans cette partie, nous allons voir en détail comment implémenter l’algorithme des k plus proches voisins,
en prenant l’exemple du problème de la reconnaissance automatique de chiffres écrits à la main et numérisés.

II.1 JEU DE DONNÉES DE RÉFÉRENCE

Nous allons utiliser les données issues d’une bibliothèque Python nommée sklearn dédié à l’intelligence artifi-
cielle. Avec les commandes ci-dessous :

1 from sklearn import datasets # Chargement des jeux de données

2

3 digits=datasets.load_digits () # Jeu de données des chiffres

4 # Conversion en liste de listes des images

5 Images =[digits.images[k]. tolist () for k in range(len(digits.images))]

6 Numeros=list(digits.target) # listes des " étiquettes" des images

Nous disposons d’une liste d’images nommée Images donc voici un extrait :

Extrait de 15× 25 images des 1797 images du jeu de données

Fabien DÉLEN et Adeline PIERROT 3 PSI 2025-2026

Lycée de l’Essouriau ALGORITHME KNN Les Ulis

Chaque image représente un chiffre manuscrit. De plus, pour chaque
image, le chiffre manuscrit a été indiqué manuellement (par un
humain) dans la liste Numeros. Par exemple, si on fait :

1 plt.figure ()

2 #Affichage de l’image d’indice 13

3 plt.imshow(Images [13], cmap=’binary ’)

4 #titre de l’image: son numéro

5 plt.title(Numeros [13])

6 plt.show()
Une image d’étiquette 4

Pour l’algorithme KNN, on aura toujours un jeu de données avec N éléments classifiés par une étiquette.

• Ici chaque donnée est une image 8× 8 pixels en niveau de gris (entier entre 0 et 255).

• Ici l’étiquette est le chiffre représenté par l’image.

• On souhaite deviner l’étiquette d’une image n’appartenant pas à l’ensemble des données.

• Il va falloir dans un premier temps définir une distance entre deux images afin que l’ordinateur puisse les
comparer et « quantifier leurs différences ».

II.2 DISTANCE(S) ENTRE DEUX DONNÉES

Les mathématiques permettent de définir facilement plusieurs notions de distance entre deux éléments :

• Si x, y ∈ R ou C, alors |x− y| représente la distance entre x et y.

• Si on a x = (x1, . . . , xn) ∈ Rn et y = (y1, . . . , yn) ∈ Rn, alors d(x, y) =

√√√√ n∑
k=1

(xk − yk)
2 .

(En fait d(x, y) = ∥x− y∥ =
√
(x− y|x− y) où (x|y) est le produit scalaire canonique de Rn...)

• pour 2 fonctions : f, g ∈ C0([a, b],R), alors d1(f, g) =
√

(f − g|f − g) , où (f |g) =
∫ b

a
f(x)g(x) dx.

Mais d2(f, g) = ∥f − g∥∞ est une autre possibilité ! (voir chapitre sur les e.v.n.)

• pour 2 matrices A,B ∈ Mn,p(R) alors d(A,B) =

√√√√ n∑
i=1

p∑
j=1

(ai,j − bi,j)
2 .

(En fait d(A,B) =
√

(A−B|A−B) avec (A|B) = tr(ATB), produit scalaire canonique de Mn,p(R).)
C’est cette dernière possibilité qui va être utilisée ici car nous avons des images assimilées à des matrices

carrées de taille 8 et donc en Python :

1 def Dist(Img1 ,Img2):

2 S=0

3 for i in range (8):

4 for j in range (8):

5 S=S+(Img1[i][j]-Img2[i][j])**2

6 return S**(1/2)

Remarque. En maths, d(x, y) = N(x− y) définit une distance dès que N est une norme (cf. chapitre e.v.n.).

Fabien DÉLEN et Adeline PIERROT 4 PSI 2025-2026

Lycée de l’Essouriau ALGORITHME KNN Les Ulis

II.3 RECHERCHE DE LA RÉFÉRENCE MAJORITAIRE

A partir de là, on peut construire une méthode qui va permettre de classifier notre élément.

On fixe k ∈ N⋆ et on regarde les k éléments de nos données les plus proches de notre élément (suivant la
distance que l’on s’est fixée) et on prendra l’étiquette majoritaire.

Écrivons alors une fonction qui pour une liste L va renvoyer l’élément (ou un élément si celui-ci n’est pas unique)
dont le nombre d’occurrences dans L est maximal.

1 def Majoritaire(L):

2 """ Renvoie un élément de L dont le nombre d’occurrences est maximal """

3 Dico ={}# Dictionnaire du nombre d’occurrences des éléments de L

4 Max=0

5 for elt in L: # Pour chaque élément de L

6 if elt in Dico: # Si on a déjà vu cet élément

7 Dico[elt] = Dico[elt]+1 # Alors on a ajoute 1 à son nombre d’occurrences

8 else:

9 Dico[elt] = 1 # Sinon son nombre d’occurrences vaut 1

10 if Dico[elt] >= Max: # Si le nombre d’occurrences dépasse Max

11 Max ,eltmax = Dico[elt],elt # On actualise Max et eltmax

12 return eltmax

Remarque. Bien entendu il faudra au préalable avoir construit la fameuse liste L, ce qui va nécessiter des
calculs de distance mais également un algorithme de tri des données selon la distance calculée (pour déterminer
les k plus proches).

II.4 ALGORITHME DES k PLUS PROCHES VOISINS

Finalement nous pouvons coder l’algorithme des k plus proches voisins (KNN), qui étant donné une image
non étiquetée retournera l’étiquette majoritaire parmi les k images les plus proches de notre image test.

Il reste donc à trier la liste L et donc faire appel à un algorithme de tri. Seulement ici, on a des images que
l’on veut trier par proximité à une image fixée. On a donc besoin de la notion de clé de tri (fonction qui à tout
élément d’un ensemble associe un nombre réel) qui permet de trier les éléments par valeurs croissante de clef.

1 def PlusProchesVoisins(img ,k):

2 """ Renvoie l’ étiquette majoritaire parmi les k images les plus proches img"""

3 def cle(j):#Clé de tri

4 return Dist(img ,Images[j])

5 trié = sorted(donnees ,key=cle) # la liste données est trié selon les valeurs de la clé

6 L=[Numeros[j] for j in trié [:k]] # on sélectionne les k plus proches éléments

7 return Majoritaire(L) # on renvoie l’ élément majoritaire

Remarque. Au lieu d’utiliser la commande trié = sorted(donnees,key=cle) il est possible de construire
la liste L = [(clef(j),j) for j in donnees] puis de faire L.sort() qui trie L selon le premier élément de
chaque tuple et ensuite récupérer la liste des éléments triés : trié=[x[1] for x in L].

Pour tester notre algorithme, il va falloir séparer nos données en deux ensembles disjoints :

• L’ensemble d’apprentissage, qui contient les données de référence, qui vont permettre “d’apprendre” la
correspondance éléments → étiquette.

• L’ensemble de test, qui contient les données que l’on va utiliser pour évaluer les performances de l’algo-
rithme, en comparant la prévision de l’algorithme sur ces éléments à leur étiquette réelle connue.

1 N=1000 # On choisit le nombre N de données de référence

2 donnees=list(range(N)) # ensemble d’apprentissage (contient N données de référence)

3 test=list(range(N,len(Images))) # le reste = données que l’on utilisera pour le test

Fabien DÉLEN et Adeline PIERROT 5 PSI 2025-2026

Lycée de l’Essouriau ALGORITHME KNN Les Ulis

II.5 MATRICE DE CONFUSION

On rappelle que l’on a fixé une valeur de k de façon arbitraire et qu’il est légitime de se demander quelle
est la meilleure valeur possible. Voici une réponse possible à cette question. Ici, comme toutes les images qui
sont dans test sont toutes étiquetées, on peut comparer à l’étiquette le résultat renvoyé par l’algorithme, c’est
à dire la prédiction, pour savoir si l’algorithme a bien deviné.

Soit Ci,j le nombre de fois où une image portant l’étiquette i, l’algorithme lui a attribué une étiquette j.
On obtient une matrice C, de taille 10× 10, appelée matrice de confusion.

Plus cette matrice est proche d’une matrice diagonale, plus a priori l’algorithme est pertinent
(et donc plus le choix de k est pertinent). On peut programmer son affichage sous Python :

1 def MatriceDeConfusion(k):

2 C=[[0 for j in range (10)] for i in range (10)]

3 S=0 # Nombre de succès (prédictions justes de l’ordinateur)

4 for l in test:

5 i=digits.target[l] # l’ étiquette sur Images[i] = vrai chiffre

6 j=PlusProchesVoisins(l,k) # la prédiction donné par l’algorithme KNN

7 C[i][j]=C[i][j]+1

8 if i==j: # Bonne prédiction!

9 S=S+1 # On compte un succès de plus!

10 for i in range (10):

11 print(C[i]) # on affiche la liste

12 print("Pourcentage␣de␣réussite:",S*100/ len(test))

On dit que l’algorithme des k plus proches voisins est un algorithme supervisé, en effet, il fonctionne en ayant
donné à l’ordinateur les étiquettes de données afin qu’il puisse s’en servir sur des images tests.

II.6 QUELQUES REFLEXIONS

Cette idée d’apprentissage automatique ne date pas d’hier, puisque le terme de machine learning a été utilisé
pour la première fois par l’informaticien américain Arthur Samuel en 1959.

Pourquoi le machine learning est tant « à la mode » depuis quelques années ? Simplement parce que le nerf
de la guerre dans les algorithmes de machine learning est la qualité et la quantité des données (les données
qui permettront à la machine d’apprendre à résoudre un problème), or, avec le développement d’Internet, il est
relativement simple de trouver des données sur n’importe quel sujet (on parle de « big data »).

À noter aussi l’importance des stratégies mises en place par les 5 plus grandes plateformes numériques
(Google, Apple, Facebook, Amazon et Microsoft) afin de récupérer un grand nombre de données concernant
leurs clients. Ces données sont très souvent utilisées pour « nourrir » des algorithmes de machine learning.
(Comment, d’après vous, Amazon arrive à proposer à ses clients des « suggestions d’achats » souvent très
pertinentes ?)

Fabien DÉLEN et Adeline PIERROT 6 PSI 2025-2026

Lycée de l’Essouriau ALGORITHME KNN Les Ulis

III EXERCICES

Afin de travailler sur un exemple, nous allons utiliser un jeu de données relativement connu dans le monde
du machine learning : le jeu de données « iris ».

Exercice 1 (Mignonne, allons voir si l’iris... (Ronsard, 1524)).
En 1936, Edgar Anderson, botaniste américain, a collecté des données sur 3 espèces d’iris : ”iris setosa”, ”iris
virginica” et ”iris versicolor”.

Pour chaque iris étudié, Anderson
a mesuré (en cm) :

• la largeur des sépales

• la longueur des sépales

• la largeur des pétales

• la longueur des pétales
Iris Setosa Iris Virginica Iris Versicolor

Par souci de simplification, nous nous intéresserons uniquement à la largeur et à la longueur des pétales.
Pour chaque iris mesuré, Anderson a aussi noté l’espèce (”iris setosa”, ”iris versicolor” ou ”iris virginica”).

Vous trouverez 50 de ces mesures dans le fi-
chier iris.csv.

En résumé, vous trouverez dans ce fichier :

• la largeur des pétales

• la longueur des pétales

• l’espèce de l’iris (on utilisera : 0 pour
”iris setosa”, 1 pour ”iris versicolor” et
2 pour ”iris virginica”)

On peut représenter cet échantillon sur un
graphe (en abscisse la longueur des pétale et
en ordonnée la largueur des pétales). Espèce de l’iris selon les caractéristiques des pétales

1 import pandas # Bibliothèque pour lire les fichiers csv

2 import matplotlib.pyplot as plt # Bibliothèque de tracé graphique

3 iris=pandas.read_csv("iris.csv") # Lecture du fichier iris.csv

4 x=iris.loc[:,"petal_length"]. tolist () # Liste des longueurs des pétales des iris

5 y=iris.loc[:,"petal_width"]. tolist () # Liste des largeurs des pétales des iris

6 species=iris.loc[:,"species"]. tolist () # Liste des espèces des iris

7 N=len(species)

Voici les commandes nécessaires au tracé du graphique ci-dessus.

1 plt.axis(’equal’)

2 plt.scatter ([x[k] for k in range(N) if species[k]==0] ,\

3 [y[k] for k in range(N) if species[k]==0], color=’g’, label=’setosa ’)

4 plt.scatter ([x[k] for k in range(N) if species[k]==1] ,\

5 [y[k] for k in range(N) if species[k]==1], color=’r’, label=’versicolor ’)

6 plt.scatter ([x[k] for k in range(N) if species[k]==2] ,\

7 [y[k] for k in range(N) if species[k]==2], color=’b’, label=’virginica ’)

8 plt.legend ()

9 plt.show()

Le but est d’identifier l’espèce de tout nouvel iris connaissant la longueur et la largeur de ses pétales.

1. Exécuter le code proposé dans le fichier TP_06.py, observer que le graphique obtenu est bien celui sur
votre énoncé de TP.

Fabien DÉLEN et Adeline PIERROT 7 PSI 2025-2026

Lycée de l’Essouriau ALGORITHME KNN Les Ulis

2. On a trouvé un nouvel iris, dont les pétales font 2, 5 cm de long et 0, 75 cm de large, et on cherche à déter-
miner son espèce. On le note sous Python new_iris=(2.5,0.75). Ajouter une ligne de code permettant
de le faire apparaitre sur le graphique en noir (color=’k’). A votre avis, à quelle espèce appartient-il ?

On cherche à confirmer ou infirmer votre hypothèse par l’algorithme des k plus proches voisins.

3. A partir des listes x, y et species, créer une liste data_flowers dont chaque élément est un tuple de 3
éléments qui caractérise chaque iris : la longueur des pétales (flottant), la largeur des pétales (flottant), et
enfin l’espèce (entier valant 0, 1 ou 2).

4. Créer une fonction Dist(iris1,iris2) qui calcule une distance entre deux iris de la forme de ceux de
la liste data_flowers, ou bien de la forme de new_iris. (On réfléchira à une formule adaptée pour
caractériser la distance entre deux fleurs, en faisant comme si l’espèce était inconnue dans tous les cas.)

5. Coder une fonction Majoritaire(L) qui renvoie l’élément qui apparait le plus souvent dans une liste L.
Quelle est la complexité de votre fonction ?

6. Coder enfin une fonction KNN(iris,k) qui code l’algorithme des k plus proches voisins pour un entier
naturel non nul k et un tuple iris ayant 2 ou 3 éléments (espèce connue ou inconnue).

7. Exécuter l’algorithme KNN pour l’iris new_iris=(2.5,0.75) et k = 3. A quelle espèce appartient-il ?
Ré-exécuter KNN pour k = 4. Que se passe-t-il ? Expliquer.

8. Exécuter l’algorithme KNN pour des valeurs de k entre 1 et 20. Quelle espèce pensez-vous retenir au final ?
Quelle valeur de k vous semble la plus adaptée ? (il n’y a pas une unique réponse à cette question...)

9. On cherche à obtenir une répartition du graphique tracé par zone de couleur : chaque couleur représenterait
l’espèce logique à associé à tout nouvel iris découvert.
Exécuter l’algorithme KNN(iris,k) pour la valeur de k choisie dans la question précédente et des iris
ayant des longueurs de pétales entre entre 1 et 7 centimètres, par pas de 1 mm, et des largeurs de pétales
entre 0 et 3 cm, par pas de 1 mm.
Associer sur le graphique à chaque iris un point de la couleur associée à l’espèce renvoyée par l’algorithme
KNN. Observer les 3 zones obtenues (verte, rouge, bleue).
Vous pouvez faire varier k si vous le souhaitez pour voir les différences.

10. On souhaite tester l’efficacité de notre algorithme. On sépare les iris de data_flowers en deux lots :

• ceux qui ont un numéro pair dans data_flowers deviennent des iris test, noté test_flowers.

• ceux qui ont un numéro impair restent les iris du jeu de données data_flowers_2.

Écrire une fonction Mat_Confusion(k) qui renvoie la matrice de confusion Ck obtenue avec cette répar-
tition du jeu de données.

11. Faire afficher la matrice de confusion pour plusieurs valeurs de k. Laquelle vous semble la plus pertinente
à choisir pour classifier vos iris ?

Fabien DÉLEN et Adeline PIERROT 8 PSI 2025-2026

	ALGORITHME DES k PLUS PROCHES VOISINS
	INTELLIGENCE ARTIFICIELLE ET APPRENTISSAGE
	ALGORITHME DES k PLUS PROCHES VOISINS
	JEU DE DONNÉES DE RÉFÉRENCE
	DISTANCE(S) ENTRE DEUX DONNÉES
	RECHERCHE DE LA RÉFÉRENCE MAJORITAIRE
	ALGORITHME DES k PLUS PROCHES VOISINS
	MATRICE DE CONFUSION
	QUELQUES REFLEXIONS

	EXERCICES

