Chapitre 7
ALGORITHME DES £-MOYENNES

Toujours dans le theme « Intelligence Artificielle », dans ce chapitre on va essayer d’apprendre a ’ordinateur
a trier un ensemble de données brutes en les répartissant en plusieurs paquets (k paquets précisément), appelés

clusters. Cette fois-ci on ne disposera pas de jeu de données de référence par rapport auzrquelles on pourra
chercher les similitudes.

1l va donc s’agir de trouver comment les données peuvent se regrouper ou pas autour d’une méme mesure
de référence qui les caractérise. Sur le graphique ci-dessous on voit bien se détacher assez mettement 5 paquets
de données, on peut notamment placer le point moyen (barycentre) de chacun des 5 nuages de points.

Le probléme c’est comment apprendre a l'ordinateur a opérer ce regroupement ? L’algorithme des k-moyennes

répond de facon assez simple a ce probleme, mais pas nécessairement de facon optimale et unique comme nous
pourrons le constater.

Classification Clustering
) ==
.. \ s \\ _
L] N /@ g S M Y
oo.. R . ‘oo © 1.\ S~
0200 :\&“gg . ¢®ee ! ' O o000
LN] . ._“‘-“ ® \\ @ .,,-“-\\ e .. \‘
° - NE @ LT TN CIR)
> ~~ ® ,\\"-._‘ e,
e i e o o > e
e /. _ %900 '
Supervised learning Unsupervised learning

Table des matieres

7 ALGORITHME DES £.-MOYENNES
| BARYCENTRE D'UN CLUSTER

I PLUS PROCHE BARYCENTRE
111 DALGORITHME DES A-MOYENNES
1V EXFERCICES

0o N O o A W N

Lycée de I'’Essouriau ALGORITHME DES k-MOYENNES Les Ulis

Le but des algorithmes présentés dans cette partie du cours est classer automatiquement nos données en
différents groupes.

Dans l'algorithme des k plus proches voisins vu au cours précédent, on connait d’avance les différentes
sortes de données (ex : chat, chien, cheval) et on possede un ensemble d’apprentissage, qui est un ensemble
de données déja étiquetées. On utilise cet ensemble d’apprentissage pour déterminer la classe/étiquette d’une
nouvelle donnée (on prend ’étiquette majoritaire parmi les k plus proches voisins).

Probleme : On peut vouloir classer automatiquement nos données en différents groupes sans savoir d’avance
quels types de groupes (Ex : une plateforme de films veut regrouper ses utilisateurs selon la similiarité de leur
profil). Ou alors on peut savoir quels types de groupes on voudrait avoir, mais on ne dispose pas de données
déja étiquetées (Ex : reconnaissance automatique de chiffres comme fait au cours prédent, mais sans avoir des
images dont on sait déja & quel chiffres elles correspondent).

Dans ces deux types de cas, on ne peut pas faire d’apprentissage supervisé, mais on peut faire de ’apprentissage
non supervisé (c’est-a-dire qui n’utilise pas de données déja étiquetées).

Nous allons demander & l'ordinateur de séparer les données en k groupes (appelés clusters) par proximité.
Les éléments des k groupes formés devront avoir le maximum de ressemblances entre eux et de différences avec
les éléments des autres groupes.

L’entier k, qui correspond au nombre de groupes, sera imposé par 'utilisateur. Si on prend ’exemple de la
reconnaissance de chiffres, on va choisir ici £k = 10 dans la mesure ou les images sont censées représenter les 10
chiffres. Dans d’autres cas d’application, on n’aura pas d’a priori sur la bonne valeur de k, il faudra en tester
plusieurs.

I BARYCENTRE D’UN CLUSTER

Plus généralement, partons du principe que l'on ait ces k clusters, alors on peut calculer le barycentre de
chacun de ces clusters.

Réciproquement, si on avait les barycentres de chacun de ces groupes, on pourrait reconstituer les clusters,
chaque élément allant dans le cluster dont le barycentre est le plus proche de cet élément parmi tous les éléments.

e on note C4, (C9,..., C) ces clusters,

e on note b; = le' Z ¢ le barycentre du i-ieme cluster C; (et m; = Z ¢ — bs]|? son moment d’inertie).
ceC; ceCy
Dans le cas de notre exemple de reconnaissance de chiffres, ot les données sont des images de 8 x 8 pixels, on
peut écrire ainsi la fonction qui calcule le barycentre d’un cluster (en supposant que la variable cluster contient
les indices de position des images du cluster dans le jeu de données Images). Le barycentre est lui-méme une
image de 8 x 8 pixels.

def Barycentre(cluster):
B=[[0 for j in range(8)] for i in range(8)] # Initialisation du barycentre a4 O
for i in range(8):
for j in range(8): # pour chaque pizel de l’image
for k in cluster: # pour chaque image du cluster
B[il[jl=B[il[jl+Images[k][i]l[j] # on somme l’intensité du pizel

B[i]l[j]l=B[il[j]l/len(cluster) # on renormalise pour obtenir une moyenne

return B

Principe : pour chaque pixel de I'image, on calcule la valeur moyenne de ’'intensité de ce pixel parmi les images

du cluster.
k k

L’idéal serait d’obtenir des clusters avec g m; minimale, donc chercher min g g llc — — g c||?
< partitions de C - ‘Cl|
i=1 i=1 \ceC; ceC}

Néanmoins ceci est un probléme de minimisation trop difficile & programme en un temps raisonnable !

Fabien DELEN et Adeline PIERROT 2 PSI 2025-2026

Ut e W N

© 0 N 3 s W N

_
- o

Lycée de I’Essouriau ALGORITHME DES k-MOYENNES Les Ulis

II PLUS PROCHE BARYCENTRE

Nous allons procéder de la facon suivante. Pour initialiser nous allons :

e choisir une répartition aléatoire en k clusters (et pour chaque cluster nous calculons son barycentre.)

e OU choisir k barycentres de facon aléatoire parmi nos données (et former des clusters de départ avec le
principe ci-apres).

Puis nous allons répéter ces deux étapes jusqu’a convergence (= stabilisation des clusters) :

e Pour chaque donnée, nous allons la rattacher a un cluster en cherchant le barycentre le plus proche.

e Pour chaque cluster nous recalculons son barycentre.

La premiere étape peut-étre réalisée grace a la fonction suivante, la seconde avec la fonction Barycentre.

def PlusProcheBarycentre(B,I):
dmin=np.inf
for j in range(len(B)):
if Dist(I,B[j])<dmin:
jmin,dmin=j,Dist (I,B[j])
return jmin

def Dist(Imgl,Img2):
S=0
for i in range(8):
for j in range (8):
S=S+(Img1 [i1[j]1-Img2[i][j])**2
return S*x*(1/2)

Ut R W N

Remarque. Le choix initial des barycentres/clusters est aléatoire, et influe sur le résultat.

IIT L’ALGORITHME DES £-MOYENNES

Faisons le choix de stocker les barycentres initialement et a chaque étape. A ’aide d’une boucle while nous
allons réaliser ces deux étapes. Nous allons comparer ’ancienne liste des barycentres a la nouvelle et arréter
I’algorithme des que celle-ci n’est plus modifiée.

def kMoyennes (data,k):
B=[data[np.random.randint (len(data))] for i in range(k)] # liste des barycentres
while True:
Clusters=[[] for i in range(k)] # Intitialisation des k clusters vides
for i in range(len(data)): # pour chaque donnée
jmin=PlusProcheBarycentre(B,datal[i]) # on calcule le plus proche barycentre
Clusters[jmin].append (i) # on ajoute la donnée dans le bon cluster
newB=[Barycentre (Clusters[j]) for j in range(k)] # calcul nouveauz barycentres
if newB==B: # Si les barycentres ne bougent plus
return Clusters # arrét de la fonction, renvoi des clusters obtenus
B=newB # sinon on remplace les anciens barycentres par les nouveaux

On admet que cet algorithme termine bien (preuve hors-programme). C’est-a-dire que quelles que soient les
données de départ, on arrivera a une étape ou les nouveaux barycentres sont identiques aux anciens.

Cet algorithme ne converge pas vers un minimum global mais seulement vers un minimum local.

n°5 - 91% n°4 - 98% n°0 - 98% n°2 - 84% n°9 - 58%

D’ailleurs, on obtient des résultats différents ? |
si on lance plusieurs fois cet algorithme. ‘ :] : :
Ceci traduit la dépendance dans l'aléatoire : : : " 7

des barycentres de départ.

Ici nous avons wun algorithme dit
n°3 - 86% n°6 - 97% n°l - 55% n°8 - 45% n°7 - 83%

non supervisé : il n’a pas utilisé de données :

étiquetées. Notre programme a tout de : : : :
A , PN , . m X

méme réussi a regrouper les données en 10 : : :

paquets qui correspondent plus ou moins a

des groupes de méme chiffre. Les 10 barycentres des 10 clusters et leur étiquette majoritaire, ainsi

que le % de cette étiquette majoritaire au sein du cluster.

Fabien DELEN et Adeline PIERROT 3 PSI 2025-2026

Lycée de I'’Essouriau ALGORITHME DES k-MOYENNES Les Ulis

IV EXERCICES

On rappelle qu’on peut traiter les images en Python en les voyant comme une liste de listes (ou matrices).
Ainsi, si on note Img cette image, Img[i] [j] représente la couleur du pixel situé a la ligne i et la colonne j.

Pour une image en couleur, Img[i] [j] est alors une couleur, représentée par une liste de trois nombres : un
niveau de rouge (R), un niveau de vert (G) et un niveau de bleu (B), ces trois nombres sont des entiers entre 0
et 255 et ceci forme le code RGB de la couleur.

Etant donnée une image en couleurs, on cherche a regrouper les pixels en k clusters, de facon a ce que
dans chaque cluster, les pixels aient des couleurs semblables. Pour cela on mettra en place 'algorithme des k-
moyennes. Ensuite on remplacera les valeurs des pixels de chaque cluster par la valeur du barycentre de chaque
cluster, dans le but de réduire le nombre de couleurs (compression de I'image).

Les clusters contiendront les coordonnées (i, j) des pixels.

1. Télécharger I'image Hooke_Bernoulli. jpg et le fichier TP_07.py qui charge et affiche I'image avec les
commandes suivantes, et exécuter sans modifier

import matplotlib.pyplot as plt

import imageio

Img=imageio.imread ("Hooke_Bernoulli.jpg").tolist ()

Convertit l’image Hooke_Bernoulli.jpg en liste
plt.figure() # Création d’une figure

plt.imshow (Img) # Commande pour dire qu’on veut afficher Img
plt.title("Qu’ilssont_ mignons...") # Titre

plt.show() # Affichage final

© 0w N g W N =

o
(=]

n=len(Img)
p=len(Img([0])

-
=

2. Combien de couleurs différentes y a-t-il dans I'image ? (parcourir tous les pixels)

3. Créer une fonction Barycentre (cluster) qui va renvoyer la couleur moyenne d’un cluster de couleurs. Si
jamais le cluster est vide, on renverra une couleur au hasard, donc un triplet de 3 entiers entre 0 et 255.
(Rappel : la commande np.random.randint (n) renvoie un nombre de fagon uniforme entre 0 et n — 1).

4. Créer une fonction PlusProcheBarycentre(B,color), ou B est une liste de barycentres et color une
couleur, qui va renvoyer l'indice du barycentre le plus proche de color dans la liste B (s’inspirer du cours).

5. Ecrire la fonction kMoyennes (data,k) qui effectue l'algorithme des k-moyennes comme décrit au début
de l'exercice (s’inspirer du cours).

6. En utilisant les clusters fournis par la fonction kMoyennes (avec k = 10 couleurs par exemple), modifier
I’image, pour que la couleur de chaque pixel soit modifiée pour valoir celle du barycentre du cluster auquel
appartient le pixel.

Remarque.
Cela permet de stocker qu’une seule fois chaque couleur et apres, il n’y a plus qu’a mémoriser 1’ensemble des
pixels qui ont cette couleur et donc de minimiser la mémoire prise par le stockage (compression).

Remarque.

On remarque que pour une centaine de couleurs, I’ceil humain ne fait quasiment plus de différence avec 'image
d’origine qui contenait pres de 8 000 couleurs. Il n’y a donc plus qu’a conclure qu’acheter une nouvelle télévision
avec des millions de couleurs est absurde et non écologique...

En fait les scientifiques estiment qu’en moyenne, un étre humain peut faire la distinction entre plus d’un million
de couleurs différentes. Mais, cette faculté varie d’une personne a l'autre. Certaines personnes ne voient que
quelques centaines de couleurs différentes, alors que d’autres peuvent en voir jusqu’a 100 millions ! En moyenne,
des études plutot qu’un nombre maximal de couleurs discernables autour de 300 000 est plus réaliste.

Fabien DELEN et Adeline PIERROT 4 PSI 2025-2026

	ALGORITHME DES k-MOYENNES
	BARYCENTRE D'UN CLUSTER
	PLUS PROCHE BARYCENTRE
	L'ALGORITHME DES k-MOYENNES
	EXERCICES

