
Chapitre 8
GRAPHES ET THÉORIE DES JEUX

Le but de cette séance d’introduction à la théorie des jeux est de réviser les graphes vus en PCSI, leurs
différentes modélisations en fonction des contextes, ce que représentent les sommets et les arêtes mais aussi les
parcours (en profondeur et en largeur) des graphes.

Les graphes sont l’outil indispensable pour la modélisation des jeux finis à deux joueurs au programme de
PSI, afin d’établir des stratégies permettant la maximisation des chances de victoire.

Le premier exercice modélisera le jeu de Nim (ou jeu des bâtonnets) et le second exercice permettra de recréer
(de façon näıve) l’outil de sélection « baguette magique » sous Photoshop.

Le jeu des bâtonnets (Jeu de Nim) Outil « Baguette magique » sous Photoshop

Table des matières

8 GRAPHES ET THÉORIE DES JEUX 1
I LE JEU DE NIM . 2
II BAGUETTE MAGIQUE SOUS PHOTOSHOP . 4
III RETOUR SUR LE JEU DE NIM . 5

1

Lycée de l’Essouriau GRAPHES ET THÉORIE DES JEUX Les Ulis

I LE JEU DE NIM

Présentation du jeu de Nim

Dans l’émission Fort Boyard, le duel de bâtonnets (aussi appelé historiquement jeu de Nim) avec les mâıtres
du temps est un jeu à deux joueurs. Au départ, un tas comporte 20 bâtonnets, et à son tour un joueur peut en
enlever 1, 2 ou 3. Le perdant est celui qui prend le dernier bâtonnet. Voici un exemple de partie où ni le mâıtre
du jeu, ni la joueuse n’ont étudié la théorie des jeux : https://www.youtube.com/watch?v=10CUpulWxww.

On peut modéliser ainsi un exemple de partie entre deux joueurs a et b :

20
a−→ 17

b−→ 16
a−→ 15

b−→ 12
a−→ 10

b−→ 8
a−→ 7

b−→ 4
a−→ 3

b−→ 1
a−→ 0

Modélisation par un graphe simple

À un tel jeu, on peut associer un graphe orienté G = (S,A) qui permet de modéliser toute partie envisageable :

• les sommets S de G sont les positions atteignables dans le jeu. Pour le jeu précédent, on pourrait utiliser
21 sommets numérotés de 0 à 20, indiquant le nombre de bâtonnets restants.

• les arcs (arêtes orientées) A de G indiquent quel sommet est atteignable depuis un autre en jouant un seul
coup.

Exemple. Les arcs issus du sommet 7 pointent vers 6, 5 et 4, comme on le voit sur la figure ci-dessous :

Un jeu de Nim avec seulement 9 bâtonnets au départ

Une partie sur un tel graphe est un chemin où le premier joueur, depuis le sommet de départ, suit un arc,
et ensuite chaque joueur suit à tour de rôle un arc, si c’est possible.

Remarque. Le problème sur un tel graphe est qu’il faut noter quel joueur est en train de jouer...

Une partie est finie si ce chemin termine sur un sommet sans successeur/voisin, infinie sinon.

1. Écrire une fonction GrapheNim(N:int)->{int:list} qui prend en entrée un nombre N de bâtonnets et
renvoie le dictionnaire d’adjacence du graphe G (clefs = sommets et valeurs = liste des sommets voisins).

2. Écrire des commandes permettant de compter le nombre d’arcs de votre graphe G à partir de son diction-
naire d’adjacence. On vérifiera sur plusieurs valeurs de N que l’on trouve bien 3N− 3.

3. Expliquer pourquoi un dictionnaire d’adjacence est plus adapté ici qu’une matrice d’adjacence.

4. Quel type de chemin ne doit surtout pas comporter ce graphe pour être certain que toute partie est finie ?

Stratégie gagnante

Ce jeu est particulièrement simple, et il est facile de voir que l’un des deux joueurs peut toujours gagner s’il
suit la bonne stratégie ! (on dit que ce joueur possède alors une stratégie gagnante.)

5. Si le joueur a vient de jouer et a laissé seulement 5 bâtonnets au joueur b, expliquer pourquoi le joueur a
peut gagner dans tous les cas.

6. Dans le cas général, à chaque tour, combien de bâtonnets le joueur a doit-il laisser au joueur b de sorte à
pouvoir toujours être certain de gagner la partie ?

7. Quel joueur possède une stratégie gagnante ? Celui qui commence ou celui qui joue en second ?
Une stratégie gagnante pour un joueur est le fait d’être assuré de gagner toute partie jouée à partir d’une
position initiale en jouant intelligemment selon un schéma de jeu bien précis (une stratégie).

Fabien DÉLEN et Adeline PIERROT 2 PSI 2025-2026

https://www.youtube.com/watch?v=10CUpulWxww

Lycée de l’Essouriau GRAPHES ET THÉORIE DES JEUX Les Ulis

Dans tout jeu tour à tour, fini, à deux joueurs, à information parfaite, et sans hasard, sans match
nul, l’un des deux joueurs a une stratégie gagnante.

Propriété (Théorème de Zermelo).

Démonstration : Par récurrence sur le nombre de sommets du graphe.

Modélisation par un graphe biparti

Il est utile dans la pratique de « dédoubler » un graphe comme le précédent en un graphe biparti, de sorte
qu’une partie dans le jeu se résume simplement à un chemin dans le graphe biparti, sans avoir à distinguer quel
joueur joue.

Définition.

Un graphe G = (S,A) est dit biparti s’il existe une partition de S en deux sous-ensembles Sa et Sb, telle
qu’aucun arc du graphe ne relie deux sommets de Sa, ou deux sommets de Sb.

Exemple. Le graphe biparti associé au graphe de la figure précédente (9 bâtonnets) est le suivant :

Le graphe biparti associé au jeu de Nim avec 9 bâtonnets au départ.

Remarque. Si le joueur a commence (en 9a) alors le sommet 9b ne sera jamais atteint.

8. Soit N le nombre de bâtonnets, quel est maintenant le nombre de sommets du graphe ? Et son nombre
d’arcs ?

9. Modifier la fonction GrapheNim en une fonction GrapheNim2(N:int,j1:str,j2:str)->{(int,str):list}
afin qu’elle renvoie le dictionnaire d’adjacence du graphe biparti G codant le jeu de Nim entre deux joueurs
j1 et j2.
Les clefs sont les sommets, c’est-à-dire un couple (numéro, nom de joueur) et la valeur associé est toujours
la liste des sommets voisins.

Remarque. On pourra utiliser un dictionnaire des opposants opp = {j1:j2,j2:j1}.

Fabien DÉLEN et Adeline PIERROT 3 PSI 2025-2026

Lycée de l’Essouriau GRAPHES ET THÉORIE DES JEUX Les Ulis

II BAGUETTE MAGIQUE SOUS PHOTOSHOP

Vous travaillerez dans le fichier MagicWand.py fourni.

• Documentez vos fonctions.

• Testez au fur et à mesure les fonctions que vous écrivez ! Pour ce faire, des images sont proposées, mais
vous pouvez utiliser tout autre image en couleurs de votre choix.

Une image img est codée sous la forme d’une liste de listes de listes à trois éléments d’entiers, qui peut être
vue comme un tableau à deux dimensions de triplets.

On notera h le nombre de lignes de l’image, et w son nombre de colonnes (respectivement pour height et
width). Le pixel d’indice (0, 0) correspond par convention au pixel situé en haut à gauche de l’image.

Chaque pixel de coordonnées (i, j) ∈ [[0, h− 1]]× [[w− 1]] a une couleur codée par une liste d’entiers [r,g,b]
de trois entiers compris entre 0 et 255, correspondant respectivement à ses niveaux de rouge, vert et bleu (0 pour
l’absence de couleur, 255 pour l’intensité maximale). On parle d’espace RGB pour l’ensemble de ces triplets.

Des fonctions permettant de charger et d’afficher une image sont déjà dans le fichier Python MagicWand.py.

Conversion en niveaux de gris

Un niveau de gris est obtenu lorsque les trois canaux r, g et b sont à la même valeur. Par exemple, [0, 0, 0]
correspond au noir, [255, 255, 255] au blanc, et [127, 127, 127] à un gris moyen.

1. Écrire une fonction dim(img:[[[int]]])->tuple, qui prend en argument une image et renvoie le couple
d’entiers (w,h), w étant la largeur de l’image, et h sa hauteur (en nombre de pixels).
On pourra ainsi dans la suite utiliser (w,h) = dim(img) pour récupérer les dimensions d’une image.

2. Écrire une fonction niveaux_de_gris(img:[[[int]]])->none qui prend en entrée une image couleur
et la transforme en image en niveaux de gris en utilisant la stratégie näıve 1 qui remplace [r, g, b] par

[m,m,m], où m =
⌊
r+g+b

3

⌋
.

Deux outils de sélection

On souhaite dans cette partie écrire
deux outils de sélection par couleur
dans une image. La sélection sera
matérialisée par la mise en rouge
de chaque pixel sélectionné (il se-
rait également possible, et guère plus
compliqué, d’engendrer une nouvelle
image en noir et blanc correspondant
à un masque de sélection).

Sélection par couleur Sélection par couleur Sélection par baguette magique.

3. Écrire une fonction sq_distance_couleurs(c1,c2)->int qui prend en argument deux couleurs c1=[r1,g1,b1]
et c2=[r2,g2,b2], et renvoie le carré de la distance algébrique entre ces deux couleurs dans l’espace RGB 2.

4. Écrire une première fonction selection_couleur(img:[[[int]]],i:int,j:int,seuil:int)->none qui
prend en argument une image, les coordonnées d’un pixel, et un seuil, et sélectionne (i.e. colorie en rouge)
tous les pixels de l’image dont la distance à la couleur du pixel de coordonnées (i, j) est inférieure au seuil.
Quelle est sa complexité ?

1. Näıve car l’œil humain n’a pas la même sensibilité aux différents canaux, et que sa sensibilité n’est de plus pas linéaire par
rapport aux luminosités des canaux. Cf https://fr.wikipedia.org/wiki/Niveau_de_gris

2. Même remarque que ci-dessus, cela n’est pas la métrique la plus pertinente à mettre sur les couleurs...

Fabien DÉLEN et Adeline PIERROT 4 PSI 2025-2026

https://fr.wikipedia.org/wiki/Niveau_de_gris

Lycée de l’Essouriau GRAPHES ET THÉORIE DES JEUX Les Ulis

Sélection par baguette magique

Une seconde méthode, dont sont dérivées les « baguettes magiques » de certains logiciels d’édition d’image,
consiste à sélectionner les pixels ayant une couleur proche d’un pixel de départ, mais de façon à créer une zone
de pixels contigus la plus grande possible vérifiant cette propriété.

Pour cela, on va considérer les pixels comme les sommets d’un graphe. Une arête reliera deux sommets si
les pixels sont voisins 3 dans l’image.

L’algorithme consiste alors à effectuer un parcours du graphe à partir du pixel sélectionné, de façon à ce que
seules les zones de l’image vérifiant la condition de couleur soient parcourues.

5. Écrire une fonction voisins(i,j,h,w) qui prend en argument les coordonnées i et j d’un pixel dans une
image de dimensions (h,w), et renvoie la liste de ses pixels voisins (attention aux bords !).

6. Écrire une fonction baguette_magique(img,i,j,seuil) qui implémente la sélection présentée ci-dessus.
On pourra utiliser une liste a_explorer, contenant initialement le seul pixel initial. Tant que cette liste
n’est pas vide, on extraira le dernier élément : un pixel p que l’on coloriera en rouge, et on lui rajoutera
les voisins de p non déjà explorés ou coloriés en rouge et ayant une couleur convenable.
Quelle est sa complexité ?
Rappel : On pourra utiliser la commande L.pop() qui supprime le dernier élément d’une liste L.
Cette commande renvoie cet élément et a une complexité linéaire en O(1).
A contrario L.pop(i) supprime et renvoie le i-ième élément de L et a une complexité linéaire enO(len(L)).

7. Quel algorithme de parcours de graphe a-t-on utilisé ici ? Remplacer la liste a_explorer par une pile.

Rappel : Utilisation des piles et files

Files Piles

Importer le module from collections import deque from collections import deque

Créer une file/pile file=deque([’A’,’B’,’D’]) pile=deque([’A’,’B’,’D’])

Enfiler/Empiler file.append(’F’) pile.append(’F’)

Défiler le premier arrivé file.popleft() Théoriquement pas possible !

Dépiler le premier arrivé Théoriquement pas possible ! pile.pop()

• L’essentiel est de comprendre que la variable file créé avec la commande deque se gère comme une liste sauf
que la commande file.popleft() a une complexité en O(1) tandis que celle de L.pop(0) est en O(len(L)).

8. Quel autre algorithme de parcours serait envisageable ? Comment faudrait-il modifier la fonction précé-
dente pour l’implémenter ? Vaut-il mieux alors utiliser des piles ou des files ? Qu’est-ce que cela changerait
sur le résultat obtenu ?

III RETOUR SUR LE JEU DE NIM

Suite du I sur le jeu de Nim.

10. Coder la création du graphe du jeu de Nim avec un dictionnaire d’adjacence en utilisant un parcours
récursif , puis avec un parcours en largeur avec une file, puis avec un parcours en profondeur avec une pile.

Remarque. Voici quelques indications pour le code (en récursif notamment) :

• en partant d’un sommet de la forme (n,j) on va aller visiter les trois successeurs de ce sommet : (n-1,o),
(n-2,o), (n-3,o) où o est le nom de l’opposant du joueur j.

• attention, il faut garder en tête que le nombre de bâtonnets doit toujours être supérieur ou égal à 1.

3. Il y a au plus quatre voisins par pixel. Deux pixels situés en diagonale l’un par rapport à l’autre ne seront pas considérés
comme voisins.

Fabien DÉLEN et Adeline PIERROT 5 PSI 2025-2026

	GRAPHES ET THÉORIE DES JEUX
	LE JEU DE NIM
	BAGUETTE MAGIQUE SOUS PHOTOSHOP
	RETOUR SUR LE JEU DE NIM

