Programme de colle nº 6 3 nov – 7 nov

RÉDUCTION

Éléments propres

- Éléments propres d'un endomorphisme, caractérisation des valeurs propres, cas de la dimension finie.
- Éléments propres d'une matrice carrée, caractérisation des valeurs propres, spectre d'une matrice triangulaire
- Lien entre éléments propres d'un endomorphisme et de ses matrices, correspondances vectorielle/matricielle.
- Stabilité des sous espaces propres $E_{\lambda}(u)$ par v si v commute avec u.
- Liberté d'une famille de vecteurs propres associés à des valeurs propres 2 à 2 distinctes, les sous-espaces propres sont en somme directe.
- Polynômes d'endomorphisme et de matrices carrées :
 - Si $u(x) = \lambda x$ alors $P(u)(x) = P(\lambda)x$.
 - Si P est un polynôme annulateur de u alors $Sp(u) \subset Rac(P)$.

Polynôme caractéristique

 Polynôme caractéristique d'une matrice carrée, deux matrices semblables ont le même polynôme caractéristique.

$$\chi_A = X^n - (\operatorname{tr} A)X^{n-1} + \dots + (-1)^n \det(A).$$

Cas des matrices triangulaires ou triangulaires par blocs.

- $\operatorname{Sp}_{\mathbb{K}}(A) = \operatorname{Rac}_{\mathbb{K}}(\chi_A)$, spectre complexe d'une matrice réelle.
- Polynôme caractéristique d'un endomorphisme (E de dim finie), lien avec spectre. Si F stable par u alors χ_{u_F} divise χ_u .
- multiplicité d'une valeur propre , $1 \le m_{\lambda} \le \dim E_{\lambda}(u)$, cas de la valeur propre simple.

(On a utilisé la convention $m_{\mu} = 0 \Leftrightarrow \mu \notin \operatorname{Sp}(u)$).

Cas de la matrice réelle vue comme matrice complexe :

$$m_{\lambda} = m_{\overline{\lambda}}, \dim E_{\lambda}(u) = \dim E_{\overline{\lambda}}(u).$$

Si χ_u scindé (cf u trigonalisable) avec $\chi_u = \prod_{i=1}^n (X - \mu_i) = \prod_{i=1}^p (X - \lambda_i)^{m_{\lambda_i}}$ alors

$$\operatorname{tr} u = \sum_{i=1}^{n} \mu_i = \sum_{i=1}^{p} m_{\lambda_i} \lambda_i, \qquad \det u = \prod_{i=1}^{n} \lambda_i^{m_{\lambda_i}}$$

Théorème de Cayley-Hamilton.

Diagonalisation

 $(E \mathbb{K}\text{-ev de dim finie } n)$

 Diagonalisabilité des endomorphimes et des matrices carrées, lien entre les deux.

Dans la pratique des cas numériques, on se limite à n = 2 ou n = 3.

Conditions Nécessaires et Suffisantes de diagonalisabilité : Les propositions suivantes sont équivalentes

- $-u \in \mathcal{L}(E)$ est diagonalisable.
- Il existe une base de E formée de vecteurs propres de u.
- -E est somme (directe) des sous-espaces propres de u.

$$-\sum_{\lambda \in \mathrm{Sp}(u)} \dim E_{\lambda}(u) = n$$

- $-\chi_u$ est scindé sur \mathbb{K} et $\forall \lambda \in \operatorname{Sp}(u)$, $\dim E_{\lambda}(u) = m_{\lambda}$.
- -u admet un polynôme annulateur scindé à racines simples.
- $\prod_{\lambda \in \operatorname{Sp}(u)} (X \lambda)$ est un polynôme annulateur de u.

Traductions matricielles en remplaçant u, E par $A, \mathcal{M}_{n,1}(\mathbb{K})$.

Condition Suffisante de diagonalisabilité :

Si u $(A \in \mathcal{M}_n \mathbb{K})$ admet n valeurs propres distinctes dans \mathbb{K} alors u (A) est diagonalisable. Cela équivaut χ_u (χ_A) scindé à racines simples sur \mathbb{K} .

L'endomorphisme induit par un endomorphisme diagonalisable sur un sousespace vectoriel stable est diagonalisable.

Trigonalisation

- Trigonalisation des endomorphismes et des matrices carrées.
 Lien entre les deux.
- (Retour) Si trigonalisable, expression de la trace et du déterminant à l'aide des valeurs propres comptées avec multiplicité.
- -u $(A \in \mathcal{M}_n(\mathbb{K}))$ est trigonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbb{K} .
- Toute matrice de $\mathcal{M}_n(\mathbb{C})$ est trigonalisable, cas d'une matrice réelle vue comme comme complexe.

$Programme\ of\!ficiel:$

La technique générale de trigonalisation est hors programme. On se limite dans la pratique à des exemples simples en petite dimension et tout exercice de trigonalisation effective doit comporter une indication.