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Espaces préhilbertiens réels

Produit scalaire

Formes bilinéaires symétriques définies positives. On a noté 〈x , y 〉.
Espaces préhilbertiens réels, espaces euclidiens.
Produit scalaire canonique sur Rn confondu avec Mn,1(R) (X

⊤Y ), sur Mn(R) (tr(A
⊤B),

produit scalaire usuel sur C([a, b]).
Norme (euclidienne) associée à un produit scalaire. Identités remarquables (||u±v||2 et identité de polarisation).
Inégalité de Cauchy-Schwarz et cas d’égalité.
Inégalité triangulaire et cas d’égalité.
Une norme associée à un produit scalaire est bien une norme (euclidienne).

Orthogonalité

Vecteurs orthogonaux, théorème de Pythagore. Orthogonal A⊥ d’une partie A, d’un sous-espace vectoriel .
A⊥ est un sous-espace vectoriel de E. Propriétés de l’orthogonal.
x ∈ Vect(e1, . . . , ep)

⊥ ⇔ ∀i ∈ J1, pK , 〈 ei , x 〉 = 0.
Sous-espaces orthogonaux. Familles orthogonales, orthonormales (ou orthonormées).
Toute famille orthogonale de vecteurs non nuls est libre.
Procédé d’orthonormalisation de Gram-Schmidt.
Bases orthonormées. Existence dans un sous-espace vectoriel de dim finie.
Expression des coordonnées, du produit scalaire et de la norme dans une base orthonormée.
Théorème de représentation des formes linéaires sur un espace euclidien.

Projection orthogonale

Si F sous-espace vectoriel de dim finie de E (epr) alors E = F ⊕F⊥ et (F⊥)⊥ = F , supplémentaire orthogonal.
Cas euclidien : dimF⊥ = dimE − dimF , supplémentaire orthogonal d’une droite et d’un hyperplan, vecteur
normal à un hyperplan.
Partition/concaténation de bases orthonormées , théorème de la base orthonormée incompléte.

Projection orthogonale pF sur un sous-espace vectoriel F de dimension finie et pF⊤ sur F⊥, pF + pF⊥ = IdE .
Symétrie orthogonale sF par rapport à F de dimension finie, sF = 2pF − IdE = IdE − 2pF⊥ .

Détermination de pF (x) par résolution d’un système :

Si F = Vect(e, . . . , ep) alors pF (x) est l’unique vecteur y =
p
∑

i=1

λiei ∈ F vérifiant : ∀i ∈ J1, pK , 〈x− y , ei 〉 = 0.

Détermination de pF (x) par une base orthonormée de F :

Si (e1, . . . , ep) est une base orthonormée de F alors pF (x) =

p
∑

i=1

〈 ei , x 〉 ei.

Cas d’une base orthogonale de F , projection orthogonale sur F = Vect(u) : pF (x) =
〈u , x 〉

||u||2
u.

Projection orthogonale sur un hyperplan Vect(u)⊥ : pH(x) = x−
〈u , x 〉

||u||2
u.

Distance (euclidienne) associée au produit scalaire.
Distance d(x,A) d’un vecteur x à une partie non vide A.
Distance d’un vecteur à un sous-espace vectoriel de dimension finie.
Le projeté orthogonal de x sur F est l’unique élément de F qui réalise la distance de x à F , existence d’un
minimum.
Calculs pratiques de distance suivant la démarche :

d(x, F )2 = ||x− pF (x)||
2 = ||x||2 − ||pF (x)||

2 = ||x||2 −

p
∑

i=1

〈 ei , x 〉
2

quand (e1, . . . , ep) est une BON de F

= ||pF⊤(x)||2 utile si F⊥ de dimension inférieure à F

= 〈x− pF (x) , x− pF (x) 〉 = 〈x , x− pF (x) 〉 quand pF (x) obtenu par un système

Distance à un hyperplan H = Vect(u)⊥ : d(x,H) =
| 〈u , x 〉 |

||u||
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Isométries vectorielles d’un espace euclidien

Isométries vectorielles

Conservation de la norme, caractérisations par conservation du produit scalaire, par l’image d’une/ de toute base
orthonormée .
O(E) groupe orthogonal de E stable par composée et passage à l’inverse.
Stabilité de l’orthogonal d’un sous-espace stable. Les symétries orthogonales sont des isométries, réflexions.

Matrices orthogonales

Définition, interprétation/caractérisation en termes de colonnes et de lignes.
Caractérisation matricielle en base orthonormée d’une isométrie.
Caractérisation d’une matrice orthogonale par matrice de changement de base orthonormée .
On(R) (ou O(n)) groupe orthogonal d’ordre n. Déterminant d’une matrice orthogonale, groupe spécial orthogonal
d’ordre n SOn(R) (ou SO(n), (O+

n (R) HP)). Stabilité par produit et passage à l’inverse.

Orientation

Bases orthonormées directes/indirectes.
Produit mixte, interprétation en termes d’aire/volume. Notation [u, v], [u, v, w].
Dans un espace euclidien orienté de dimension 3 :
produit vectoriel, calcul en base orthonormée directe , propriétés.
Si (u, v, w) BOND alors w = u ∧ v, si (u, v) orthonormale alors (u, v, u ∧ v) BOND.
Orientation d’un plan par un vecteur normal.

Description des isométries d’un plan euclidien orienté

Description de O2(R), SO2(R), matrices de rotation R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

. Commutativité sur SO2(R).

Description de O(E) : les rotations et les réflexions. Mesure de l’angle d’une rotation.
Mesure d’un angle orienté de deux vecteurs non nuls (notion).

Isométries d’un espace euclidien orienté de dimension 3

Rotations vectorielles, mesure θ de l’angle de la rotation r autour de la droite E1(r) = Vect(u) orienté par u,

réduction dans une BOND B = ( u
||u|| , e2, e3) : MatB(r) =

(

1 (0)
(0) R(θ)

)

.

tr(r) = 1 + 2 cos(θ).
Pour tout x /∈ E1(r), sin θ du signe du produit mixte [u, x, r(x)] (utilisé mais ∼ HP).

Description de SO3(R), matrices de la forme A = P

(

1 (0)
(0) R(θ)

)

P−1 avec P ∈ SO3(R).

Endomorphismes autoadjoints d’un espace euclidien

Endomorphisme autoadjoint, S(E) est un sous-espace vectoriel de L(E). Caractérisation des projecteurs ortho-
gonaux (parmi les projecteurs). Caractérisation matricielle en base orthonormée des autoadjoints.

Si F est stable par u autoadjoint alors F⊥ également.
Les sous-espaces propres d’un autoadjoint sont deux à deux orthogonaux.
Théorème spectral :
Tout endomorphisme autoadjoint d’un espace euclidien admet une base orthonormée de vecteurs propres.
Formulation matricielle pour les matrices symétriques réelles.

Endomorphisme autoadjoint positif, défini positif. Caractérisation spectrale, notations S+(E), S++(E).
Matrice symétrique positive, définie positive. Caractérisation spectrale, notations S+

n (R), S++
n (R).


