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Difficulté supérieure
PSI - Lycée du Parc des Loges — Durée 4H

Premieére partie — Aspects thermiques au sein du
noyau de la Terre

On considére que l'intérieur de la Terre est constitué d’une succession de couches de propriétés physiques
différentes, telles que représentées a la figure 1 :

— au centre, le noyau forme 17 % du volume terrestre et se divise en :

e la graine (ou le noyau interne), essentiellement constitué de fer solide,

e le noyau externe, essentiellement constitué de fer liquide ;
— dans la partie intermédiaire, le manteau constitue 81 % du volume terrestre ;
— en surface, la croiite solide représente moins de 2 % du volume terrestre.

Le probléme aborde divers phénomeénes et modeles en relation avec cette structure.
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Figure 1 Structure de la Terre. D’aprés Wikipédia.

Certaines questions, peu ou pas guidées, demandent de I'initiative de la part du candidat. Leur énoncé est repéré
par une barre en marge. Il est alors demandé d’expliciter clairement la démarche, les choix et de les illustrer,
le cas échéant, par un schéma. Le baréme valorise la prise d’initiative et tient compte du temps nécessaire a la
résolution de ces questions.

On définit I’unité imaginaire i, nombre complexe tel que i2 = —1.

Un formulaire et certaines données numériques, qui complétent celles de la figure 1, sont disponibles en fin
d’énoncé.

On définit le flux géothermique moyen ®, comme étant le flux thermique total issu de I'intérieur du globe
terrestre & la surface de la Terre. Il est d’environ 4 x 10’3 W et on estime qu'un quart de ce flux (soit 1 x 10'3 W)
est issu du noyau terrestre (le reste étant produit essentiellement dans le manteau). Ce flux thermique issu du
noyau est appelé flux thermique profond et est noté ®,, .. Il résulte de trois contributions :

— environ 90 % correspondent au flux thermique initial ®;, ; (9 x 1012 W) : il est associé au refroidissement pro-
gressif du noyau profond qui libére sous forme thermique 1’énergie (gravitationnelle et cinétique) accumulée
pendant la phase d’accrétion initiale de la Terre ;

— environ 10 % correspondent au flux thermique de différenciation, noté ®,;, 4 (1 x 10" W) : c’est 1'énergie
libérée par la cristallisation du noyau externe liquide a I'interface avec la graine solide.

— le reste, environ 0,06 %, provient des désintégrations radioactives au sein du noyau (la teneur en éléments
radioactifs y étant trés faible).

L’étude dans cette partie sera intégralement effectuée en régime stationnaire de transferts thermiques.
IV.A — Transferts thermiques dans le noyau externe

Le noyau terrestre, constitué de la graine et du noyau externe, est assimilé & une masse sphérique. Le noyau
externe est le siége de transferts thermiques modélisés uniquement par de la conduction thermique avec une
conductivité thermique, notée A, uniforme et constante. On pose T'(r = R,) = T; la température & la surface
de la graine solide et T'(r = R,) = T, < T} la température & la surface supérieure du noyau externe. La figure 7
explicite les notations, en complément de la figure 1 qui intégre des données utiles.
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Figure 7 Schématisation du noyau terrestre.

Q 28. Exprimer le flux thermique ®,,(r) traversant par conduction, dans le sens radial croissant, la sphére
de centre O et de rayon r € [Ry, R,| en fonction de A, r et %‘ (7).

Q 29. Expliquer pourquoi il est raisonnable de considérer ce flux thermique indépendant de r dans le noyau
externe. En déduire I’expression de la conductivité thermique A en fonction de Ry, R,, T}, T, et du flux thermique
profond @, ...

Q 30. Estimer la valeur de la conductivité thermique A dans ce modéle.

Des mesures sur le fer liquide et ses alliages envisagés pour la constitution du noyau externe, effectuées dans ses
conditions de température et de pression élevées, fournissent des valeurs de conductivité thermique d’au plus
1x102W-m 1K1

Q 31. Conclure a propos des mécanismes de transfert thermique réels dans le noyau externe.



IV.B - Croissance de la graine
Le noyau se refroidissant, la graine voit son rayon croitre trés lentement par cristallisation du liquide a sa surface.

On considére, dans le noyau externe, une pellicule sphérique d’épaisseur dr, au contact de la graine. Cette
pellicule fluide a une température uniforme égale a la température du solide de la graine avec laquelle elle est en
contact. Sa pression est supposée uniforme et constante de méme que sa masse volumique qui sera prise égale &
px = 1x10*kg-m~3. On néglige tout mouvement convectif au cours du processus de cristallisation. A Pinstant ¢,
l'interface entre la graine et le noyau externe est repérée par 7(t) = R,. On suppose qu'entre ¢ et ¢ + dt, cette
pellicule se cristallise, I'interface progressant ainsi, de fagon homogene et isotrope, de r a r + dr.

On estime actuellement que le taux de croissance du rayon de la graine est 7 = dr/dt ~ 0,3 mm/an.
Q 32. Montrer que le taux de croissance de la graine s’écrit
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ou Ay, h est 'enthalpie massique de solidification du fluide du noyau externe dans les conditions de température
et de pression qui régnent a l'interface.

Q 33. En déduire une estimation de la valeur de A, ;h. Discuter le résultat sachant que ’enthalpie massique
de solidification du fer & température et pression ambiante est de 270 kJ-kg™?.

Formulaire et
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Le gradient en coordonnées sphériques s’écrit :
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La divergence en coordonnées sphériques s’écrit :
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Données

Masse molaire du fer

Masse molaire du silicium

Masse molaire de I'oxygene

Numéro atomique du fer

Constante d’Avogadro

Constante universelle de gravitation
Rayon de la Terre

Masse de la Terre

0 (ag sin®) +

données

1 %é
rsinfdp ¥

1 Oa,
rsin@ Op

Mg, = 55,8 g-mol !

Mg; = 28 g-mol™!

Mg = 16 g-mol !

Z =26

N, = 6,02 x 10?3 mol™*

G =6,67x10"11 m3 -kg™!.s72
Ry = 6371 km

My = 5,972 x 10** kg



Deuxiéme partie — Analyse de Fourier et diffusion
thermique

On considére un matériau homogéne assimilable & une répartition unidimensionnelle de matiére
selon un axe (Oz). On rappelle ’équation de la diffusion thermique unidimensionnelle sans
perte et sans terme source, donnant la température 7'(z,t) a ’abscisse z et au temps ¢ dans le
matériau :

or 0T

—=D—.

ot 0x?

[ — 15. Déterminer I’expression de la constante D en fonction de la masse volumique p, du coef-

ficient de conductivité thermique A et de la capacité thermique massique ¢ du matériau
considéré. On pourra raisonner par analyse dimensionnelle. En déduire I’expression du
temps caractéristique de diffusion 7 sur une longueur L. Faire I’application numérique
pour une diffusion dans le fer sur une longueur L = 50 cm.

Joseph Fourier a étudié la diffusion thermique le long d’un anneau de fer torique, de rayon
moyen R = 16 cm et de section carrée de coété a < R. L’anneau est chauffé en un point
pris comme origine des angles # = 0 dans une base cylindrique puis on suit ’évolution de la
température & différents instants et pour différentes valeurs de 1’angle 6.

A Axe de anneau

FIGURE 3 — Géométrie du probléme étudié par Fourier : le tore & section carrée.

On notera T'(0,t) la température de I’anneau, supposée uniforme sur une section droite. On
choisira 6 € |—; 7] et on admettra que, par symétrie, T'(—6,t) = T(6,t).

Le flux thermique conducto-convectif §® sortant & travers une surface dS de ’anneau de fer
vers l'air environnant (de température 7, constante) est modélisé par la loi de Newton

50 = h(T(0,t) — T.)dS,

dans laquelle le coefficient d’échange thermique h est supposé constant.
On rappelle 'expression du gradient en coordonnées cylindriques :

or.. 10T .. 0T .
ng—Eer-f‘;%eg-i—Eez.

[ — 16. Rappeler la loi de Fourier pour la diffusion thermique. En déduire ’expression du vecteur
densité de courant thermique 7, puis dessiner 'allure des lignes de champ le long de
P’anneau, en précisant leur orientation.

Pour établir 'équation décrivant I’évolution de la fonction 7'(6,t) dans ’anneau, on considére
le volume élémentaire dV compris entre deux sections de surface a? de I’anneau, repérées par
les angles 6 et 6 + d6.

[ — 17. Déterminer les expressions approchées de dV ainsi défini et de la surface élémentaire dSi,;
de son contact avec ’air. On rappelle que a < R. En déduire que T'(6,t) vérifie '’équation

X O*T  4h oT
Rogr o LT =rey

[ax
O — 18. Donner, en régime stationnaire, et en fonction de T, R, 6 et de § = {/—, la forme de

la solution T'(#). On introduira deux constantes d’intégration A et B sans chercher & les
déterminer pour l'instant. Préciser, en le justifiant, la dimension de la grandeur 4.

[ — 19. On donne sur la figure 4 'allure de la représentation graphique associée aux solutions
T(6) et jin(8) (pour r fixé). On note T3 = T'(§ = 0) la valeur, imposée par le chauffage, en
0 = 0. Commenter ces deux graphes puis les exploiter judicieusement pour déterminer,
sur l'intervalle [0, + 7], les constantes A et B introduites précédemment, en fonction de
Ty, T., R et §. En déduire la solution 7'(#) sur 'intervalle [0, + 7).
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FIGURE 4 — Graphe des solutions : Différence de température a gauche, flux thermique surfa-
cique & droite.

O — 20. Sur les relevés expérimentaux de Joseph Fourier du 31 juillet 1806, on lit que deux heures
apres le début du chauffage, les valeurs de températures des différentes sections de ’anneau
sont stationnaires. Montrer que cet ordre de grandeur était prévisible & condition de
supposer le phénoméne de diffusion prépondérant en régime transitoire.

C’est en étudiant la diffusion thermique dans le dispositif expérimental décrit précédemment
que Joseph Fourier découvrit les séries trigonométriques, dites « séries de Fourier ». L’anneau
est chauffé comme précédemment en § = 0 puis enfoui presque complétement dans du sable,
excellent isolant thermique. On suppose qu’il n’y a aucune fuite thermique par la surface latérale



de I'anneau une fois que celui-ci est enfoui dans le sable et que la température reste de la forme
T'(6,t). On s’intéresse toujours au domaine 6 € |—m; 7], avec T'(—6,t) = T'(6,t) par symétrie.

a-21.
a-22
a-23

Donner 1’équation vérifiée par T'(6,t). On cherche les solutions & variable séparée de la
forme T,(6,t) = f.(0) gn(t). L’interprétation de I'indice n apparaitra dans la donnée de
la condition initiale nécessaire & la résolution compléte de I’équation. Déterminer les
expressions générales de f,,(6) et g,(t) puis montrer que 7,(6,t) s’écrit sous la forme

T.(0,t) = B, cos (12—0) e ™

n

On donnera la relation entre 7, et d, et on précisera leurs dimensions respectives.

. A Vinstant ¢t = 0, la température initiale d’une section repérée par I’angle @ est une

fonction T,(0), symétrique, de période 27 et dont le développement en série de Fourier
est de la forme

To(0) = T + Z b, cos(nf).
n=1
Les coefficients b, sont supposés connus. Que représente la constante T, 7 Justifier préci-
sément pourquoi la solution générale T'(6,t) peut se mettre sous la forme

T(0,t) =T+ Y Tu(0t).
n=1

Expliciter B,, d, et 7, en fonction de b,, n, R, u, c et \.

. Joseph Fourier remarque, en mesurant la température en fonction du temps en différents

points de ’anneau, que T'(6,t) —T,, devient rapidement proportionnel & cos(6). Commenter
cette constatation.

Dans tout le probléme, exprimer signifie donner 1’expression littérale et calculer signifie donner
la valeur numérique avec, au plus, deux chiffres significatifs.

Les vecteurs unitaires seront notés avec un chapeau €, ainsi, dans I’espace cartésien (O,€,,€y,€;)
un vecteur quelconque @ s’écrira @ = a,€, + a,€, + a,€,. On note j le nombre complexe tel que
2

7°=-1

Données numeériques

— Masse volumique de l'air : pg = 1,0kg - m~3.

— Capacité thermique massique du fer : ¢ = 4,0 x 102J - kg™ - K.
— Masse volumique du fer : u¢ = 7,9 x 103kg - m=3.
— Conductivité thermique du fer : A=80W -m™ - K1

— Coefficient conducto-convectif & l'interface fer-air : h=10W - m~2- K1,



Pour s’alimenter Mark Watney fait pousser des pommes de terre dans le sol martien en utilisant les selles récu-
pérées dans les toilettes de la mission. Les selles contiennent des bactéries nécessaires a une culture. Néanmoins,
les sondes Viking ont montré qu’un tel sol, particuliérement oxydant, tue toutes les bactéries, a fortiori celles
des selles. Dans cette partie, afin d’étudier ’action oxydante du sol sur les bactérie on utilise la bactérie E. coli
comme organisme modele et on modélise le stress oxydant par I’action du peroxyde d’hydrogene H,O,.

VI.A - Métabolisme de la bactérie

Le peroxyde d’hydrogene est un sous-produit du métabolisme des cellules, sa production suit une cinétique
d’ordre 0 de constante de vitesse k, = 15 pmol-L1-s™L. Pour lutter contre le peroxyde d’hydrogene, la bactérie
a développé un arsenal de défense dont les principales actrices sont les enzymes alkylhydroperoxydase (notée
Ahp) et catalase (notée Cat). Le peroxyde d’hydrogéne est également capable de diffuser & travers la paroi de
la bactérie. Dans la suite on considére que les concentrations a l'intérieur de la bactérie et & 'extérieur sont
uniformes. Le modéle complet a été développé par Uhl et Dukan (PLoS One. 2016 ; 11(8)).

VI.A.1) La bactérie est modélisée par une sphére de volume total V; de rayon externe R et d’épaisseur de
paroi e. On note ¢ le flux de peroxyde d’hydrogene (en mol-s~!) sortant de la bactérie & travers sa paroi et D
le coefficient de diffusion particulaire du peroxyde d’hydrogéne dans la paroi.

Dans I’hypotheése d’un régime stationnaire, on définit une résistance particulaire R, & I’aide de ’expression

[Hy0,]; — [H,0,],
R

P

o=

ou [H,0,]; est la concentration en peroxyde d’hydrogene & l'intérieur de la bactérie et [H,O,], sa concentration
dans le milieu extérieur.

Q 31. Citer deux autres domaines de la physique utilisant la notion de résistance. Préciser les analogies.

Q 32.  Exprimer R, en fonction de e, D et R.

Q 33. Simplifier cette expression dans I’hypotheése ou e < R.

Q 34.  Proposer une valeur numérique de R,.

Q 35. Montrer que la loi de cinétique de diffusion a travers la membrane peut s’écrire sous la forme
d[H,0,);

—a = 2k (H,0,]; — [H,0,],)

Q 36.  Quel signe doit-on choisir sachant que k; > 0 ? Exprimer k; en fonction de e, D et R et proposer une
application numérique.

VI.A.2) Les enzymes présentes dans la bactérie obéissent & une cinétique, dite michaelienne, o la vitesse
de réaction a la forme générale

dt ~ [S]+ Ky,
ol v, et K, (constante de Michaelis) sont des constantes caractéristiques de I’enzyme et S représente le
composé chimique décomposé par 1’enzyme.
Q 37.  Quelle est la dimension de la constante K, 7 Quel sens concret peut-on donner au parameétre K,; 7

VI.A.3) La dynamique du peroxyde d’hydrogeéne est donc décrite par le systéme présenté figure 8.

Réactions associées a H,0, Equations chimiques Loi de vitesse

Production métabolique @ — H,0, ordre 0
Décomposition par Ahp H,0, — H,0 + 1O VAP = M
e : 27 [H,0,] + K3™

”gii[H2O2]
[H,0,] + K {2t
v = +ky([H,0,); — [H,0,)],)

Décomposition par Cat H,0, —» H,0 + %02 pCat =

Diffusion membranaire

H,0, — extérieur

Figure 8

On note N le nombre de bactéries dans le milieu extérieur. Le volume extérieur est noté V,. La densité de
bactéries est alors notée n = N/V,.

Troisiéme partie — Peut-on cultiver des pommes
de terre sur Mars ? Seul sur Mars ! Le film

La réaction de dismutation du peroxyde d’hydrogene H,0, — H,0 + %02 est pilotée
a 25°C par une constante de réaction de 108 rendant la réaction totale.

Q 40. Donner les équations différentielles associées au systéme dynamique ci-dessus vérifiées par [H,O,]; et
[H202]e'
En condition physiologique, sans stress exogéne, on admet que [H,0,] <« Kﬁhp et [H,0,] < K2t

o+ Ces hypotheses
seront vérifiées & postériori.
Q 41. Déterminer la concentration en peroxyde d’hydrogeéne a 1’équilibre a P'intérieur des cellules.

Q 42.  Faire 'application numérique, commenter.

VI.B - Situation de stress oxydant

On considére désormais une situation de stress oxydant produit par I’ajout d’une importante quantité de per-
oxyde d’hydrogeéne exogéne (c’est-a-dire introduite & I'extérieur de la bactérie) : on suppose que les bactéries se
trouvent dans un milieu ot la concentration extérieure en peroxyde d’hydrogéne vaut initialement 1 mol -L~*.
Tant que la concentration exogene est tres élevée, les bactéries sont submergées et par conséquent elles voient leur
concentration interne en peroxyde d’hydrogéne atteindre quasi instantanément la valeur exogéne (la diffusion
n’est plus limitante).

Q 43.  Proposer une approximation a I’équation différentielle vérifiée par [H,0,]; dans le cas du stress exogéne
proposé (tant qu’il est important).

Q 44. En déduire la quantité (en mole) de peroxyde d’hydrogéne décomposé par seconde et par bactérie.

Q 45. Combien de temps faudra-t-il & n = 107 bactéries par mL pour décomposer la moitié¢ du peroxyde
d’hydrogene externe introduit ? Méme question pour 10° bactéries par mL. Commenter.

Au sujet de E. coli

Notation Valeurs
Production de H,0, k, 15 pmol-L~"s™!
Constante de Michaelis pour Catalase Kff‘ 5,9 x 10> mol-L~!
Constante de Michaelis pour Ahp Kf\:lhp 1,2 x 10~ mol-L~*
Vitesse maximale pour Catalase ot 4,9 x 107 mol-L~*-s7*
Vitesse maximale pour Ahp U&E}‘: 6,6 x 10~* mol-L~ts7*
Coefficient de diffusion membranaire pour H,0, D 2,0 x 107 ¥ m?s™!
Volume d’une bactérie V; 32x 107" L
Epaisseur de la paroi e 9nm



