I1.1 - Modélisation du coeur

Q24. O D volume pulsation
. Ona|D=

1
~ 88 mL/s | avec la durée d’une pulsation égale a 70 min soit = s.

7

durée pulsation

D
On obtient alors : |vs = 5= 29cm/s

Q25. On applique le premier principe industriel : A(h + ec + €p) = wy + ¢
avec ici :
e g = 0 car pompe adiabatique
o Ae, = 0 car pas de variation d’altitude

1 3
o Ae,=—(v2—22) = v2

2
AP
o Ah= A< >
3
8

P, -

s

P,
d’ott |wy = ? ~9,1J/kg| puis une puissance | P = Dy, wy, = ps D wy ~ 0,87 W

I1.2 - Ecoulement sanguin
Q26. Un écoulement dans une conduite cylindrique est laminaire si Re < 2.103.

Q27. L’écoulement étant stationnaire, la vitesse ne dépend pas du temps, comme indiqué dans 1’énoncé. Par
ailleurs, en négligeant l'influence de la pesanteur, '’écoulement est invariant par rotation d’angle € donc la vitesse
ne dépend pas de cette variable.

v
Enfin, I’écoulement est homogene et incompressible donc divd =0 ce qui implique que —— = 0 et donc que v

oz

ne dépend pas de z.

En conclusion, |v(r,0,z) = v(r) |

Du fait de la viscosité du fluide, on a "u(r = R) = Uparoi =0 |

— dv .
Q28. Ona|F,=n d—27rrLuz
r

I - o
Q29. |Fpamont = P1 wriid, et F aval = — P w2y

Q30. On applique le principe fondamental de la dynamique au systéme précisé dans 1’énoncé.
Exprimons l'accélération d’une particule de fluide du systéme :

Dpp = + (- grad)? =v %—7 =7

Alnsi, 'accélération globale du systéme est égalomcnt nulle.
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—_— = dv P — P,
On a alors : Y Feyy = Fyy + I?p = 6) puis, en projection selon i, on obtient bien Fria ﬁr
T Ul
. . pP-pP,
On integre Pexpression précédente : v(r) = — L " + A
7

(P - B)(R* —17) |

et on utilise la condition aux limites v(r = R) = 0 donc v = L Uy,
7

Q31. On calcule le débit volumique :

(P — Pz)(R2 r2) TR*
D, = - 28 / rdrdf =| — (P, —
//s‘ectum S section 477L " SWL( '

La vitesse moyenne, également appelée vitesse débitante, est alors :

D, (P—-P)R?
Um = TR2 T 8nL

2R
Q32. Il faut calculer Re = ZUm Ps

On calcule d’abord v, = 0,78 mm/s puis on trouve Re = 2,1.1073 donc ’écoulement est bien laminaire.

Remarque : l’énoncé parle de "perte de charge" pour la perte de pression Py — Py alors que, souvent, la charge
est homogéne a une longueur. Si la charge est définie comme une pression, la perte de charge serait d’ailleurs
plutot une perte de pression totale.

Q33. On va utiliser le fait que I’écoulement est homogeéne et incompressible. Ainsi, le débit volumique se
conserve et se "répartit" dans I’ensemble des capillaires en paralléle.

D
On a alors D = N.Dy cop = N.mR? Veqp d'oll | N = m ~10°
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IL.1 — Modéle parfait

Q16.Théoréme de Bernoulli :
Dans le cadre d’un écoulement parfait, stationnaire, homogéne et incompressible, la pression totale
P+pgz+ % pv? se conserve le long d’une ligne de courant (en posant (Oz) un axe vertical ascendant).

Appliqué 2 la situation de I’exercice, cela donne : |P; + pgz, + %pvf =P, +pgz, + %pv%l

Or: hy,(t) =2,—2z, et P,=P, =P,

D’ou I’écriture de la relation de Bernoulli : pgh,(t) + %pvf = %pv% & (gh,(t) + %vf = %vf

Q17.L’écoulement étant supposé incompressible et homogene, la conservation du débit volumique donne :

R 2
Dy =Dy < vymRE = vk 1,0 = (2) w20
1

4
Q18.D’aprés Q16 et Q17, on obtient : i(l - (R—Z) )v% =gh,(t) & |v,(t) = L”(ti

g =)
apré : = (=) _dhy _ (R |20mp(®) _ ldhy _ _ [20mp(0)
Q19.D’aprés Q17, ona: vy () = (Rl) v (t) & dt (Rl) 1_(5;)‘ Sla = (51)4_1 La valeur s’approche de celle de zxp = 1,5 s donnée en Q21... mais I’écart relatif est encore de 13%. Pour
Ry Ra affiner la modélisation, il faudrait tenir du rétrécissement du cylindre de R; & R,, ce qui introduirait une perte

de charge singuliére (et on n’aurait plus v; = v, ce qui avait simplifié ’expression de la différence des
dhy 29 gt pressions totales en Q23).

Q20. Par séparation des variables, on obtient : —= = — T
’Zho (Rl)4 ]
e, = |—|=) -1
P g |\R,

T
Q21.AN : l‘rp =0,20s K Texp = 1,5 sl le temps de vidange a été nettement sous-estimé. Il aurait fallu prendre

d
&=

On peut alors intégrer sur la durée de la vidange :

en compte la viscosité du fluide (la pate).

I1.2 — Modéle visqueux

ho

Texp

Q22.La vitesse moyenne peut-étre estimée : |v,,, = =4.10"%m.s7*

Puis le nombre de Reynolds :

Re = "“’% =3.10"!

On a bien Re < 2.102 donc la loi de Darcy-Weisbach est valide.

Q23.La relation de Bernoulli généralisée s’écrit entre les points 1 et 2 :

1 1
(P1 +pgz: + E‘"’f) - (Pz +pgz; + Epwz) = AP

Or on a toujours P, = P, = P, et ici h,(t) = z; — z,, de plus on néglige I’effet du rétrécissement, donc
R, =R, ainsi v; = v, (d’aprés Q17)

51 pvinhy =X

_ Pg(2Ry)? o |ty — _ pgR}
pdvy, 2 d m 327 dt 8n

Alors : pgh, =

2
Q24.En intégrant la relation précédente, sachant que h,(t = 0) = hy, on obtient : |h,(t) = hy — % t

2
Ala fin de la vidange,ona : h,(t,) =0 & hy — L T, =01, = 8”"‘;
8n PYR}
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On calcule ensuite :

IIT Autour du sirop d’érable

. cos@ [atr cosf | (r—a)d ath
III.1 Manchon de sirop d’érable Q) =aQh+ pg2n / [(r—a)? = 2(r —a)h]dr = aQh + ngT] [( 3 ) —(r—a)? h]
a
611 v 2m % v ¢
Q26. En ordre de grandeur, on a : |p — = p i avec T= et Nog| =N
8t or ho ) pgh3 cosf
soit [Q(8) =aQlh — ————
Ainsi 3n
Ov 6% ~lo 21 4104 rad s
8t<< 32 <<ph%_ .10 rad.s Q29.
3 3
On a Q = 47 rad.s™! : cette condition est donc bien vérifiée ici. QO)=Q=aQh- W =Q= W —aQh+Q=0
On retrouve bien F(h) = 0 avec l'expression proposée par 1'énoncé.
Q27. V0 ,v(r =a,0) =af donc l'expression de v(r, 8) vérifie bien la condition aux limites imposée en
On a h? cosf Q
Q30. On dérive la fonction F(h) en F'(h) = P9l Cost a Q. Cette dérivée s’annule en h,, = ain .
v(r,G—O)—aQ+ [(r a)? — 2(r — a)h] Ui pg cosf
- - — - af)
v(r, 0 =m/2) = v(r, 9 3m/2) =all Vr On calcule F(hy,) = ~3 f)gcﬁ On peut alors réaliser le tableau de variation de la fonction étudiée :
v(r,d =7)=af)— r9 [(r —a)® = 2(r — a)h]
2 h 0 him
On obtient alors le champ des vitesses suivant :
F'(h) - 0 +
Q
F(h) —
F(hm)
- : : - (a)’n
Ainsi, F(h) ne peut s’annuler que si F(h,,) < 0 soit si |Q < - = Qmax(0)
3\ pgcosb

Pour qu’il existe une solution pour tout angle 6, il faut que I'inégalité précédente soit vérifice dans le cas le
plus contraignant, c’est-a-dire pour cos € = 1.

(a2)37
Py

2
On a alors |Q < =

Q31. En raisonnant par unité de longueur, on a

2 . 47rp (af2)®
Mmax = Dmmax X T = p Qmax o soit Mmax = 00 3 Q

Q28. Le débit volumique s’écrit :

D, //7 d?S = // v(r,0)drdz =L / h(r,@)dr
D,
L

a+h
= / v(r,0)dr

Le débit volumique par unité de longueur s’écrit donc : |Q(0) =
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II.1 -

Q27. La centrale échange Q. avec la source chaude, Qs avec la froide et un travail W avec les turbines.
Le premier principe appliqué sur un cycle décrit par la machine donne :

Qc+QI+W=0 (1)

Le rendement de Carnot étant obtenu pour une machine totalement réversible, on en déduit que I’inéga
de Clausius devient :

Fonctionnement global

Qc Qf
—+==0 (2
T. + Ty @
La centrale est assimilée & un moteur, donc son rendement est donné par :
w
=—— (3
n=-o. ©
En divisant (1) par Q., on obtient :
Qs
1+ ===
Q"
e Qr Ty . 3 .
L’équation (2) donne : Q_ = —7 ainsi, on en déduit le rendement de Carnot :
c c
_L-T;
Nc = T,
T. — Ty

= 30%.

Le rendement de la centrale vaut donc : n =0,6 x

Q28. Par définition du rendement :

_ P
= Pin,c

z

soit gth,c =—-—
n

Q29. Le premier principe industriel appliqué sur ’eau de la Moselle en contact avec le circuit tertiaire donne la

1.2

Q30.

Q3.

Q32

variation d’enthalpie entre 'amont et I’aval de la centrale :
Dm(hs - he) = gth,F

ou Dy, = Dy pe est le débit massique du fleuve et Py, r est la puissance thermique échangée avec le fleuve.

En considérant ’eau comme une phase condensée : hy — he = c,AT et d’apres le premier principe :

1
Py =—Pumc—P =2 <7_) - 1))

On en déduit donc :

4

AT =
DVpece

Dy pec. AT = 9(% —1) soit

G)

La valeur obtenue est élevée mais surévaluée dans la mesure ou une partie des échanges thermiques avec
la source froide sont effectués au niveau de la tour de refroidissement.

Ainsi, numériquement : AT = 8,8 K 1.

- Puissance de la pompe du circuit secondaire

Le premier principe industriel appliqué entre ’entrée et la sortie de la pompe donne :

Dm(hs,pompe - he,pompe) = gméca

De méme que précédemment : hs pompe = CeTs €t e pompe = Cele. Ainsi :

‘Dmce<Ts - Te) = 'yméca

Numériquement, on obtient : Ppgca = 0,12 GW.
Le rendement de la pompe est défini par :

g méca

Tlpompe =
P élec

R

méca

P élec =

soit

Tlpompe

Numériquement, on obtient : Hge. = 0,19 GW.

Est-ce au programme ?
Les pertes de charges au cours de I’écoulement ont été négligées.



