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Filiere PSI
Physique

Partie I. Etude de Poscillateur quasi-sinusoidal
I.A.1) La dissipation d’énergie est due a la résistance du cable qui provoque un effet Joule.
I.A.2) Lorsque la fréquence augmente apparait 1’effet de peau qui diminue la section traver-
sée par les lignes de courant. Cela augmente la résistance.

I.A.3) Le phénomene de mutuelle induction crée une f.e.m. e = — dans la boucle 3.

) o e s i ) ,
On a alors dans la boucle un courant d’intensité i,(¢) = — qui dissipe une puissance instantanée
b R

B
2

N1) = GR.ig" =;—. Si ic(f) est sinusoidal de la forme ic(¢f)=/Icos(2mft), on obtient
B

2
2nfl, M
e(t) = MI2nfsin((2nft) et une puissance instantanée P(t) :%sin2 (2mft) dont la valeur
B
2
2nfl, M
moyenne est P = & Cette puissance est proportionnelle & /* et J,>. On peut dire que la ré-

B
sistance est proportionnelle a f 2,

R,

L.B.1) Les impédances d’entrée sont infinies donc V- —Vs=Rl et V, = Vy d’apres le
+
1 2
théoréme du diviseur de tension. On remarque que V'=V_.
L’A.Op fonctionne en régime linéaire. Dans le mod¢le parfait, cela se traduit par V,=V_

R R
soit ici Vg + RI = R, Vv, d’ou Vg :—R(1+R—1]1 puis V = —R(l+£j]+R[ soit V:—RR—II.

1+2 2 2 2

1.B.2) Si I’A.Op fonctionne en saturation haute, Vs =+Vsat donc [V'= Vsar + RI. Si I’A.Op
fonctionne en saturation basse, Vs = —Vsat donc \V= —Vgar + RI‘

[.B.3) Le fonctionnement linéaire n’est possible que si Vs € [~Vsar, Vsar] ce qui se traduit

R |4 R V. . . .
par [ €| - E SAL | k SAL | Le fonctionnement en saturation haute n’est possible que
(R+R) R (R +R,) R
. R
tant que Vi>V  soit Vs >Viar +RI 0u  encore AV

1 2 — — - — VO

2

|

R V. ) ) |
—2 52T ' On aura le fonctionnement en saturation basse pour |
I

|

|

|
|
R+R, R -
R, o s : : '
—2 52T On en déduit la caractéristique statique suivante : L V

>
R +R, R Zy,
Le fonctionnement linéaire correspond a Ve [V, Vo], avec
R R, ¥ . R .
Vy=-R—| ——2—-32L | soit |V, =———V,; On peut alors écrirc V'=-R,[ en posant
R,\ R+R, R R +R,
r R
n R2
I.C.1) Les deux condensateurs sont associés en paralléle. La capa- i Ry

cité équivalentes de 1’association [est Ceq = Cp, + C4).

I.C.2) Le schéma équivalent de I’oscillateur est le suivant :
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Avec les orientations indiquées, on peut écrire :

U(t) =—Raix(t) ; U(t) =—R,i,(t) - L% et i(t)=C, % La loi des nceuds i; =i+ i

conduit ensuite a :

2

__ dun _Um)_,df,. du@m UD\__pe UO Ry 0 dUO L dUQ)

UU%—R{QqCﬁ Rn] Lm(gqch Rﬂ] oy TR ()= LC— 3 R d
2
soit LC, d Uz(t) +| R,C, _L M+ l—ﬁ U(t)=0 qui est bien de la forme demandée en
odt " R ) dt R,
L R

posant , b=R,C,, X etlc :R_:'

I.C.3) La solution peut étre sinusoidale si le coefficient du terme d’ordre un dans 1’équation
ou encore .

1.C.4) Si la condition précédente est vérifiée, la solution de I’équation différentielle est sinu-

soidale si le coefficient du terme d’ordre zéro est positif soit R—b <1 ou encore . On a donc

Olim = 1|

différentielle est nul soit » = 0. On en déduit R =

b eq

n

1 [1-
I.C.5) Si cette condition est vérifiée, la fréquence des oscillations est alors f = Py ¢
n\ a
soit |f =
- [1- iz
1 1 . A 0 .
I.C.6) En prenant f =— , on commet une erreur relative — = ——=——— soit nu-
2n JLC,, f 1_%
\ 0
Af 1-,/1- RS
mériquement — = _ ¥ 64 8x107 pour O = 8, soit une erreur relative de 0,8%.
1 R
64
1 ) L 1
L.C.7) On a C,, = ——— soit numeriquement C,, =—; 5 —— = 68nF. 1
4n°f°L 47 (50x107)7(150x107)

faut donc choisir [Cs = 58 nF|.

1 [150x107° :
On trouve alors Q0 = G W =67. On a bien O > Qlim recommandée-
I.C.8) On ne peut obtenir exactement b = 0. Pour que des pseudo oscillations s’amorcent
sans s’amortir, il faut que le systéme soit instable, ce qui se traduit par trois coefficients de

I’équation différentielle de signe contraire. Comme a>0 et 1 —c>0, il faut donc soit
R, < ou encore .

I.C.9) Le fonctionnement étudié ci-dessus correspond au fonctionnement linéaire de 1’A.Op.
Il n’est donc possible que si V' e [V, Vy]. Lorsque V atteint une des valeurs bornes de ce domaine,
I’A.Op est saturé et I’analyse du systéme change. On montre que le fonctionnement en saturation
n’est pas stable et I’A.Op revient en fonctionnement linéaire. Le régime établi de 1’oscillateur est

b ~eq
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donc une suite périodique de fonctionnements instables de I’ A.Op, alternativement linéaires et satu-
rés. L’amplitude maximale de ces oscillations est Vj.

Partie II - Réflexion d’une onde électromagnétique sur un conducteur
II.A.1-a) En négligeant le poids du porteur de charge, I’équation du mouvement est :
dv

m——E —hv|.
a7

t

. , . - L m
b) La solution de cette équation est de la forme v = %Eo +de ™' en posant T, = b

En régime établi, v = vV jj, ou V;,, = %EO. La densité de courant est alors J = ngv im = n%EO. On
2

reconnait la loi locale d’Ohm J =0 E ¢ en posant Yo = nd |

h
¢) On ne calcule qu’un ordre de grandeur donc on ne précise par la structure cristal-

line du matériau. La densité volumique des atomes est alors 7,;oux ~ N +- Comme il y a un
M

1 3
électron libre par atome, on en déduit 72 ~ -+ N, AN.n= 8X—O_3(6,0 x10%) = 8x10% él.m .
M (60x107)
-19\2 =31
On en déduit /& = (8 x 1028)% =2x10 " kg.s ' puis 1, = % =4x10" s.
X

II.A.2-a) Le champ électrique varie sinusoidalement dans le temps don il s’établit un régime
sinusoidal pour v. On utilise la représentation complexe v () = Ve’”. En reportant dans 1’équation

. . . A S S = 1 -
différentielle, on obtient mjoV +hV =qE, soit V = q E,= 9 g
h+ jmo (1+ jot,) m
. . 1
La densité de courant a alors pour amplitude complexe J =ng——— il E On recon-
(1+ jot,) m
2 2
nait y, = nd = nq—rl donc J = Y—E On retrouve la loi locale d’0Ohm en posant
h m (I+ jort,)
v = Y‘o -
- (1+jor))
. . 1
b) Avec la valeur numérique de T;, on obtient wt; =1 pour ®= IS
X

=2x10" rad.s™' soit f=3,6x10" Hz. Pour des fréquences inférieures 4 100 GHz=10"' Hz, on a

donc w1 < 0,01 et .

E
I1.A.3) La densité volumique de courant de déplacement est J € 2 . Pour un champ va-

riant sinusoidalement, on obtient J Jp= SQ](DE et ‘ H H H <<1lsi® << % soit
€

Yo
107
21(8,85x107'%)
tion précédente pour la validité de la loi d’Ohm. On doit donc limiter la validité de cette approxi-

mation a la méme valeur de 100 GHz.

numériquement f << =2x10"" Hz. Cette valeur dépasse la limite établie a la ques-

I1.B.1-a) La direction de polarisation est la direction du champ électrique soit éx d’aprés
I’expression donnée par 1’énoncé.
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b) D’apres ’expression de la phase ¢(z, 1) = ot — kz + ¢, la direction de propagation

est éz.
I1.B.2-a) Avec les approximations des questions I1.A.2 et I[.A.3, les équations de Maxwell-
— E
rot £ = _6_
Faraday et Maxwell-Ampeére s’écrivent ot

On en déduit rot(rot Ej =—rot 6_BJ: —%QE: —uocoa—E.

Or r—ot)(r—ot) E j = gr_aa(diV(E )) —AE . Comme div(E)=0 d’aprés I’équation de Maxwell-

: : : _ OF
Gauss puisque la charge volumique est nulle dans le conducteur, il reste [AE = 0, !

On obtient une équation du type « équation de diffusion ».
b) En représentation complexe, I’équation précédente devient —&*E = poogioE d’ou
la relation de dispersion .
IL.B.3-a) On a posé k =k’ + jk**. Alors k* = k’* — k>>* + 2jk’k’’. En reportant dans la relation
de dispersion, on obtient k2 =k"*% et 2k’k’’ = —poo0m. Comme "onde se propage vers les z crois-

.. . G, 1 )
sants, on choisit £ >0 soit k'=1/“°T° et k’=-k’. En notant 8=—F, on obtient

. j(mt—k'z—j%erd)EJ

E(z,0) = E.e = Eoefgej (or=kz+4:) goit, en grandeur réelle,

E(z,t)=E, e ® cos(wf —k'z+ ¢y )|.

b) o est la distance caractéristique d’atténuation du champ électrique. On ’appelle

2
« épaisseur de peau ». D’apres la question précédente, on a|d = .
HO,®
2 \
c)d= — . -— = 0,7 mm a 50 kHz
(4t x10"")(107)2n(50x107)

eto= — 27 ;- = 1,6 uma 10 GHz.
(4nx107")(10")2n(10x107)

On peut donc négliger 1’effet de peau a 50 kHz pour des fils de diameétre de 1’ordre du mil-
limetre comme c’est la cas de la boucle. Par contre, une onde crée par un radar ne pénétre pratique-
ment pas.

fpe e . s o
d) Par définition, la vitesse de phase de I’onde dans le conducteur est v, =F.

1 - . .
Comme on a vu que 8=;, on peut écrire . Avec I’expression de 8, on obtient
20

KOy

v, = : la vitesse de phase dépend de o donc le milieu est dispersif.

e) Le champ électrique de ’onde crée une densité de courant dans le conducteur
d’apres la loi locale d’Ohm. Ce courant dissipe de I’énergie par effet Joule ce qui diminue I’énergie
du champ, ce qui se traduit par une atténuation de I’amplitude.
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. — = B . .
I1.B.4) L’équation de Maxwell-Faraday rot E = —% peut s’écrire en représentation com-
t

-5 ke’ kg
- 5 Jjot—k'z+¢g) = _ 1= 5 ,J(ot—k'z+bg) =
e, NEye °e ve, = Eje °e ey .

®
P P 0
noh Bo= Fby

ou B e,=—Eé, soit |B,=——E ¢,
) ®0

plexe —jE/\E(z,t) = —joB(z,t) d’ou B(z,1) =

e |

On peut donc écrire B(z,t) = Eoe_ge

car k” = k" = 8%

"

Par ailleurs, ¢p =g+ ¢x donc ¢ =g — dg=—0x = —arctan(%). Comme £’ =-k’, on a

&3

I.C.1-a) Le vecteur €y est dans le plan de I’interface air-conducteur donc le champ magné-
tique dans I’air, porté par €y, est tangent a cette interface.

En I’absence de courant surfacique dans le plan de ’interface, il y a continuité de la compo-
sante tangentielle de B donc, enz =0, on a Bconp(0, ) = B 4i(0, 7).

Avec les expressions données pour le champ dans le conducteur et dans I’air, cette condition
se traduit par Bgcos(wt + ¢g) = Eair,ocos(cot).

On en déduit et lps = 0. On a donc Beowp (2,1) = By € ° cos(of — k'z)2,.

b) La question II.B a montré que dans le conducteur, les vecteurs k, E et B forment

O B et g, = §+ ¢, (ol ¢p = 0). On en déduit

V2

ECOND (z,t) = Q)Ti Biio e?d cos(oat -k'z+ g)éx .

un triédre direct, avec E, =

¢) J est une densité de courant par unité de surface donc et homogéne a [/][L] . Son
unité est donc A.m .

- d - =
D’apreés la loi locale d’Ohm conduit a|J(z,7) =, %Baino e’ COS(C‘” - k‘Z+§)eX'

I1.C.2-a) Un conducteur parfait est défini par une conductivité infinie.

b) L’expression & = / 2 montre que dans le modele parfait. Il n’y a donc
HOo®

pas de champ (magnétique ou électrique) ni de densité de courant dans le conducteur. La distribu-
tion de courant est modélisée par une densité surfacique circulant sur I’interface air-conducteur.

B -~
¢) L’intensité a travers une ligne tracée sur I’interface est i(¢) = L Js(t).nzd?¢ donc
I"unité de Js est A.m

Considérons I’intensité qui traverse une surface perpendiculaire a éx, de longueur infinie le
long de é; e de longueur L sur éy dans le modéle réel. On a

, - . ®d Lo - LMY, L .
i(t)= H J(z,t).nydS = YOﬁBair,OJOdy JO e’ cos((ot -k Z+Z)dzex.ex.

©

1 z \/> z
Comme k'=—, on peut écrire j;y=y 225 | *eszcos(w_%r“)dz I I _z

5 ®=v, N J.o 5 5" 2 =7, 5 Buiro de ° cos| ot 5)),
d’apres I’indication de 1’énoncé.

L

Comme %imSeig cos(a)t - gj =0, il reste i(t) =y, %B L3’ cos(wt)=, %B cos(t)

o air,0 air,0

UyY @
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A travers une ligne de longueur L le long de &y, on obtient i(¢) = J-OL js (t).exdy = Js(?)L.

B.
En identifiant les deux expressions, il reste |Js(¢) = a—”’ocos(oat).
Ko

On sait que Eair(t)=Bair,Ocos(0)t)Ey et J s(t)=Js(f)éex donc on peut écrire

J(t)y=—B, (t) A&, Comme B est nul dans le conducteur, la condition de continuité de la com-
0

posante tangentielle de B est bien vérifiée.

Partie 111 Modification de ’inductance de la boucle enterrée
I _

—u
2 7z
e

IIIL.A.1) jl étant uniforme, on a /= Jl.nsz d’ou jl =

II1.A.2) La distribution de courant est invariante par symétrie par rapport au plan contenant
I’axe Oz et le point M. Le champ en M est donc perpendiculaire a ce plan. Dans la base cylindrique
indiquée, on peut donc écrire B (M) = Bi(r, 0, 2)ii o(M).

La distribution est invariante par rotation d’un angle quelconque autour de Oz donc B ne
dépend pas de 6.

Le fil est modélisé comme de longueur infinie donc la distribution est invariante par transla-
tion le long de Oz : B ne dépend pas de z.

Il reste | B1(M) = By(r).u o(M)|
II1.A.3) D’apres ce qui précede, les lignes de champ sont des cercles centrés sur Oz. On ap-
plique le théoréme d’ Ampere sur le cercle (I') de rayon 7, centré sur 1’axe Oz et orienté par u o(M).

On a donc CF(E):Ei;E’I(M).ﬁG(M)dE=Bl(r).2nr. Le théoréme d’Ampére s’ écrit
r

CF(B) = },I.o[r.
- I
Sir>e onalr=Idot B (r) =L puis|B vy =l ()
2nr 2nr
. 2 1 woJ,mr’  plr B
IMILA4) Si r<eg, on a Ir=Jywr™ d’ou B,(r) = = - J JBiM)|
2nr 2me ;LL 5
e

- I
puis | B, (M) = 2 rii (M),
21e

II1.A.5) La courbe || B (M )|| = f{r) est la suivante :

1
II1.B.1) L’énergie magnétique est £, = ELI gl /

|
|
|
|
|
|
|
|
|
|
&

III.B.2) Le champ magnétique est constant donc il n’y a pas de
I B(M)I[

champ ¢électrique et la densité volumique d’énergie magnétique se réduit a e (M) = >
Ho

D 2
L’énergie totale est alors £ = jﬂ Mdf.

ESPACE u 0

N.B. Comme les fils sont modélisés comme infinis, cette énergie est infinie. En fait, il faut
calculer I’énergie contenue dans ne tranche de longueur { du circuit.

. ) 1
II1.B.3) Pour une longueur dz de circuit, on peut écrire dEm:ELlindZIz d’une part et

dE = 9k, dz. En identifiant les deux expressions, on obtient L, =2 df“‘ Iiz d’ou
z z
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L. = ﬁ(l +41n(ﬁD.
4n €

III.C.1) On utilise le principe de superposition donc le champ magnétique (puis le flux, puis
I’inductance propre) est la somme des champs (flux et inductance) des deux paires de fils paralleles

séparés respectivement de a et de b. On obtient L, = Holyig ln(é) a+Eol 144 ln(ﬁj b.
4 € 4 €

Comme b >> a, on peut faire ’approximation |, = :l—o(l +4 ln(ﬁnb '
n €

Pour N spires, on a B=NB,et®= NQDSPIRE(E) = NzCD(E 1) donc .

-7
MLC3) AN, [, =5 4010 l+4ln( 0’2) D =125 uH.
4m 10

Cette valeur d’inductance est relativement faible mais comme il n’y a pas de noyau ferroma-
gnétique pour augmenter le flux, elle parait vraisemblable.

III.D.1-a) La composante normale du champ magnétique est conservée a la traversée de
I’interface air-conducteur. Comme le conducteur est parfait, le champ magnétique est nul dans le
conducteur. On en déduit que la composante normale du champ magnétique extérieur est nulle. Le
champ magnétique extérieur est donc tangent a I’interface.

b) Puisque B(y 0") = 0 dans le conducteur, la relation de passage pour la compo-
sante tangentielle s’écrit B(y =0") = poJs A (=i y) soit ]B(y 07) =puouynJ s‘

. - 1
Dans la partie 11.C.2-c), on a montré que Jg(¢) =
0
partie, €z = I:l;Y et Eair(t) =B (y=0") donc les vecteurs B (y=0), uy et J s(?) forment un triedre
direct avec ||B(y = 07)|| = nol|Js||- Ce qui correspond bien a la relation établie ci-dessus.

(t) N é€,. Avec les notations de cette

alr

c¢) Dans le probléme C, la distribution de courant est invariante par symétrie par rap-
port au plan (O, x, z) donc le champ magnétique en un point de ce plan est perpendiculaire a ce
plan : cela ne correspond pas au probléme 4.

Dans le probléme D, la distribution de courant est invariante par antisymétrie par rapport au
plan (O, x, z) donc le champ magnétique en un point de ce plan est contenu dans ce plan: cela
correspond au probléme A4.

d) La résultante des champs B et B, crée par les deux

. , - I - ——
fils d’abscisse % est portée par ux donc B(M):2><;0 Uy (M).1y, 7 AN
nr y / \
aY h \ ]! )
avec r= h2+(x—5) et Up.lx== - donc \Ail(rz‘)\/'Bz X
\/h2+(x—aj h I /T 7B,
! ér |
\
E(M)zzx‘;ol A a2 ~_ S
T -
h2+(x—a)
2

Le champ crée par les deux fils d’abscisse —% s’obtient en remplagant a par —a et I par —/

dans I’expression précédente. Le champ résultant est donc

B(M) = “; -
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. L= 1 = .
Avec la relation de passage, on obtient J¢(¢) = — B(M) A iy, soit

Lo
Js(M) = I_: ! 2 1 2 _'Z
n +(x—a) n +(x+)
2
-~ J?
II1.D.2-a) La densité volumique de puissance dissipée par effet Joule s’écrit p=J.E = Y_
0

—

d’aprés la loi locale d’Ohm. Comme J = % dans le modele décrit, la puissance dissipée dans la

tranche de conducteur d’épaisseur £ le long de iz, infinie le long de i x et & le long de vy est

. . ~ 1 p+o
P= _[dy_[d J. JS () dx —SZ'[ “Js (x)d soit par unité de longueur selon u z, | B, =—J JS (x)dx |
Yo Yo Vo™
b) Avec I’expression de Js, on obtient
2
2
A LA i L
Yo h2+(x—a) h2+(x+aj
2 2
On peut écrire e J:c 1 - 1 e ;%2 +: 1 . 1 | En posant
h2+(x—g) h2+(x+gj 1+(£—ij 1+(£+ij
2 2 h 2h h 2h
2
k=-- e wu=> soit dx=hdu, il vient H:ljw L b
2h h “\1+(u—k) 1+(u+k)
= _1 ™ .Onobtientdonc p __ ' [ ’ 1 m  Pour une longueur 5 de conduc-
1 Ttl 1 On ob d P 1 (1h i
h 2 in
() o) (2]
a a
1 hb s . . 2
teur, on obtient P, = 5 > 1” qui est bien de la forme Py¢, = Ryenl” €n posant
Yoy (2]1
a
1 hb
Rveh = TCS'Y 2h 2
"1+ ()
a
)R, = _31 - 0.2)2 - =7.8x10"° Q.
n(107)(A0%) ~ (2(0,2)
1+ —=——
0,5
La boucle se comporte comme un fil de longueur 25 (en négligeant a devant b) donc sa ré-
sistance est R _LZ_bz AN. R= ! - 2(2_2 > = 2x1072 Q. La résistance du véhicule est
Yo TE (6x10") m(10™)
négligeable devant celle de la boucle. P
II1.D.3-a) Dans le modéle magnétostatique équivalent, la distri- /~ AN

bution de courant sur le véhicule est représentée par les deux fils de vy
cote +h.
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En un point M de coordonnées (x,—%), la composante sur iy du champ B, est

; x_aj
B (M) = ;ii ii,(M).ii, avec r = \/(2h)2 + (x —%J et fig.diy = cos(0) = ( 2 -
\/(2}1)2 + (x —g)

aj
P
On a donc BIY(M):“OI(Z.
27 2 a 2
4h” +| x——
2

) a .
La composante du champ crée par le fil d’abscisse Y s’obtient en remplagant a par —a et /

par —/ dans I’expression précédente. La composante du champ résultant est donc

a a
| (=) )
BY(xa_h)z% 2 2 |
4h2+(x—a) 4h2+(x+a)
2 2

b) Le flux a travers une surface de coté £ sur Oz et a sur Ox orientée par iy est

st D)
O = J‘OdzJ‘z B(M).iiydy = ¢ Ho" [ _ dx-

2 -2 ? ’

? 4h2+(x—a) 4h2+(x+aj
2 2
( a) (x a)
‘ x—— a P

Notons H=J7 2 dx :iJ’z _\2h_4h) |, et posons w=—L tel que
-2 2 2h -5 2 2h  4h

2 2 a 2 X a
4h + X—E 1+ E—E

0 2
dx = 2hdu. 11vientH=ij°a( u 2)2hdu:[lln(l+u2)+C} A 1+(i) .
2h -2\ 1+u 2 . 2 2h

2h

a

x+—
On obtient la valeur de pp_ J‘Eg ( 2) ldx en changeant a en —-a d’ou
’ 4h2+(x+aj
2

a
. L 2
H=| (2) dx =—H. On obtient donc @:_gh2X51n[l+(%) ]

2 4n? +(x—a)2 o
2

En orientant la surface dans le sens contraire de # y, on obtient un flux par unité de longueur

] 2
suivant Oz qui vaut | D, = %ln(l + (%j J
T

¢) Si la boucle a une longueur b le long de Oz, alors le flux induit par le champ ma-

b 2
gnétique du véhicule vaut (D, = LA (i] 1
21 2h

II1.D.4-a) Par définition du coefficient d’autoinduction L, on peut écrire
pour le flux orienté comme vy d’apres le sens du courant dans la bou-
cle.
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On remarque que le flux crée par les courants induits est de signe contraire, ce qui est
conforme a la loi de Lenz.

b) Le flux total orient¢ dans le sens de uy est donc @ =dp— Dy soit

b ’ . - .
O=1LI —Z—Oln[l + (;_h) JI . L’inductance propre diminue et devient donc
T

2 2
L':L—M—Obln 1+ £ et la variation AL:—M—Obln 1+ 4 .
27 2h 27 2h

c) D’apres la question III.C.3, I’inductance propre de la boucle pour N=1 vaut

7 2
L=125/25=5uH. Onadonc S, = Mln(u(i] J = 8102

2n(5%107°) 2(0,2)

d) Le champ magnétique crée au voisinage de la surface du véhicule est N fois plus
grand donc le courant induit dans le véhicule aussi. Le flux induit par ce courant dans une boucle
est donc N fois plus grand et dans les N boucles, il est N* fois plus grand. On a donc ALy = N*AL
comme Ly = N°L et la sensibilité de la boucle ne dépend pas de M.

Partie IV Etude du fréquencemétre

IV.A.1) Comme is=0, on a i= C'%(e'(l)—V(t)) et V()=R’i+V, On en déduit
d dv(t) V() de'@) V,
C'—(e'(t)-V(t)) d’ot + = + .
A e Vel I T
IV.A.2) Pour ¢ <0, e’ est constant comme V. Donc il s’est établi un régime constant. La
présence du condensateur assure la nullité du courant constant. On a donc |V = ¥, pour 7 < 0).

V-V, _
R

La tension aux bornes du condensateur est une grandeur continue quel que soit ¢, en particu-
lier t=0.On a Ve =¢e’ — V donc, pour ¢t <0, on trouve Ve =FE — Vy. Comme V(t = 0+) =Ve(@=0),
on obtient —E — M(t=0")=E—Vyd’ou |[V(t=0") = Vy— 2E.

Comme 0 < V, < 2E par hypothése, on a|F(t=0") < 0|.

IV.A.3) Comme e’ est constant pour ¢>0, 1’équation différentielle se réduit a
v v _ v :

= dont la solution générale est V(¢) =V, +ae * A
dt RC RC E
en posantt=R’C". v 0
La condition initiale se traduit par V(t=0")=V,+a d’ou -
t
- . L
a=-2E. On obtient donc [V (¢) =V, —2FEe | / >
IV.A.4) On en déduit le graphe suivant :
IV.B) L’impédance d’entrée de 1’A.Op est infinie donc £ A0

Vi(#) = e(?). Par construction, /~=0. L’A.Op n’est pas bouclé sur . _,p
son entrée inverseuse donc il fonctionne en régime saturé.

On a e’(f) = +V tant que Vi — V_> 0 soit tant que e(¢) > 0.
On a e’(t) = —Vsu tant que Vi — V_ < 0 soit tant que e(?) < 0.

Comme la fréquence de e(?) vérifie f << soit T << T (période du signal sinusoidal), on

VCV

peut considérer que le régime constant a le temps de s’établir entre deux bascules de I’A.Op.

La bascule +V,—> —Vsy correspond a celle étudiée a la question précédente en rempla-
cant E par V. (La condition 0 < V) < 2V, est supposée vérifiée par hypothese).

Prenons comme nouvelle instant origine une bascule —Vs, —> +Vs, de I’A.Op. On a donc
e =—Vsg et V=", pour t=0. On en déduit Vc(0)=—Vs— Vo. La continuité de V¢ entraine
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Vc(0+) = Vsat— V(t = O+) =—Vst— Vo. On en déduit V(¢ = 0+) = Vo + 2 Vs et la solution de I’équation

t

différentielle s”écrit [V (1) =V, + 2V, e |

sat

On en déduit les chronogrammes ci-contre :

IV.C.1) L’A.Op n’est pas bouclé sur son entrée inverseuse donc il ne fonctionne pas en ré-
gime linéaire.

Vot W d=——-p—————fp—-———-
IV.C.2) D’apres la question précédente, la tension ' t 40)
de sortie de I’A.Op est constante. Le condensateur est \
chargé donc il n’y a pas de courant dans sa branche. A ‘ . lL e(?)
Comme I'impédance de I’entrée + est infinie, le courant v, i au | VN Ep—

circulant dans le résistance est nul donc V.(¢=0") = 0. ' ' ,

Pour (<0, V(t=0)=Ut=0)=V, donc | M W
Vi(t=0)—V(t=0)<0. On en déduit que |S(t=0) = Vet l

Vsat) Vo— 2V L | _

IV.C.3) Lorsque V_ passe a la valeur V) — 2V <0,
on peut supposer que Vy — V_ devient positif donc I’A.Op bascule en saturation haute.

La tension aux bornes du condensateur est continue donc
Vit=0)-S(t=0)=Vi(t=0)-St=0"
50it 0 — (—Vea) = Va(t = 0) = (Vear). On en déduit [Va(t=0") =2V .

On vérifie que Va(t=0") =V (t=0") = 2Va) — (Vo —2Veat ) = 4Veat =V > 0 : I’A.Op bascule effec-
tivement.

IV.C.4) La tension V' ne varie pratiquement pas pendant la durée T donc V(=1 ) =2 V.
A D’instant ¢ =1, V_ passe a la valeur V. Comme Vj < 2V, on peut supposer que V. — V_ reste po-
sitif donc I’ A.Op ne bascule pas.

Si c’est le cas, la continuité de la tension aux bornes du condensateur conduit
aVi(t=1)=2Vyq.Onabien Vi(t=1")—V.(t=1")>0. L’hypothése est vérifiée : I’A.Op ne bas-
culepasentret=1 et¢= T

IV.C5-a) Comme i:=0, on peut é&crire C%(S(t) —V, (1)) = d’ou

dv.(t) V. (¢
av.(0) + V.0 = as() . Comme S = Vg, I’équation devient A+L) =0
dt RC dt dt RC

t
V.(t)=2V_e *|compte tenu de la condition initiale en =0

V.(t)-0
R

dont la solution est

+

b) L’A.Op bascule en saturation basse lorsque V. =V_=V,. Comme limV () =0,
t—o

o 2
e k¢ =V soit|t, = RCln(&].

0

cela est possible a I’instant ¢, tel que 2V

sat

La continuité de la tension aux bornes du condensateur se traduit par
Vit=t)-St=t)=Vit=t")-St=1t")

soit Vo— Vi = Vi(t=1,") = (-Vea) o0 Vit =11) = 2V,

IV.C.6-a) On a vu que I’A.Op bascule a I’instant ¢;. Comme S est constant, I’équation diffé-

t—t,
rentielle vérifiée par Vi(¢) est toujours %WLKR—(C”: 0 dont la solution est |V, (¢) = -2V _e ¢

compte tenu de la condition initiale en r=1¢,".

b) Ent=T/2, V_passe a la valeur Vy+ 2V.. Comme V. est négatif, V. — V_ reste né-
gatif donc I’A.Op reste en saturation basse.

IV.C.7) Les chronogrammes sont dessinés ci-dessous :

On peut dire que 1’état stable du montage est tel que S=—V,. Il reste dans cet état tant
qu’une impulsion négative n’est pas appliquée a ’entrée inverseur du premier A.Op. Une fois bas-
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culé dans I’état §'=+Vg, il n’y reste que pendant la durée
t; définie par les caractéristique du montage (R, C, V)) et
non par celles du signal entrant U(¢). Cet état de fonction-
nement n’est donc pas stable. On a donc affaire a un

montage monostable.

IV.C.8) On a vu que la bascule dans 1’état instable
se produit lorsque V; — V_ devient négatif, alors que V. =0
donc des que V_ devient positif, quelle que soit la forme de
V.(¢). La tension V(f) générée par le module d’entrée

convient donc aussi.

IV.D.1) Dans la partie IV.C, on a supposé 1 << RC
ou 7 est la durée de I'impulsion et RC << T pour assurer le retour de V., a la valeur nulle avant
I’arrivée du front descendant de V' (¢).

Or,

d’aprés la partie IV.B,

la durée de

I’impulsion est de ’ordre de R’C’. On doit donc avoir

RC <<RC<<T.

IV.D.2) On obtient les cinq chronogrammes

suivants :

La bascule du monostable se fait sur un front
descendant du signal e(¢), lorsque celui-ci s’annule.

IV.D.3) La valeur moyenne d’un signal corres-
pond a sa composante continue. On utilise un voltmetre

DC pour mesurer <S$>.

IV.D.4) On remarque que I’expression donnée

A

VO +2 Vsat
2Vsat

Vsat

o 7

3

A An)

vud

VO - 2Vs‘at B

-2 Vsat

Ve~

V0+2Vsat

Vsat

de #, correspond a celle de #;.
S(?) vaut —Vgy sur la durée T— 1y et +Vsy sur la

durée ¢, donc on a <S>:%(—V (T—1,)+V,t,). On

sat
1 1+ .
2t,
1
IV.E.1) On veut f=—
2n

to =T\ LC, |

<S>
V.

sat

en déduit

/

si <S$>=0.11

LC

eq

faut donc

- Vsat
2V,

sat

Vo—
sat

Vsat

Vo

A

VY~

- Vsat

-2 Vsat

A _

IV.E.2) En différentiant logarithmiquement, on obtient

IV.E.3) L’expression de f obtenue en IV.D.4 s’écrit f = fsm[1+

<S>

vh En identifiant, il reste [< .S >

-fSZil’lS

veh boucle” sat|*

1
= —Shouctes
2

sat

IV.E.4) Il y a détection du véhicule si <§>> %<S>Véh.

daf _

L

2 L

d’ou

f;ans
<S>

veh

sat

1 )
AN. <S>l = Z(8x10'2)(12) =240 mV. Cette valeur est facilement mesurable.
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