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CENTRALE 2007
Filière PSI
Physique

Partie I. Étude de l’oscillateur quasi-sinusoïdal
I.A.1) La dissipation d’énergie est due à la résistance du câble qui provoque un effet Joule.
I.A.2) Lorsque la fréquence augmente apparaît l’effet de peau qui diminue la section traver-

sée par les lignes de courant. Cela augmente la résistance.

I.A.3) Le phénomène de mutuelle induction crée une f.e.m. e M di t
dt

= - C ( )  dans la boucle B.

On a alors dans la boucle un courant d’intensité i t e
RB

B

( ) =  qui dissipe une puissance instantanée

P(t) = GR.iB
2 =

e
R

2

B

. Si iC(t) est sinusoïdal de la forme iC(t) = I0cos(2pft), on obtient

e(t) = MI02pfsin((2pft) et une puissance instantanée P( ) sin ( )t
fI M
R

ft=
2

20
2

2p
p

b g
B

 dont la valeur

moyenne est P =
2

2
0

2pfI M
R

b g
B

. Cette puissance est proportionnelle à f2 et I0
2. On peut dire que la ré-

sistance est proportionnelle à f 2.

I.B.1) Les impédances d’entrée sont infinies donc V– – VS = RI et V R
R R

V+ =
+

1

1 2
S  d’après le

théorème du diviseur de tension. On remarque que V = V–.
L’A.Op fonctionne en régime linéaire. Dans le modèle parfait, cela se traduit par V+ = V–

soit ici V RI R
R R

VS S+ =
+

1

1 2

 d’où V R R
R

IS = - +
F
HG

I
KJ1 1

2

 puis V R R
R

I RI= - +
F
HG

I
KJ +1 1

2

 soit V R R
R

I= - 1

2

.

I.B.2) Si l’A.Op fonctionne en saturation haute, VS = +VSAT donc V = VSAT + RI. Si l’A.Op
fonctionne en saturation basse, VS = –VSAT donc V = –VSAT + RI.

I.B.3) Le fonctionnement linéaire n’est possible que si VS Œ [–VSAT, VSAT] ce qui se traduit

par I R
R R

V
R

R
R R

V
R

Œ -
+ +

L
NM

O
QP

2

1 2

2

1 2b g b g
SAT SAT, . Le fonctionnement en saturation haute n’est possible que

tant que V+ > V soit R
R R

V V RI1

1 2+
> +SAT SAT  ou encore

I R
R R

V
R

< -
+

2

1 2

SAT . On aura le fonctionnement en saturation basse pour

I R
R R

V
R

>
+

2

1 2

SAT . On en déduit la caractéristique statique suivante :

Le fonctionnement linéaire correspond à V Œ [–V0, V0], avec

V R R
R

R
R R

V
R0

1

2

2

1 2

= - -
+

F
HG

I
KJ

SAT  soit V R
R R

V0
1

1 2

=
+ SAT . On peut alors écrire V = –RnI en posant

R R
R

Rn = 1

2

.

I.C.1) Les deux condensateurs sont associés en parallèle. La capa-
cité équivalentes de l’association est Ceq = Cb + Cs.

I.C.2) Le schéma équivalent de l’oscillateur est le suivant :

 V0

 –V0

 I

 V

 i1  i2

 i
 L  Ceq  U(t)  –Rn

 Rb
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Avec les orientations indiquées, on peut écrire :

U(t) = – Rni2(t) ; U t R i t L di t
dt

( ) ( ) ( )
= - -b 1

1  et i t C dU t
dt

( ) ( )
= eq . La loi des nœuds i1 = i + i2

conduit ensuite à :

U t R C dU t
dt

U t
R

L d
dt

C dU t
dt

U t
R

( ) ( ) ( ) ( ) ( )
= - -

F
HG

I
KJ - -

F
HG

I
KJb eq

n
eq

n

= - + - +R C dU t
dt

R
R

U t LC d U t
dt

L
R

dU t
dtb eq

b

n
eq

n

( ) ( ) ( ) ( )2

2

soit LC d U t
dt

R C L
R

dU t
dt

R
R

U teq b eq
n

b

n

2

2 1 0( ) ( ) ( )+ -
F
HG

I
KJ + -

F
HG

I
KJ =  qui est bien de la forme demandée en

posant a LC= eq , b R C L
R

= -b eq
n

 et c
R
R

= b

n

.

I.C.3) La solution peut être sinusoïdale si le coefficient du terme d’ordre un dans l’équation

différentielle est nul soit b = 0. On en déduit R L
R Cn

b eq

=  ou encore Rn = RbQ2.

I.C.4) Si la condition précédente est vérifiée, la solution de l’équation différentielle est sinu-

soïdale si le coefficient du terme d’ordre zéro est positif soit R
R

b

n

< 1 ou encore Q2 > 1. On a donc

Qlim = 1.

I.C.5) Si cette condition est vérifiée, la fréquence des oscillations est alors f c
a

=
-1

2
1

p

soit f Q
LC

=
-

1
2

1 1
2

p eq

.

I.C.6) En prenant f
LC

=
1

2
1

p eq

, on commet une erreur relative Df
f

Q

Q

=
- -

-

1 1 1

1 1

2

2

 soit nu-

mériquement Df
f

=
- -

-

1 1 1
64

1 1
64

 = 8¥10–3 pour Q = 8, soit une erreur relative de 0,8%.

I.C.7) On a C
f Leq =

1
4 2 2p

 soit numériquement Ceq =
¥ ¥ -

1
4 50 10 150 102 3 2 6p ( ) ( )

 = 68 nF. Il

faut donc choisir Cs = 58 nF.

On trouve alors Q =
¥
¥

-

-

1
0 7

150 10
68 10

6

9,
 = 67. On a bien Q > Qlim,recommandée.

I.C.8) On ne peut obtenir exactement b = 0. Pour que des pseudo oscillations s’amorcent
sans s’amortir, il faut que le système soit instable, ce qui se traduit par trois coefficients de
l’équation différentielle de signe contraire. Comme a > 0 et 1 – c > 0, il faut donc b< 0 soit

R L
R Cn

b eq

<  ou encore R Q Rn b< 2 .

I.C.9) Le fonctionnement étudié ci-dessus correspond au fonctionnement linéaire de l’A.Op.
Il n’est donc possible que si V Œ [–V0, V0]. Lorsque V atteint une des valeurs bornes de ce domaine,
l’A.Op est saturé et l’analyse du système change. On montre que le fonctionnement en saturation
n’est pas stable et l’A.Op revient en fonctionnement linéaire. Le régime établi de l’oscillateur est
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donc une suite périodique de fonctionnements instables de l’A.Op, alternativement linéaires et satu-
rés. L’amplitude maximale de ces oscillations est V0.

Partie II - Réflexion d’une onde électromagnétique sur un conducteur
II.A.1-a) En négligeant le poids du porteur de charge, l’équation du mouvement est :

m dv
dt

qE hv
r r r

= -0 .

b) La solution de cette équation est de la forme r
r rv q

h
E ae

t

= +
-

0
1t  en posant t1 =

m
h

.

En régime établi, rv  = rv lim où 
r r
v q

h
Elim = 0 . La densité de courant est alors 

r
J  = nq rv lim = n q

h
E

2

0

r
. On

reconnaît la loi locale d’Ohm 
r
J  = g0

r
E 0 en posant g 0

2

= n q
h

.

c) On ne calcule qu’un ordre de grandeur donc on ne précise par la structure cristal-

line du matériau. La densité volumique des atomes est alors n
M

NATOME Aª
µ . Comme il y a un

électron libre par atome, on en déduit n
M

Nª
µ

A. A.N. n ª ¥
¥

¥-

8 10
60 10

6 0 10
3

3
23

( )
( , )  = 8¥1028 él.m–3.

On en déduit h = ¥
¥ -

( ) ( , )8 10 1 6 10
10

28
19 2

7  = 2¥10–16 kg.s–1 puis t1

31

16

9 1 10
2 10

=
¥
¥

-

-

,  = 4¥10–15 s.

II.A.2-a) Le champ électrique varie sinusoïdalement dans le temps don il s’établit un régime
sinusoïdal pour rv . On utilise la représentation complexe rv (t) = 

r
Ve j tw . En reportant dans l’équation

différentielle, on obtient mj V hV qEw
r r r

+ = 0  soit 
r r

V q
h jm

E=
+ w 0 =

+
1

1 1

1
0( )j

q
m

E
wt

t r
.

La densité de courant a alors pour amplitude complexe J nq
j

q
m

E=
+

1
1 1

1
0( )wt

t r
. On recon-

naît g 0

2

= n q
h

= n q
m

2

1t  donc J
j

E=
+
g
wt
0

1
01( )

r
. On retrouve la loi locale d’Ohm en posant

g
g
wt

=
+

0

11( )j
.

b) Avec la valeur numérique de t1, on obtient wt1 = 1 pour w =
¥ -

1
4 10 15

= 2¥1014 rad.s–1 soit f = 3,6¥1013 Hz. Pour des fréquences inférieures à 100 GHz = 1011 Hz, on a
donc wt1 < 0,01 et g ª g0.

II.A.3) La densité volumique de courant de déplacement est 
r

r

J E
tD = e

∂
∂0 . Pour un champ va-

riant sinusoïdalement, on obtient 
r
J D = e0jw

r
E 0 et 

r

r
J

J
D

=
e w
g
0

0

. On a donc 

r

r
J

J
D

<< 1 si w g
e

<< 0

0

 soit

numériquement f <<
¥ -

10
2 8 85 10

7

12p( , )
 = 2¥1017 Hz. Cette valeur dépasse la limite établie à la ques-

tion précédente pour la validité de la loi d’Ohm. On doit donc limiter la validité de cette approxi-
mation à la même valeur de 100 GHz.

II.B.1-a) La direction de polarisation est la direction du champ électrique soit reX d’après
l’expression donnée par l’énoncé.
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b) D’après l’expression de la phase f(z, t) = wt – kz + fE, la direction de propagation
est reZ.

II.B.2-a) Avec les approximations des questions II.A.2 et II.A.3, les équations de Maxwell-

Faraday et Maxwell-Ampère s’écrivent 
rot

rot

æÆæ

æÆæ

= -

= =

R
S|

T|

r
r

r r r

E B
t

B J E

∂
∂

µ µ s0 0 0

.

On en déduit rot rot rot
æÆæ æÆæ æÆæF

HG
I
KJ = -

F
HG

I
KJ

r
r

E B
t

∂
∂

= -
æ Ææ∂

∂t
Brot
r

= -µ s
∂
∂0 0

r
E
t

.

Or rot rot grad div
æÆæ æ Ææ æÆæF

HG
I
KJ = -

r r r
E E Ed ie j D . Comme div(

r
E ) = 0 d’après l’équation de Maxwell-

Gauss puisque la charge volumique est nulle dans le conducteur, il reste D
r

r

E E
t

= µ s
∂
∂0 0 .

On obtient une équation du type « équation de diffusion ».
b) En représentation complexe, l’équation précédente devient –k2 r

E  = µ0s0jw
r
E  d’où

la relation de dispersion k2 = –jµ0s0w.
II.B.3-a) On a posé k = k’ + jk’’. Alors k2 = k’2 – k’’2 + 2jk’k’’. En reportant dans la relation

de dispersion, on obtient k’2 = k’’2 et 2k’k’’ = –µ0s0w. Comme l’onde se propage vers les z crois-

sants, on choisit k’ > 0 soit k '= µ s w0 0

2
 et k’’ = –k’. En notant d = -

1
k"

, on obtient

r r
E z t E e

j t k z j z
( , )

'
=

- - +F
HG

I
KJ

0

1
w

d
fE

=
- - +r

E e e
z

j t k z
0

d w f' Eb g  soit, en grandeur réelle,
r r
E z t E e t k z

z

( , ) cos '= - +
-

0
d w fEb g .

b) d est la distance caractéristique d’atténuation du champ électrique. On l’appelle

« épaisseur de peau ». D’après la question précédente, on a d
µ s w

=
2

0 0

.

c) d
p p

=
¥ ¥-

2
4 10 10 2 50 107 7 3( )( ) ( )

 = 0,7 mm à 50 kHz

et d
p p

=
¥ ¥-

2
4 10 10 2 10 107 7 9( )( ) ( )

 = 1,6 µm à 10 GHz.

On peut donc négliger l’effet de peau à 50 kHz pour des fils de diamètre de l’ordre du mil-
limètre comme c’est la cas de la boucle. Par contre, une onde crée par un radar ne pénètre pratique-
ment pas.

d) Par définition, la vitesse de phase de l’onde dans le conducteur est v
kf

w
=

'
.

Comme on a vu que d =
1
k '

, on peut écrire vf = dw. Avec l’expression de d, on obtient

vf
w

µ s
=

2

0 0

 : la vitesse de phase dépend de w donc le milieu est dispersif.

e) Le champ électrique de l’onde crée une densité de courant dans le conducteur
d’après la loi locale d’Ohm. Ce courant dissipe de l’énergie par effet Joule ce qui diminue l’énergie
du champ, ce qui se traduit par une atténuation de l’amplitude.
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II.B.4) L’équation de Maxwell-Faraday rot
æÆæ

= -
r

r

E B
t

∂
∂

 peut s’écrire en représentation com-

plexe - Ÿ = -jk E z t j B z t
r r r

( , ) ( , )w  d’où 
r r rB z t k e E e e e

z
j t k z( , ) ( ' )= Ÿ

- - +

w
d w f

Z X
E

0 =
- - +k e

E e e e
j z

j t k z
f

d w f

w

k

E
Y0

( ' ) r .

On peut donc écrire 
r r
B z t B e e

z
j t k z( , ) '=

- - +
0

d w fBb g où 
r rB

k
E e0 0=

w Y =
+k k E e' "2 2

0w
r

Y soit 
r rB E e0 0

2
=
wd Y

car k k' "2 2
2

1
= =

d
.

Par ailleurs, fB = fE + fk donc f = fE – fB = –fk = - F
HG

I
KJarctan "

'
k
k

. Comme k’’ = -k’, on a

f
p

=
4

.

II.C.1-a) Le vecteur reY est dans le plan de l’interface air-conducteur donc le champ magné-
tique dans l’air, porté par reY, est tangent à cette interface.

En l’absence de courant surfacique dans le plan de l’interface, il y a continuité de la compo-
sante tangentielle de 

r
B  donc, en z = 0, on a 

r
B COND(0, t) = 

r
B air(0, t).

Avec les expressions données pour le champ dans le conducteur et dans l’air, cette condition
se traduit par 

r
B 0cos(wt + fB) = 

r
B air,0cos(wt).

On en déduit 
r
B0 = 

r
B air,0 et fB = 0. On a donc 

r rB z t B e t k z e
z

COND air,0 Y( , ) cos '= -
-
d wb g .

b) La question II.B a montré que dans le conducteur, les vecteurs 
r
k , 

r
E  et 

r
B  forment

un trièdre direct, avec E B0 02
=
wd  et f p

fE B= +
4

  (où fB = 0). On en déduit

r rE z t B e t k z e
z

COND air,0 X( , ) cos '= - +F
HG

I
KJ

-wd
w

pd

2 4
.

c) 
r
J  est une densité de courant par unité de surface donc et homogène à [I][L]–2. Son

unité est donc A.m–2.

D’après la loi locale d’Ohm conduit à 
r rJ z t B e t k z e

z

( , ) cos '= - +F
HG

I
KJ

-
g
wd

w
pd

0 2 4air,0 X .

II.C.2-a) Un conducteur parfait est défini par une conductivité infinie.

b) L’expression d
µ s w

=
2

0 0

 montre que d = 0 dans le modèle parfait. Il n’y a donc

pas de champ (magnétique ou électrique) ni de densité de courant dans le conducteur. La distribu-
tion de courant est modélisée par une densité surfacique circulant sur l’interface air-conducteur.

c) L’intensité à travers une ligne tracée sur l’interface est i t J t n d
A

B
( ) ( ).= z r r

lS S  donc
l’unité de JS est A.m–1.

Considérons l’intensité qui traverse une surface perpendiculaire à reX, de longueur infinie le
long de reZ et de longueur L sur reY dans le modèle réel. On a

i t J z t n dS( ) ( , ).= zz r r
S = - +F

HG
I
KJz z -•

g
wd

w
pd

0 0 02 4
B dy e t k z dze e

L z

air,0 X Xcos ' .r r .

Comme k '= 1
d

, on peut écrire i t B L e t z dz
z

( ) cos= - +F
HG

I
KJ

-•zg
wd

w
d

pd
0 02

2
2 4air,0

 = - -F
HG

I
KJ

L
NM

O
QP

-
•

g
wd

d w
d

d
0

0
2

B L e t zz

air,0 cos

d’après l’indication de l’énoncé.

Comme lim cos
d

dd w
dÆ•

-
-F

HG
I
KJ =e t zz

0, il reste i t B L t( ) cos= g
w

d w0
2

2 air,0 b g= g
w

µ g w
w0

0 02
2B L tair,0 cosb g
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À travers une ligne de longueur L le long de reY, on obtient i t J t e dy
L

( ) ( ).= z r r
S X0

 = JS(t)L.

En identifiant les deux expressions, il reste J t
B

tS
air,0( ) cos=

µ
w

0

b g .

On sait que 
r
B air(t) = Bair,0cos(wt)reY et 

r
J S(t) = JS(t)reX donc on peut écrire

r r rJ t B t eS air Z( ) ( )= Ÿ
1

0µ
. Comme 

r
B  est nul dans le conducteur, la condition de continuité de la com-

posante tangentielle de 
r
B  est bien vérifiée.

Partie III Modification de l’inductance de la boucle enterrée

III.A.1) 
r
J 1 étant uniforme, on a I = J1.pe2 d’où 

r rj I u1 2=
pe Z .

III.A.2) La distribution de courant est invariante par symétrie par rapport au plan contenant
l’axe Oz et le point M. Le champ en M est donc perpendiculaire à ce plan. Dans la base cylindrique
indiquée, on peut donc écrire 

r
B 1(M) = B1(r, q, z) ru q(M).

La distribution est invariante par rotation d’un angle quelconque autour de Oz donc B1 ne
dépend pas de q.

Le fil est modélisé comme de longueur infinie donc la distribution est invariante par transla-
tion le long de Oz : B1 ne dépend pas de z.

Il reste 
r
B1(M) = B1(r). ru q(M).

III.A.3) D’après ce qui précède, les lignes de champ sont des cercles centrés sur Oz. On ap-
plique le théorème d’Ampère sur le cercle (G) de rayon r, centré sur l’axe Oz et orienté par ru q(M).

On a donc C B B M u M dG
G

( ) ( ). ( )
r r r

l= z 1 q  = B1(r).2pr. Le théorème d’Ampère s’écrit

CG(
r
B ) = µ0IG.

Si r > e, on a IG = I d’où B r I
r1

0

2
( ) =

µ
p

 puis 
r rB M I

r
u M1

0

2
( ) ( )=

µ
p q .

III.A.4) Si r < e, on a IG = J1pr2 d’où B r J r
r1

0 1
2

2
( ) =

µ p
p

=
µ
pe
0

22
Ir

puis 
r rB M I ru M1

0
22

( ) ( )=
µ
pe q .

III.A.5) La courbe ||
r
B 1(M )|| = f(r) est la suivante :

III.B.1) L’énergie magnétique est E LIm =
1
2

2 .

III.B.2) Le champ magnétique est constant donc il n’y a pas de

champ électrique et la densité volumique d’énergie magnétique se réduit à e M B M
m ( ) || ( )||

=
r

2

02µ
.

L’énergie totale est alors E B M dm
ESPACE

= zzz || ( )||
r

2

02µ
t .

N.B. Comme les fils sont modélisés comme infinis, cette énergie est infinie. En fait, il faut
calculer l’énergie contenue dans ne tranche de longueur ℓ du circuit.

III.B.3) Pour une longueur dz de circuit, on peut écrire dEm = 1
2

LlindzI2 d’une part et

dE dE
dz

dzm
m= . En identifiant les deux expressions, on obtient  L dE

dz Ilin
m= 2 1

2  d’où

 e
 r

 ||
r
B 1(M)||

µ
pe
0

2
I
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Llin = + F
HG

I
KJ

F
HG

I
KJ

µ
p

a
e

0

4
1 4 ln .

III.C.1) On utilise le principe de superposition donc le champ magnétique (puis le flux, puis
l’inductance propre) est la somme des champs (flux et inductance) des deux paires de fils parallèles

séparés respectivement de a et de b. On obtient L b a a b1
0 0

4
1 4

4
1 4= + F

HG
I
KJ

F
HG

I
KJ + + F

HG
I
KJ

F
HG

I
KJ

µ
p e

µ
p e

ln ln .

Comme b >> a, on peut faire l’approximation L a b1
0

4
1 4= + F

HG
I
KJ

F
HG

I
KJ

µ
p e

ln .

Pour N spires, on a 
r
B  = N

r
B 1 et F = NFSPIRE(

r
B ) = N2F(

r
B 1) donc L = N2.L1.

III.C.3) A.N. L1
2

7

35 4 10
4

1 4 0 5
10

2=
¥

+ F
HG

I
KJ

F
HG

I
KJ

-

-

p
p

ln ,  = 125 µH.

Cette valeur d’inductance est relativement faible mais comme il n’y a pas de noyau ferroma-
gnétique pour augmenter le flux, elle paraît vraisemblable.

III.D.1-a) La composante normale du champ magnétique est conservée à la traversée de
l’interface air-conducteur. Comme le conducteur est parfait, le champ magnétique est nul dans le
conducteur. On en déduit que la composante normale du champ magnétique extérieur est nulle. Le
champ magnétique extérieur est donc tangent à l’interface.

b) Puisque 
r
B (y = 0+) = 

r
0 dans le conducteur, la relation de passage pour la compo-

sante tangentielle s’écrit 
r
B (y = 0–) = µ0

r
J S Ÿ (– ru Y) soit 

r
B(y = 0–) = µ0

ru YŸ
r
J S .

Dans la partie II.C.2-c), on a montré que 
r r rJ t B t eS air Z( ) ( )= Ÿ

1

0µ
. Avec les notations de cette

partie, reZ = ru Y et 
r
B air(t) = 

r
B (y = 0–) donc les vecteurs 

r
B (y = 0–), ru Y et 

r
J S(t) forment un trièdre

direct avec ||
r
B (y = 0–)|| = µ0||JS||. Ce qui correspond bien à la relation établie ci-dessus.

c) Dans le problème C, la distribution de courant est invariante par symétrie par rap-
port au plan (O, x, z) donc le champ magnétique en un point de ce plan est perpendiculaire à ce
plan : cela ne correspond pas au problème A.

Dans le problème D, la distribution de courant est invariante par antisymétrie par rapport au
plan (O, x, z) donc le champ magnétique en un point de ce plan est contenu dans ce plan : cela
correspond au problème A.

d) La résultante des champs 
r
B 1 et 

r
B 2 crée par les deux

fils d’abscisse a
2

 est portée par ru X donc B M I
r

u M u( ) ( ).= ¥2
2

0µ
p q

r r
X,

avec r h x a
= + -F

HG
I
KJ

2
2

2
 et ruq.

ruX = =

+ -F
HG

I
KJ

h

h x a2
2

2

 donc

r rB M I h

h x a
u( ) = ¥

+ -F
HG

I
KJ

2
2

2

0

2
2

µ
p X .

Le champ crée par les deux fils d’abscisse - a
2

 s’obtient en remplaçant a par –a et I par –I

dans l’expression précédente. Le champ résultant est donc

r rB M I h

h x a
h

h x a
u( ) =

+ -F
HG

I
KJ
-

+ +F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
µ
p
0

2
2

2
2

2 2

X.

y

x

h

a/2

 § I

 ƒ I
 
r
B 1

 
r
B 2 M(x, z)
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Avec la relation de passage, on obtient 
r r rJ t B M uS Y( ) ( )= Ÿ

1

0µ
 soit

r rJ M Ih

h x a h x a
uS Z( ) =

+ -F
HG

I
KJ
-

+ +F
HG

I
KJ

F

H

GGGG

I

K

JJJJp
1

2

1

2
2

2
2

2 .

III.D.2-a) La densité volumique de puissance dissipée par effet Joule s’écrit p J E=
r r
. =

r
J 2

0g

d’après la loi locale d’Ohm. Comme 
r

r

J J
= S

d
 dans le modèle décrit, la puissance dissipée dans la

tranche de conducteur d’épaisseur ℓ le long de ru Z, infinie le long de ru X et d le long de ru Y est

P dy dz J x dx
L

= z z z-•+•0 0

2

2
0

d

d g
S ( ) =

-•

+•zd
d g

l
J x dxS

2

2
0

( )  soit par unité de longueur selon ru Z, P J x dxlin S=
-•

+•z1

0

2

dg
( ) .

b) Avec l’expression de JS, on obtient

P Ih

h x a h x a
dxlin = F

HG
I
KJ

+ -F
HG

I
KJ
-

+ +F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
-•

+•z1 1

2

1

2
0

2

2
2

2
2

2

dg p
.

On peut écrire 
H

h x a h x a
dx

h x
h

a
h

x
h

a
h

dx=
+ -F
HG

I
KJ
-

+ +F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
=

+ -F
HG

I
KJ
-

+ +F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
-•

+•

-•

+•z z1

2

1

2

1 1

1
2

1

1
2

2
2

2
2

2

2 2 2

2

. En posant

k a
h

=
2

 et u x
h

=  soit dx = h.du, il vient H
h u k u k

du=
+ -

-
+ +

F
HG

I
KJ-•

+•z1 1
1

1
12 2

2

b g b g
=

+

1

1 1
2

h
k

p
=

+ F
HG

I
KJ

1

1 2 2h h
a

p . On obtient donc P Ih
h h

a

lin = F
HG

I
KJ

+ F
HG

I
KJ

1 1

1 20

2

2dg p
p . Pour une longueur b de conduc-

teur, on obtient P hb
h

a

Iveh =
+ F
HG

I
KJ

1

1 20
2

2

pdg
 qui est bien de la forme Pvéh = RvéhI2 en posant

R hb
h

a

veh =
+ F
HG

I
KJ

1

1 20
2pdg

.

c) Rveh =

+ F
HG

I
KJ

-

1
10 10

0 2 2

1 2 0 2
0 5

3 7 2p( )( )
( , )

( , )
,

 = 7,8¥10–6 W.

La boucle se comporte comme un fil de longueur 2b (en négligeant a devant b) donc sa ré-

sistance est R b
=

1 2
2g peCu

. A.N. R =
¥ -

1
6 10

2 2
107 3 2( )
( )

( )p
 = 2¥10–2 W. La résistance du véhicule est

négligeable devant celle de la boucle.
III.D.3-a) Dans le modèle magnétostatique équivalent, la distri-

bution de courant sur le véhicule est représentée par les deux fils de
cote +h.

y

x
h

a/2

 § I

 ƒ I  
r
B 1

 M(x, –h)
h q
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En un point M de coordonnées (x, –h), la composante sur ru Y du champ 
r
B 1 est

B M I
r

u M u1
0

2Y Y( ) ( ).=
µ
p q

r r  avec r h x a
= + -F

HG
I
KJ( )2

2
2

2

 et ruq.
ruY = cos(q) =

-F
HG

I
KJ

+ -F
HG

I
KJ

x a

h x a
2

2
2

2
2

( )

.

On a donc B M I
x a

h x a1
0

2
22

2

4
2

Y ( ) =
-F

HG
I
KJ

+ -F
HG

I
KJ

µ
p

.

La composante du champ crée par le fil d’abscisse - a
2

 s’obtient en remplaçant a par –a et I

par –I dans l’expression précédente. La composante du champ résultant est donc

B x h I
x a

h x a

x a

h x aY( , )- =
-F

HG
I
KJ

+ -F
HG

I
KJ
-

+F
HG

I
KJ

+ +F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
µ
p
0

2
2

2
22

2

4
2

2

4
2

.

b) Le flux à travers une surface de côté ℓ sur Oz et a sur Ox orientée par ru Y est

F = z z-dz B M u dy
L

a

a

0
2

2
r r( ). Y =

-F
HG

I
KJ

+ -F
HG

I
KJ
-

+F
HG

I
KJ

+ +F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
-zl

µ
p
0

2
2

2
2

2

2

2
2

4
2

2

4
2

I
x a

h x a

x a

h x a
dxa

a
.

Notons H
x a

h x a
dxa

a

=
-F

HG
I
KJ

+ -F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
-z 2

4
2

2
2

2

2  =
-F

HG
I
KJ

+ -F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
-z1

2
2 4

1
2 4

2
2

2

h

x
h

a
h

x
h

a
h

dxa

a
et posons u x

h
a
h

= -
2 4

 tel que

dx = 2hdu. Il vient H
h

u
u

hdua
h

=
+

F
HG

I
KJ-z1

2 1
22

2

0
= + +L

NM
O
QP-

1
2

1 2

2

0

ln u C
a
h

c h = - + F
HG

I
KJ

F
HG

I
KJ

1
2

1
2

2

ln a
h

.

On obtient la valeur de H
x a

h x a
dxa

a

'=
+F

HG
I
KJ

+ +F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
-z 2

4
2

2
2

2

2  en changeant a en –a d’où

H
x a

h x a
dxa

a

'=
-F

HG
I
KJ

+ -F
HG

I
KJ

F

H

GGGG

I

K

JJJJ
-z 2

4
2

2
2

2

2  = –H. On obtient donc F = - ¥ + F
HG

I
KJ

F
HG

I
KJl

µ
p
0

2

2
2 1

2
1

2
I a

h
ln .

En orientant la surface dans le sens contraire de ru Y, on obtient un flux par unité de longueur

suivant Oz qui vaut F lin = + F
HG

I
KJ

F
HG

I
KJ

µ
p
0

2

2
1

2
I a

h
ln .

c) Si la boucle a une longueur b le long de Oz, alors le flux induit par le champ ma-

gnétique du véhicule vaut Fveh = + F
HG

I
KJ

F
HG

I
KJ

µ
p
0

2

2
1

2
b a

h
Iln .

III.D.4-a) Par définition du coefficient d’autoinduction L, on peut écrire
FP = LI pour le flux orienté comme ru Y d’après le sens du courant dans la bou-
cle.

 y

 z

 x
 b

 I

 a
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On remarque que le flux crée par les courants induits est de signe contraire, ce qui est
conforme à la loi de Lenz.

b) Le flux total orienté dans le sens de ru Y est donc F = FP – Fvéh soit

F = - + F
HG

I
KJ

F
HG

I
KJLI b a

h
Iµ

p
0

2

2
1

2
ln . L’inductance propre diminue et devient donc

L L b a
h

' ln= - + F
HG

I
KJ

F
HG

I
KJ

µ
p
0

2

2
1

2
 et la variation DL b a

h
= - + F

HG
I
KJ

F
HG

I
KJ

µ
p
0

2

2
1

2
ln .

c) D’après la question III.C.3, l’inductance propre de la boucle pour N = 1 vaut

L = 125/25 = 5 µH. On a donc Sboucle =
¥
¥

+
F
HG

I
KJ

F
HG

I
KJ

-

-

( )( )
( )

ln ,
( , )

4 10 2
2 5 10

1 0 5
2 0 2

7

6

2
p
p

 = 8¥10–2.

d) Le champ magnétique crée au voisinage de la surface du véhicule est N fois plus
grand donc le courant induit dans le véhicule aussi. Le flux induit par ce courant dans une boucle
est donc N fois plus grand et dans les N boucles, il est N2 fois plus grand. On a donc DLN = N2DL
comme LN = N2L et la sensibilité de la boucle ne dépend pas de N.

Partie IV Étude du fréquencemètre

IV.A.1) Comme iS = 0, on a i C d
dt

e t V t= -' ' ( ) ( )b g  et V(t) = R’i + V0. On en déduit

V t V
R

C d
dt

e t V t( )
'

' ' ( ) ( )-
= -0 b g d’où 

dV t
dt

V t
R C

de t
dt

V
R C

( ) ( )
' '

' ( )
' '

+ = + 0 .

IV.A.2) Pour t < 0, e’ est constant comme V0. Donc il s’est établi un régime constant. La
présence du condensateur assure la nullité du courant constant. On a donc V = V0 pour t < 0.

La tension aux bornes du condensateur est une grandeur continue quel que soit t, en particu-
lier t = 0. On a VC = e’ – V donc, pour t < 0, on trouve VC = E – V0. Comme VC(t = 0+) = VC(t = 0–),
on obtient –E – V(t = 0+) = E – V0 d’où V(t = 0+) = V0 – 2E.

Comme 0 < V0 < 2E par hypothèse, on a V(t = 0+) < 0.
IV.A.3) Comme e’ est constant pour t > 0, l’équation différentielle se réduit à

dV t
dt

V t
R C

V
R C

( ) ( )
' ' ' '

+ = 0  dont la solution générale est V t V ae
t

( ) = +
-

0
t

en posant t = R’C’.
La condition initiale se traduit par V(t = 0+) = V0 + a d’où

a = –2E. On obtient donc V t V Ee
t

( ) = -
-

0 2 t .
IV.A.4) On en déduit le graphe suivant :
IV.B) L’impédance d’entrée de l’A.Op est infinie donc

V+(t) = e(t). Par construction, V– = 0. L’A.Op n’est pas bouclé sur
son entrée inverseuse donc il fonctionne en régime saturé.

On a e’(t) = +Vsat tant que V+ – V– > 0 soit tant que e(t) > 0.
On a e’(t) = –Vsat tant que V+ – V– < 0 soit tant que e(t) < 0.

Comme la fréquence de e(t) vérifie f
R C

<<
1
' '

 soit t << T (période du signal sinusoïdal), on

peut considérer que le régime constant a le temps de s’établir entre deux bascules de l’A.Op.
La bascule +Vsat æÆ –Vsat correspond à celle étudiée à la question précédente en rempla-

çant E par Vsat. (La condition 0 < V0 < 2Vsat est supposée vérifiée par hypothèse).
Prenons comme nouvelle instant origine une bascule –Vsat æÆ +Vsat de l’A.Op. On a donc

e’ = –Vsat et V = V0 pour t = 0–. On en déduit VC(0–) = –Vsat – V0. La continuité de VC entraîne

 e’(t)

 t

 V(t) V0

 E

 V0 – 2E

 –E
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VC(0+) = Vsat – V(t = 0+) = –Vsat – V0. On en déduit V(t = 0+) = V0 + 2Vsat et la solution de l’équation

différentielle s’écrit V t V V e
t

( ) = +
-

0 2 sat
t .

On en déduit les chronogrammes ci-contre :
IV.C.1) L’A.Op n’est pas bouclé sur son entrée inverseuse donc il ne fonctionne pas en ré-

gime linéaire.
IV.C.2) D’après la question précédente, la tension

de sortie de l’A.Op est constante. Le condensateur est
chargé donc il n’y a pas de courant dans sa branche.
Comme l’impédance de l’entrée + est infinie, le courant
circulant dans le résistance est nul donc V+(t = 0–) = 0.

Pour t < 0, V–(t = 0–) = U(t = 0–) = V0 donc
V+(t = 0–) – V–(t = 0–) < 0. On en déduit que S(t = 0–) = –
Vsat.

IV.C.3) Lorsque V– passe à la valeur V0 – 2Vsat < 0,
on peut supposer que V+ – V– devient positif donc l’A.Op bascule en saturation haute.

La tension aux bornes du condensateur est continue donc
V+(t = 0–) – S(t = 0–) = V+(t = 0+) – S(t = 0+)

soit 0 – (–Vsat) = V+(t = 0+) – (Vsat). On en déduit V+(t = 0+) = 2Vsat .
On vérifie que V+(t = 0+) – V–(t = 0+) = (2Vsat) – (V0 – 2Vsat ) = 4Vsat –V0 > 0 : l’A.Op bascule effec-
tivement.

IV.C.4) La tension V+ ne varie pratiquement pas pendant la durée t donc V+(t = t –) = 2Vsat.
À l’instant t = t, V– passe à la valeur V0. Comme V0 < 2Vsat, on peut supposer que V+ – V– reste po-
sitif donc l’A.Op ne bascule pas.

Si c’est le cas, la continuité de la tension aux bornes du condensateur conduit
à V+(t = t+) = 2Vsat . On a bien V+(t = t+) – V–(t = t+) > 0. L’hypothèse est vérifiée : l’A.Op ne bas-
cule pas entre t = t – et t = t+.

IV.C.5-a) Comme i+ = 0, on peut écrire C d
dt

S t V t V t
R

( ) ( ) ( )
- =

-
+

+b g 0  d’où

dV t
dt

V t
RC

dS t
dt

+ ++ =
( ) ( ) ( ) . Comme S = –Vsat, l’équation devient 

dV t
dt

V t
RC

+ ++ =
( ) ( ) 0  dont la solution est

V t V e
t

RC
+

-
=( ) 2 sat  compte tenu de la condition initiale en t = 0+.

b) L’A.Op bascule en saturation basse lorsque V+ = V– = V0. Comme lim ( )
t

V t
Æ• + = 0,

cela est possible à l’instant t1 tel que 2
1

0V e V
t

RC
sat

-
=  soit t RC V

V1
0

2
=

F
HG

I
KJln sat .

La continuité de la tension aux bornes du condensateur se traduit par
V+(t = t1

–) – S(t = t1
–) = V+(t = t1+) – S(t = t1

+)
soit V0 – Vsat = V+(t = t1+) – (–Vsat) d’où V+(t = t1

+) = –2Vsat.
IV.C.6-a) On a vu que l’A.Op bascule à l’instant t1. Comme S est constant, l’équation diffé-

rentielle vérifiée par V+(t) est toujours dV t
dt

V t
RC

+ ++ =
( ) ( ) 0 dont la solution est V t V e

t t
RC

+

-
-

= -( ) 2
1

sat

compte tenu de la condition initiale en t = t1
+.

b) En t = T/2, V– passe à la valeur V0 + 2Vsat. Comme V+ est négatif, V+ – V– reste né-
gatif donc l’A.Op reste en saturation basse.

IV.C.7) Les chronogrammes sont dessinés ci-dessous :
On peut dire que l’état stable du montage est tel que S = –Vsat. Il reste dans cet état tant

qu’une impulsion négative n’est pas appliquée à l’entrée inverseur du premier A.Op. Une fois bas-

 Vsat

 V0

 –Vsat

V0 + 2Vsat

V0 – 2Vsat

 e’(t)

 e(t)

V(t)

 t
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culé dans l’état S = +Vsat, il n’y reste que pendant la durée
t1 définie par les caractéristique du montage (R, C , V0) et
non par celles du signal entrant U(t). Cet état de fonction-
nement n’est donc pas stable. On a donc affaire à un
montage monostable.

IV.C.8) On a vu que la bascule dans l’état instable
se produit lorsque V+ – V– devient négatif, alors que V+ = 0
donc dès que V– devient positif, quelle que soit la forme de
V–(t). La tension V(t) générée par le module d’entrée
convient donc aussi.

IV.D.1) Dans la partie IV.C, on a supposé t << RC
où t est la durée de l’impulsion et RC << T pour assurer le retour de V+ à la valeur nulle avant
l’arrivée du front descendant de V–(t).

Or, d’après la partie IV.B, la durée de
l’impulsion est de l’ordre de R’C’. On doit donc avoir
R’C’ << RC << T.

IV.D.2) On obtient les cinq chronogrammes
suivants :

La bascule du monostable se fait sur un front
descendant du signal e(t), lorsque celui-ci s’annule.

IV.D.3) La valeur moyenne d’un signal corres-
pond à sa composante continue. On utilise un voltmètre
DC pour mesurer <S>.

IV.D.4) On remarque que l’expression donnée
de t0 correspond à celle de t1.

S(t) vaut –Vsat sur la durée T – t0 et +Vsat sur la

durée t0 donc on a < >= - - +S
T

V T t V t1
0 0sat sat( )b g . On

en déduit f
t

S
V

= +
< >F

HG
I
KJ

1
2

1
0 sat

.

IV.E.1) On veut f
LC

=
1

2
1

p eq

 si <S> = 0. Il

faut donc t LC0 = p eq .

IV.E.2) En différentiant logarithmiquement, on obtient df
f

dL
L

= -
1
2

 d’où Df
f

S
sans

boucle=
1
2

.

IV.E.3) L’expression de f obtenue en IV.D.4 s’écrit f f S
V

= +
< >F

HG
I
KJsans

veh

sat

1  et conduit à

Df
f

S
Vsans

veh

sat

=
< > . En identifiant, il reste < > =S S Vveh boucle sat

1
2

.

IV.E.4) Il y a détection du véhicule si <S> > 1
2

<S>véh.

A.N. <S>seuil = 1
4

(8¥10-2)(12) = 240 mV. Cette valeur est facilement mesurable.

 Vsat

V0 + 2Vsat

V0 – 2Vsat

 t

 –Vsat

 2Vsat

 –2Vsat

 t1  T

V–(t)

 V+(t)
 S(t)

 V0

t

t

t

 Vsat

2Vsat

 –Vsat

 –2Vsat

 V+(t)

 S(t)

 V0

 Vsat
 V0

 –Vsat

V0 + 2Vsat

V0 – 2Vsat

 e’(t)

 e(t)

V–(t)

 t1


