Potentiel chimique et activité d'un constituant dans un mélange

nature	a _i	état standard
constituant A _i d'un mélange par- fait de gaz parfaits	$\frac{p_i}{p^0}$	gaz parfait, pur, à $p = p^0 = 1$ bar même T
constituant A _i d'un mélange par- fait sous une phase condensée	X _i	constituant pur, $p = p^0$, même T
solvant	1	solvant pur, $p = p^0$, même T
soluté A _i	$\frac{[A_i]}{c^0}$	soluté dans le même solvant, infin- ment dilué, extrapolé à $c^0 = 1 \text{ mol} \cdot \text{L}^{-1}, \ p = p^0, \text{ même } T$

Equilibre d'un corps pur sous deux phases

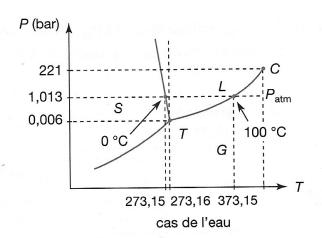


Figure 4

Par exemple, sous la pression atmosphérique ($P_{\rm atm}=1,013.10^5~{\rm Pa}\approx P^0=1~{\rm bar}$) :

REMARQUE – Un corps pur peut exister à l'état solide sous plusieurs variétés cristallines. Il présente le phénomène dit d'*allotropie* ce qui induit des transitions de phase supplémentaires. Par exemple, pour le soufre sous $P_{\rm atm}$:

Nous nous proposons de justifier désormais ces résultats expérimentaux.