



$$4 - \frac{1}{2} \frac{1}{2}$$

Exc) Hodele de l'altre domine
a) de large globale de nueve électrique et de -e ca l'abre
1 4 abrokhé d'un sui proter (metrodité le l'alifer altripe
l'h abrokhé d'un sui proter (metrodité le l'alifer altripe
l'h abrokhé d'un sui proter (metrodité le l'alifer altripe
l'e =
$$\int_{V} \int_{e} dV$$
 were $fe(2)$ qui ded den seubor
d'aux bruss d'intégral
jour une dishibule "demine "de clanges // 100 to
1 aux bruss d'intégral
pour une dishibule "demine "de clanges // 100 to
n driv intégrae de $n=002 + 100$ délastrance
en driv intégrae de $n=002 + 100$ délastrance
 $e = luttk \int_{0}^{+\infty} e^{-2k\sigma} n^{2} dn$
himilive de $0^{4}e^{-2}$ a $n^{2} dn$
 $himilive de $0^{4}e^{-2}$ $\sum_{n=0}^{2} dn$
 $e = tikas^{3} \left[-(v^{2} + lo + l)e^{-v} \right]_{0}^{\infty}$
 $e = tikas^{3} \sum_{n=0}^{2} \left[-(v^{2} + lo + l)e^{-v} \right]_{0}^{\infty}$
 $e = tikas^{3} \sum_{n=0}^{2} \left[-e = \frac{e}{las} \right]$
b). It plen proch par ot et le cente de l'abour sont
c) de plans de syn (stalk lept syn. Net r' -ne(n')= n(m))
 $\vec{e} = f(n) \vec{e}$
 $f(\vec{e}) = d\vec{e} = -\vec{e}$ $\vec{e} = 100$$

Attur & Coatrainant an eas clorique le clarge infinieure
we sea mulle caligoriques l'que pour
$$n \rightarrow ho & on au moinr
 $R \simeq 0$ pour $n >> ao . On me peut plus distingues avec la
fraticie $n = R$ l'int et l'act. de la distribut !
fraticie $n = R$ l'int et l'act. de la distribut !
fraticie $n = R$ l'int et l'act. de la distribut !
 $R = 0$ probe
Quet = $+e + hTiK \int e^{-\frac{1}{200}} e^{-\frac{1}{200}} n^{e} dn$
 $R = e + TIK as^{2} \left[-(vt + 2v + t)e^{-v} \right]^{n}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} \left[4a^{2} + 4n + 2 \right] e^{-\frac{1}{200}}$
 $R = e + TIK as^{3} - TIK as^{3} e^{-\frac{1}{200}}$
 $R = e^{-\frac{1}{200}} e^{-\frac{1}{200}} e^{-\frac{1}{200}} e^{-\frac{1}{200}}$
 $R = e^{-\frac{1}{200}} e^{-\frac{1}{200}} e^{-\frac{1}{200}} e^{-\frac{1}{200}} e^{-\frac{1}{200}}$
 $R = e^{-\frac{1}{200}} e^{-\frac{1}{200}$$$$

une
$$(R^2) = \frac{1}{4} \frac{1}{4}$$

d) Change totale
$$Q = \int_{W}^{\infty} \overline{\sigma} dS + \int_{W}^{\infty} \rho(\omega) d\omega dS$$

 $Q = \overline{\sigma} S + S \int_{W}^{\infty} \rho(\omega) d\omega$
 $\frac{1}{2} = \overline{\sigma} + \int_{W}^{\infty} \frac{1}{2} e^{-\frac{2}{2}\omega} d\omega$
 $\frac{1}{2} = -\frac{1}{2} e^{-\frac{1}{2}\omega} d\omega$
 $\frac{1}{2} = -\frac{1}{2} e^{-\frac{1}{2}\omega} e^{-\frac{1}{2}\omega} \int_{0}^{\infty}$
 $\frac{1}{2} = 0 \int_{0}^{1} \frac{1}{2} e^{-\frac{1}{2}\omega} \int_{0}^{\infty}$
 $\frac{1}{2} = 0 \int_{0}^{1} \frac{1}{2} e^{-\frac{1}{2}\omega} \int_{0}^{\infty}$
 $\frac{1}{2} = 0 \int_{0}^{1} \frac{1}{2} e^{-\frac{1}{2}\omega} \int_{0}^{1} \frac{1}{2} e^{-\frac{1}{2}\omega}$