Exercice 5 : Energie et capacité d’un condensateur sphérique

3.a) Dans ce probleme & symétrie sphérique, le champ

électrique est radial et ne dépend que de la distance r au
centre :

E(M)=E(r)3,.

En utilisant le théoréme de Gauss pour une sphére de
méme centre que les conducteurs et de rayon r, on montre
que le champ n’est non nul que dans I'espace intercon-
ducteurs, oli son expression est donnée par la relation :

b) On reprend le calcul conduit dans le cours pour
une boule chargée, en utilisant les éléments de volume
dt=4nr2dr compris entre deux sphéres de rayons
voisins.

[’énergie totale s’obtient en limitant le demaine d’inté-
gration a l'intervalle [R , R, | :
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c’est-a-dire :
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¢) Ladifférence de potentiel entre les conducteurs est :
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ce qui correspond a une capaciteé :
20 Q 3 47580
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d) Ces relations conduisent au résultat attendu :
2
Ele=——— confirmant que I'énergie emmagasinée dans

un condensateur est bien répartie dans tout le domaine
de l'espace ot regne le champ électrique.



Exercice 6 : Cohésion d’une goutte liquide

4. a) Lechamp électrique dans tout I'espace est radial et ne

dépend que de la distance au centre O de la sphére par
raison de symétrie ; son expression s'obtient par appli-
cation du théoréme de Gauss a une sphére de centre
O et rayon r. On doit distinguer les points a I'intérieur
de la sphere (r < R), ott le champ est nul et les points a

= Q

I'extérieur (r > R), ot E =
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L’intégrale conduisant au calcul de I'énergie électrique
totale peut se ramener a une intégrale a une dimension,
si 'on considere comme volume élémentaire la portion
de I'espace entre deux sphéres de méme centre O et de
rayons voisins : r et r + dr. L’élément de volume est alors :

3

En sommant sur le domaine extérieur a la sphére ot le
champ est non nul, on aboutit a I'expression :

dio= d(inr?) =dnridr.

Sl e Q? :
UE—fR 5 €0 T6n2e2rd dqrsdr.

Cette intégrale indéfinie converge car la fonction de r

intégrée décroit a grande distance comme —15 Le résultat
est bien : J

b) Lors de la division en deux gouttes identiques, la
charge électrique totale est conservée, ainsi que le volume
(incompressibilité du liquide). On en déduit que chaque
nouvelle goutte porte la charge Q"= Q / 2 et son rayon
est R"=R /%2 . L'énergie du nouveau systéme est la
somme de |'énergie de chaque demi-goutte, puisqu’elles
n’interagissent pas :

Q2

=i

=2 2/3U,.
Lanouvellevaleurd'énergie estinférieure ala précédente,
signe que la transformation peut se faire spontanément
avec libération d’énergie. Ce résultat est prévisible car les
charges présentes sur la sphére se repoussent, favorisant
donc la scission.

c) En réalité, il faut fournir une certaine énergie pour
accroitre la surface du systéme. Or si le rayon de chaque
goutte est R'=R /%2, on en déduit la nouvelle valeur
de la surface :
S'=2-47gR2=2V/3S,
Le travail nécessaire prend la valeur :
W=4nR2A(21/3 - 1).
d) L'égalité de la diminution d’énergie électrostatique

et du travail nécessaire a I'accroissement de surface est
obtenue lorsque I'identité suivante est satisfaite :

2
sa(1-272/%) = 4RR2A(2V3 - 1),
(4}

Numériquement, | Q= 10-11C |.

On en déduit une valeur initiale de densité superficielle
de charge 6 ~ 810> C.m~2. Le champ électrique qui
régnerait au voisinage de cette goutte serait donné par
la relation de discontinuité : 6 /&y~ 107 V.m~1. Cette
valeur est considérable, supérieure au champ électrique
provoquant le claquage de l'air : E gt = 3.10° V.m =1
(Fig. 29). Ainsi, les forces de tension superficielles du
liquide sont suffisantes pour assurer la cohésion des
gouttes.
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Figure 29
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Exercice : Ecrantage dans un électrolyte

1. Les expressions ﬁroposées font intervenir I'énergie potentielle €, =qV d’'un ion de charge g dans le potentiel
V via un facteur de Boltzmann exp (= €,/ kg T). Ce facteur décrit quantitativement une évidence qualitative : les

cations sont repoussés par la charge g positive placée en O alors que les anions sont attirés, ce qui rompt la neutralité
locale de I'électrolyte et modifie ainsi le champ électrique créé.

2. La densité volumique de charges vaut :

p(r)=en, (r)+(—e)n_(r)=nge exp(— %) —nge exp(%) =—2ngpe sh(e V(r)). (E)

kg T

est solution le potentiel :

Soit, compte tenu du fait que le péfel}tiel- ne dépend
)

d2(rv) 2noé2(rV)_0 Vit
dr ek T S

- -
3. On reconnait une équation du deuxieme ordre linéaire a coe;
f(r)=r V(r) dont la solution générale s'écrit :

f(r)=rV(r)= A exp(= = +Bexp§hr
=)+ Be(p)

La condition aux limites V(+ ) = 0 conduit immédi

I'énoncé s’écrit alors : T

4.. L’électrolyte a pour effet de multiplier le potent a (=r/,
distance de I'ordre de quelques D, L’électrolyte a pour ffet d’ec ‘_qg

En I'absence d’électrolyte, deux ions complexes ;;ortang’tv la méme ch

s',agréger. En écrantant ces interactions répulsives, un electrolyte favc
C est ce qui se produit a I'embouchure des fleuves ouI'eau devient salée,
en ions C'est-a-dire & augmenter n et donc & diminuer D dans le modale a
tatif)n al'embouchure des fleuves, il reste juste a remarquer que celle-c
sédimente est plus grosse puisque le poids croit comme r3 alors quele
croit que comme r. ‘

Exercice : Probléme de Laplace en cylindrique

4. a) Le dispositif est invariant par translation le long de
I'axe du cylindre, on en déduit que les grandeurs phy-
siques a déterminer ne dépendent que des coordonnées
dans un plan de cote constante. On raisonnera en coor-
données polaires r et 8. D’autre part, tout plan de cote
z constante étant plan de symétrie, le champ électrique
v est son propre symétrique, donc est contenu dans le
plan. Enfin, le plan yOz est un plan d’antisymétrie pour
le champ appliqué, tandis que xOz est plan de symétrie
pour le probleme. Ces propriétés se manifesteront dans
la dépendance en 6. V(r, 8) est nécessairement paire en
0, alors que V(r, ® — 8) = — V(r, 8) (Fig. 29).



Figure 29

b) L'équation de Laplace peut s'exprimer en coor-
données cylindriques, a laide du formulaire. Pour
la forme proposée, on aboutit a I'équation suivante,
ott 'on note f’ la dérivée premiere de la fonction i

flg+ —lr—f’g + —]‘Efg” =0. Aux points ot le potentiel
r
ne s’annule pas, il est possible de séparer les variables :
267 4 pf! ”
L—f—fi(r) =— §g—(e). Or, puisque les variables r et 6
varient indépendamment I'une de I'autre, cette égalité ne
peut étre vraie en tout point que si les deux membres de
I'équation sont constants. Notons K la valeur commune.

¢) Pour les raisons liées aux propriétés de symétries évo-
quées cidessus, il est naturel de proposer la solution :
g(8) = cos 6, qui correspond a la valeur K = 1. Dans ce
cas, en substituant r" a f(r) dans I'équation ci-dessus, on
aboutital’équationsuivanteenn : n% = 1.Lesdeuxvaleurs
correspondantes : n = + 1 permettent de construire une
solution générale qui soit combinaison linéaire de chaque
solution prise isolément :

v(r, 9)=[Ar+~?—]cose :

d) Les conditions aux limites sont de deux natures : sur
le cylindre et loin de celui-ci. Dans un premier temps
la continuité du potentiel permet d’imposer la relation
V(R, 8)=0 V6. On en déduit: B=~— ARZ?. Ensuite,
loin du cylindre, le champ créé par les charges super-
ficielles s’'estompe et on retrouve le champ extérieur
appliqué :

2 > >
E=E0~3x=Eocose- u, — Egsin® - ug.

Or le gradient du potentiel proposé a pour coordonnées

polaires : %:— U+ % %‘ei - T. On déduit de la limite
r> R la relation A =—E,. Finalement, le potentiel

solution s’écrit :

V(r,0)=Eq [_:'ff" —r—] cos® |.

e)Le champ total se calcule par la relation locale
E = — grad V, ce qui donne ici :

E=E0(1+R2/r2)cose-3,—E0(1—R2/r2)sine~Ee.

Au voisinage extérieur du cylindre, r — R*, on peut
écrire E ~ Eg2cos0 - U,. Le champ électrique est nor-
mal au conducteur (Fig. 30).

REMARQUE — Le champ électrique est nul a I'intérieur du
conducteur (volume équipotentiel).

La valeur de la discontinuité du champ est lice a celle
de la densité surfacique de charge par la relation

e 5 5 ; A
E= 2. Un on obtient 'expression de cette densité :
0
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Figure 30

Notons que les symétries et antisymétries prévues initia-
lement sont toutes respectées ! Ainsi, deux points syme-
triques 'un de l'autre par rapport au plan yOz portent des
densités de charge opposées (Fig. 31) ; on en déduit que
toute portion de cylindre est globalement neutre.

Figure 31

Exercice : Effets de bord dans un condensateur

1. (@) Leslignes de champ sont dirigées vers les potexiﬁels décmlssan v
D) Les armatures sont des équipotentielles. Les lignes de champ

..

oint,

champ qui sortent du condensateur pres d
e lorsqu’on s'éloigne de ses s G
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