- Transmission au travers d' 1 mm le = 4 pins promo pre de present de la b). $p_n = n pi = n A e j(\omega t + k x)$ $\sqrt{n} = -\frac{p_n}{2} = -\frac{n}{2} A e j(\omega t + k x)$ $\int \frac{dus}{dus} \frac{dus}{dui} \frac{dus}{dus} \frac{dus}{dui} \frac{dus}{dui$ • pt = t pi = t $Ae^{i}(\omega t - lik)$ | and or transmisso vt = pt = t $Ae^{i}(\omega t - lik)$ | and or transmisso vt = pt = t and or transmissoc) Tous los points du mu vibrent avec la m'vitesse si l'onde dans le nur y vanie tròs faiblement. La distance caracteristique d'Evolute de la vitesse et Imer, donc si le « Imer) la mon apparaît comme "infiniment" fin et tous ses printe vibrent en phase! -> Equivelent à l'ARUS" d'épar de l'oncle en x = e pour être companse à l'élat de l'oncle de vilenz en x = 0: il] un diphasse of = be entre co 2 points extremes. e jut ~ e j(bt-ke) ssi e-jke ~ 1 balde e nt-jke
enz=0 enz=e soit (ke) (21) Comme la celle ité du son des le nun est donne la celle de l'acceptant de l'accep supplieure à celle de l'air, lair = cair / lour = comm on peut se contenter de le « Jaia / Iman d) de viterre est continue sui chaque interface | donc $V(z=0^{+})=V(z=0^{+})$ en z=0 et $z=0^{+}$ | $V(z=0^{+})=V(z=0^{+})$ avec $V(z=0^{+})=V(z=0^{+})$ can to be points du num out ni viterre $v(x=0^-)=v(x=e^+)$ > lavitese est la m avantet après la C'est nomal on le mun est infinement tin du point de une de la proposat de ondes sonores.

v(x=0) = v(x=e+) -> vi(x=0+) + vx(x=0) = vt(x=e+) = vt(x=0+) A e just Are just = A tesjust e) On aplique le PFD à une section de mur de surface 5 et de marse et d'époissone Pome dyt (x=0t) = Aejwt[1+12-t] Nome x jwx At e sot = A ejut [1+2-5] $\left[\pm \left(1 + \frac{\mu_{\text{mej}}}{2} \right) - 2 = 1 \right]$ f) $\pm \left(1 + \frac{\sum_{n \in J} \omega}{2}\right) + \pm -1 = 1$ in $\pm \frac{1}{2}$ in $\pm \frac{1}{2}$ complexe! $\boxed{t} = \frac{2}{2 + \frac{\rho_{me}}{2} j\omega} = \boxed{\frac{1}{1 + j \frac{\omega}{\omega_0}}} \text{ avec} \left[\frac{\omega_0 - \frac{2t}{\rho_{me}}}{\rho_{me}} \right]$ g) $I_i = \langle p_i v_i \rangle$ $I_i = \frac{1}{2} \operatorname{Re}(p_i v_i^*)$ (d orde 1)It = 1 Re (pt VE*) = 12 Re (t pi x pt*) = 12 Re (t pi x t pt*)

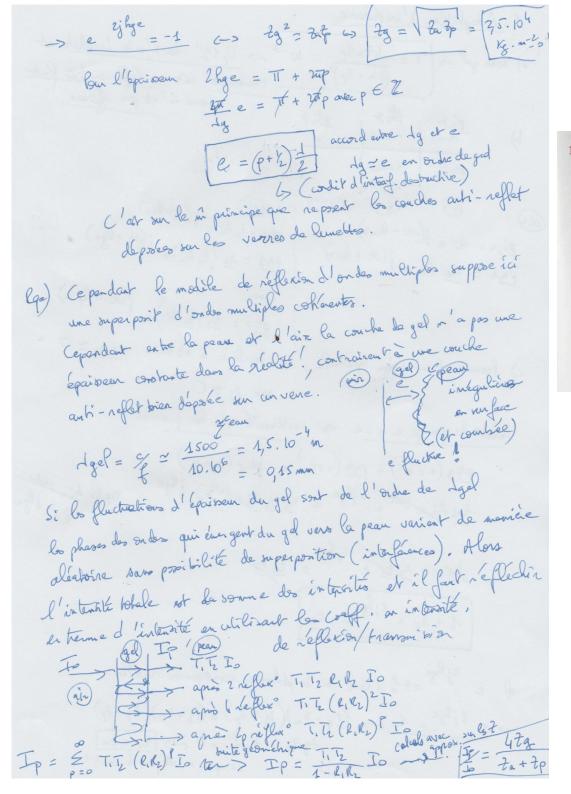
2 - Adaptation d'impedance

c) Pour une transmission optimale, on cherchera à obsenir pra ~0

894 11 20

Relat de parge en x = e -> continuit de la presion

d) e
$$\frac{2j \text{ hye}}{=\pm 1}$$
, réel en impédances aconstiques réelles
 \Rightarrow e $\frac{2j \text{ hye}}{=\pm 1}$, réel en impédances aconstiques réelles
 \Rightarrow e $\frac{2j \text{ hye}}{=\pm 1}$ \Rightarrow ($\frac{1}{2}$) \Rightarrow e \Rightarrow



Ondes sonores : impédances géométriques (surface d'émission/propagation)

1. a) L'onde incidente est de la forme :

$$p_{1i} = A\cos(\omega t - kx)$$

où $k = \omega/c$, et:

$$\vec{v}_{1i} = \frac{A}{Z}\cos(\omega t - kx)\vec{u}_{x}.$$

Similairement, pour l'onde réfléchie,

$$p_{1r} = rA\cos(\omega t + kx)$$

et
$$v_{1r} = -r \frac{A}{Z} \cos(\omega t + kx) \dot{u}_x$$
.

Enfin, en ce qui concerne l'onde transmise,

$$p_{1t} = tA\cos(\omega t - kx)$$

et
$$\underline{v}_{1t} = t \frac{A}{Z} \cos(\omega t - kx) \overline{u}_x$$
.

b) La continuité de la pression s'écrit :

$$p_{1i}(x=0, t) + p_{1r}(x=0, t) = p_{1t}(x=0, t)$$

soit
$$1+r=t$$
.

La conservation du débit volumique donne :

$$S_1(v_{1i}(x=0,t)+v_{1r}(x=0,t))=S_2v_{1t}(x=0,t)$$

soit
$$S_1(1-r) = S_2 t$$

c) On déduit
$$r = \frac{S_1 - S_2}{S_1 + S_2}$$
 et $t = \frac{2S_1}{S_1 + S_2}$

d) On évalue
$$I_i = \langle p_{1i} v_{1i} \rangle = \frac{A^2}{2Z}, I_r = \langle p_{1r} v_{1r} \rangle = -r^2 \frac{A^2}{2Z}$$

et
$$I_t = \langle p_{1t} v_{1t} \rangle = t^2 \frac{A^2}{2Z}$$

Pour les ondes incidente et réfléchie, la section est S_1 , d'où $P_i = I_i S_1$ et $P_r = I_r S_1$ ($P_r < 0$ n'est qu'une question de convention : cela signifie que la puissance est transmise vers la gauche). Pour l'onde transmise, la section est S_2 , d'où $P_i = I_t S_2$.

e) Les coefficients de réflexion et transmission se définissent par :

$$R = \frac{|P_r|}{P_i} = r^2 = \left(\frac{S_1 - S_2}{S_1 + S_2}\right)^2$$

ot -

$$T = \frac{P_t}{P_i} = t^2 \frac{S_2}{S_1} = \frac{4S_1 S_2}{\left(S_1 + S_2\right)^2}$$

On vérifie que, par conservation de l'énergie,

$$R+T=1$$

 \mathfrak{h} En premier lieu, on vérifie que si $S_2 = S_1$, aucune onde réfléchie n'existe et l'onde transmise a en fait la même forme que l'onde incidente.

Si $S_2\gg S_1$, $r\to -1$ et $t\to 0$. On peut alors prendre comme condition aux limites un nœud de surpression (et par conséquent un ventre de vitesse). C'est l'inverse d'un tuyau terminé par un bouchon rigide. Dans ce cas, $R\to 1$ et $T\to 0$, aucune énergie n'est transmise. Afin d'atténuer cet effet, on place un pavillon évasé en sortie d'un tuyau débouchant à l'air libre, comme par exemple une clarinette

830