# Semaine 6: du 03/11 au 07/11

Le programme de colles contient :

- cours et exercices : le(s) chapitre(s) A3 et A4;
- cours uniquement : le(s) chapitre(s) F2 et B1;
- les blocs 1.4, 3.1, 3.2, 3.3 et 3.4 du programme de PCSI Physique avec les questions de cours suivantes :
- Ph 3.1.a. Rappeler la relation liant les différents paramètres physiques d'un gaz parfait et préciser les unités des différents termes.
- Ph 3.1.b. Tracer le diagramme (p, T) de l'eau. Placer les points particuliers (C : critique, III : triple) ainsi que les courbes de changement d'état. Expliquer ensuite pourquoi il est plus long de faire cuire des pâtes en altitude.
- Ph 3.1.c. Tracer le diagramme de Clapeyron pour la transition liquide/vapeur d'un fluide. Nommer ensuite les différentes courbes associées puis démontrer le théorème des moments liant le titre massique en vapeur x et les volumes massiques v,  $v_L$  et  $v_V$ .
- Ph 3.4.a. Un cylindre indéformable et calorifugé de volume  $2V_0$  est séparé en 2 compartiments identiques de volume V par une paroi rigide de masse et de capacité thermique négligeables. Initialement l'un des compartiments est vide, l'autre contient n moles de gaz parfait à la pression  $P_0$  et à la température  $T_0$ . La paroi de séparation est cassée :
  - \* appliquer le premier principe au gaz intérieur au cylindre et déterminer la température finale.
  - $\ast\,$  appliquer le second principe pour déterminer l'expression littérale du terme de création d'entropie. Commenter.

 $\textit{Donn\'ee}: \text{Entropie du gaz parfait}: S(T,V) = S(T_0,V_0) + C_v \ln \left(\frac{T}{T_0}\right) + nR \ln \left(\frac{V}{V_0}\right).$ 

Lycée H. Loritz Page 1/5

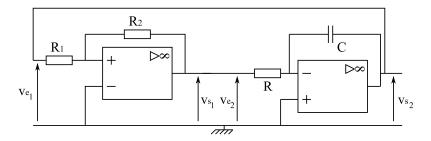
# Chapitre A3: Modulation - Démodulation

## Questions de cours :

- ChA3 Rappeler le montage permettant de moduler (avec ou sans conservation de la porteuse) en amplitude une porteuse  $s_p(t) = S_{0p} \cos(\omega_p t)$  par un signal modulant sinusoïdal  $s_m(t) = S_{0m} \cos(\omega_m t)$  avec  $\omega_p \gg \omega_m$ . Déterminer le spectre du signal obtenu.
- ChA3 Rappeler le montage permettant d'effectuer la démodulation d'amplitude par détection synchrone du signal  $s(t) = S_0 \cos(\omega_p t) (a + b \cos(\omega_m t))$  et permettant de recueillir le signal modulant  $b' \cos(\omega_m t)$ . Justifier les différentes étapes de la démodulation par l'analyse fréquentielle des signaux.

## Programme:

En électronique (p.12-13):


| Notions et contenus                                 | Capacités exigibles                                                                                                                                                                         |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.5. Modulation - Démodulation                      |                                                                                                                                                                                             |
| Transmission d'un signal codant une information va- | Définir un signal modulé en amplitude, en fréquence,                                                                                                                                        |
| riant dans le temps.                                | en phase.                                                                                                                                                                                   |
| Modulation d'amplitude.                             | Citer les ordres de grandeur des fréquences utilisées pour les signaux radio AM, FM, la téléphonie mobile.  Interpréter le signal modulé comme le produit d'une porteuse par une modulante. |
| Démodulation d'amplitude.                           | Décrire le spectre d'un signal modulé.  À partir de l'analyse fréquentielle, justifier la nécessité d'utiliser une opération non linéaire.                                                  |
|                                                     | Expliquer le principe de la démodulation synchrone.                                                                                                                                         |
|                                                     | Compétence expérimentale : réaliser une modulation d'amplitude et une démodulation synchrone avec un multiplieur analogique.                                                                |

Lycée H. Loritz Page 2/5

# Chapitre A4 : Oscillateurs en électronique

## Questions de cours :

#### ChA4 - Soit l'oscillateur de relaxation suivant :



On suppose  $v_{s2}(t=0)=0$  et  $v_{s1}(t=0)=+V_{\rm sat}.$  Déterminer l'instant  $t_1$  pour lequel la sortie  $v_{s1}$  bascule à  $-V_{\rm sat}.$ 

- ChA4 Établir les conditions théoriques d'auto-oscillation d'un passe-bande d'ordre 2 de fonction de transfert  $\underline{H}(j\omega) = H_0 \frac{jx/Q}{1+jx/Q+(jx)^2} \text{ avec } x = \omega/\omega_0 \text{ bouclé sur un amplificateur de gain } G_0 \text{ } (H_0 \text{ et } G_0 \text{ positifs}).$
- ChA4 Établir l'équation différentielle régissant la tension de sortie d'un passe-bande d'ordre 2 de fonction de transfert  $\underline{H}(j\omega) = H_0 \frac{jx/Q}{1+jx/Q+(jx)^2}$  avec  $x = \omega/\omega_0$  bouclé sur un amplificateur de gain  $G_0$  ( $H_0$  et  $G_0$  positifs). En déduire les conditions permettant d'obtenir une tension oscillante et divergente en sortie du filtre.

#### Programme:

En électronique (p.11):

| Notions et contenus                                                                                            | Capacités exigibles                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3. Oscillateurs                                                                                              |                                                                                                                                                                 |
| Oscillateur quasi-sinusoïdal réalisé en bouclant un filtre passe-bande du deuxième ordre avec un amplificateur | Exprimer les conditions théoriques (gain et fréquence) d'auto-oscillation sinusoïdale d'un système linéaire bouclé.                                             |
|                                                                                                                | Analyser, à partir de l'équation différentielle, l'in-<br>égalité que doit vérifier le gain de l'amplificateur afin<br>d'assurer le démarrage des oscillations. |
|                                                                                                                | Interpréter le rôle des non-linéarités dans la stabili-<br>sation de l'amplitude des oscillations.                                                              |
|                                                                                                                | Compétence expérimentale : mettre en œuvre un oscillateur quasi-sinusoïdal et analyser les spectres des signaux générés.                                        |
|                                                                                                                | Capacité numérique : à l'aide d'un langage de programmation, simuler l'évolution temporelle d'un signal généré par un oscillateur.                              |
| Oscillateur de relaxation associant un intégrateur et                                                          | Décrire les différentes séquences de fonctionnement.                                                                                                            |
| un comparateur à hystérésis.                                                                                   | Exprimer les conditions de basculement. Déterminer                                                                                                              |
|                                                                                                                | l'expression de la période.                                                                                                                                     |
| Générateur de signaux non sinusoïdaux.                                                                         |                                                                                                                                                                 |
|                                                                                                                | Compétence expérimentale : mettre en œuvre un oscillateur de relaxation et analyser les spectres des signaux générés.                                           |

Lycée H. Loritz Page 3/5

# Chapitre F2: Propagation unidimensionnelle avec dispersion et absorption

## Questions de cours :

- ChF2 Établir la relation de dispersion dans le cas d'un câble coaxial possédant une résistance linéique.
- ChF2 Étudier la propagation de la superposition de deux pseudo-OPH de fréquences proches dans un milieu dispersif non absorbant caractérisé par sa relation de dispersion; définir et exprimer les vitesse de phase et vitesse de groupe.
- ChF2 Pour une relation de dispersion au choix de l'interrogateur, exprimer la vitesse de phase et la vitesse de groupe. Préciser si la propagation est associée à un phénomène de dispersion.
- ChF2 Soit l'expression complexe de la pseudo-OPH suivante, avec  $\underline{k} = k' + jk''$ :

$$\underline{s}(x,t) = S_0 \exp(j(\omega t - \underline{k}x))$$

Tracer le graphe de la solution réelle s(x,t) à t fixé, en s'intéressant aux différents cas selon les signes de k' et k''. On précisera la distance caractéristique d'atténuation et la période spatiale de la pseudo-OPH sur le graphe, exprimées à l'aide de k' et k''.

#### Programme:

En physique des ondes (p.32):

| Notions et contenus                                 | Capacités exigibles                                                                                                                                                      |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 6.2. Phénomènes de propagation linéaires : abs      | sorption et dispersion                                                                                                                                                   |  |  |
| 6.2.1. Relation de dispersion                       | 6.2.1. Relation de dispersion                                                                                                                                            |  |  |
| Propagation unidimensionnelle d'une onde harmo-     | Identifier le caractère linéaire d'une équation aux dé-                                                                                                                  |  |  |
| nique dans un milieu linéaire.                      | rivées partielles.                                                                                                                                                       |  |  |
|                                                     | Établir la relation de dispersion.                                                                                                                                       |  |  |
|                                                     | Relier, pour un signal proportionnel à $\exp(j(\omega t -   $                                                                                                            |  |  |
|                                                     | $(\underline{k}x)$ ), la partie réelle de $\underline{k}$ à la vitesse de phase et la                                                                                    |  |  |
|                                                     | partie imaginaire de $\underline{k}$ à une dépendance spatiale de                                                                                                        |  |  |
|                                                     | l'amplitude.                                                                                                                                                             |  |  |
| 6.2.2. Paquet d'ondes                               |                                                                                                                                                                          |  |  |
| Superposition de deux ondes de fréquences proches   | Déterminer la vitesse de groupe.                                                                                                                                         |  |  |
| dans un milieu non absorbant et dispersif.          |                                                                                                                                                                          |  |  |
|                                                     | Associer la vitesse de groupe à la propagation de l'enveloppe du paquet d'ondes.                                                                                         |  |  |
|                                                     | Capacité numérique : à l'aide d'un langage de programmation, simuler la propagation d'un paquet d'ondes dans un milieu dispersif et visualiser le phénomène d'étalement. |  |  |
| Domaine spectral d'un paquet d'onde de durée finie. | Énoncer et exploiter la relation entre les ordres de grandeur de la durée temporelle d'un paquet d'onde et la largeur fréquentielle de son spectre.                      |  |  |

Lycée H. Loritz Page 4/5

# Chapitre B1: Thermodynamique: systèmes fermés & systèmes ouverts

## Questions de cours :

- ChB1 Énoncer les principes de la thermodynamique pour une transformation élémentaire d'un système fermé.
- ChB1 Soit un système fermé contenant n moles de gaz parfait. À l'aide d'une écriture différentielle de l'équation d'état des gaz parfaits, préciser l'influence d'une augmentation de température ou d'une augmentation de volume du système sur la pression.
- ChB1 Rappeler le théorème des moments et illustrer son interprétation sur un diagramme (P, v),  $(\log P, h)$  ou (T, s).

Pour ces deux questions de cours, une description précise (schéma et hypothèses) des systèmes étudiés est attendue :

- ChB1 Établir la conservation de la masse lors d'un écoulement unidimensionnel stationnaire.
- ChB1 Établir le premier principe appliqué aux machines à écoulement stationnaire.

#### Programme:

En phénomènes de transport (p.14):

| Notions et contenus                                                    | Capacités exigibles                                                                           |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| 2.2.1. Formulation infinitésimale des principes de la thermodynamique  |                                                                                               |  |
| Premier principe.                                                      | Énoncer et exploiter les principes de la thermodynamique pour une transformation élémentaire. |  |
| Deuxième principe : $dS = \delta S_e + \delta S_c$ avec $\delta S_e =$ |                                                                                               |  |
| $\delta Q/T_0$ pour une évolution monotherme.                          | Utiliser avec rigueur les notations d et $\delta$ en leur attachant une signification.        |  |

En transformations de la matière (p.35) :

| Notions et contenus                                                                                 | Capacités exigibles                                      |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| 7.2. 2 <sup>ème</sup> principe de la thermodynamique appliqué aux transformations physico-chimiques |                                                          |  |
| Identités thermodynamiques.                                                                         | Citer les expressions des différentielles de U, H. (uni- |  |
|                                                                                                     | quement composition fixe pour l'instant).                |  |

En bilans macroscopiques (p.18-19):

| Notions et contenus                                               | Capacités exigibles                                                                                                                                                    |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3.1. Définition d'un système fermé pour les bilans macroscopiques |                                                                                                                                                                        |  |
| Système ouvert, système fermé.                                    | Définir un système fermé approprié pour réaliser un                                                                                                                    |  |
|                                                                   | bilan de grandeur extensive.                                                                                                                                           |  |
| 3.2. Bilans d'énergie                                             |                                                                                                                                                                        |  |
| Bilans thermodynamiques.                                          | Exprimer les principes de la thermodynamique pour un écoulement stationnaire sous la forme : $\Delta h + \Delta e_c + \Delta(gz) = w_u + q$ ; $\Delta s = s_e + s_c$ . |  |

Lycée H. Loritz Page 5/5