

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE P.S.I.

Année 2023 - 2024

C2 : Résolution et analyse du comportement des systèmes asservis

TD 3 - Analyse et résolution temporelle des systèmes asservis (C2-1)

Compétences

• Modéliser

- Modéliser le signal d'entrée.
- Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.
- Modifier les paramètres et enrichir le modèle pour minimiser l'écart entre les résultats analytiques et/ou numériques et les résultats expérimentaux.

• Résoudre

- Déterminer la réponse temporelle.
- Mener une simulation numérique.
- Résoudre numériquement une équation ou un système d'équations.
- Expérimenter
 - Choisir la grandeur physique à mesurer ou justifier son choix.

Exercice 1 : Résolution numérique pour l'analyse temporelle des systèmes

Source : Emilien DURIF

Pour la mise en oeuvre du TP on pourra utiliser un notebook développé sur Capytal. Avec le QR code ci-contre ou l'url ci-dessous, vous pourrez vous connecter via votre identifiant ENT.

https://capytale2.ac-paris.fr/web/c/
0d3e-1837894

1 Système du premier ordre

On donne la fonction de transfert :

$$H(p) = \frac{K}{1 + \tau \cdot p}$$

a) Réponse à un échelon (indicielle)

On cherche à calculer la réponse temporelle s(t) à un échelon e(t) d'amplitude e_0 :

$$e(t) = e_0 \cdot u(t).$$

avec les conditions initiales nulles (s(t) = 0). La réponse analytique d'un système du 1^{er} ordre à un échelon est de la forme :

$$s(t)=K\cdot e_0\left(1-e^{-t/\tau}\right)\cdot u(t).$$

Q 1 : Donner l'expression du problème de Cauchy lié à ce problème. Il s'agira de définir y(t) et F(y(t), t). On note h le pas de discrétisation temporelle. **Q 2 : Donner la suite d'instructions permettant d'implémenter la méthode, de la résoudre puis d'obtenir le tracé ci contre avec** $e_0 = 1$, K = 1 et $\tau = 2$.

b) Réponse à une rampe

Dans ce cas, l'entrée est une rampe :

$$e(t) = a t u(t)$$

La réponse d'un système du 1^{*er*} ordre soumis à une rampe est de la forme :

$$s(t) = K a \left(t + \tau \left(e^{-t/\tau} - 1 \right) \right) u(t).$$

Q 3 : Donner l'expression du problème de Cauchy lié à ce problème. Il s'agira de définir y(t) et F(y(t), t). **Q 4 :** Donner la suite d'instructions permettant d'implémenter la méthode, de la résoudre puis d'obtenir le tracé ci-contre (avec K = 1, a = 1,5 et $\tau = 3s$).

2 Analyse temporelle des systèmes du second ordre

On donne la fonction de transfert :

$$H(p) = \frac{K}{\frac{1}{\omega_0^2} p^2 + \frac{2\xi}{\omega_0} p + 1}$$

a) Réponse indicielle d'un second ordre

On cherche à calculer la réponse temporelle s(t) à un échelon e(t) d'amplitude e_0 :

avec les conditions initiales nulles (s(t) = 0 et s'(t) = 0).

Régime apériodique <i>x</i> > 1	Régime apériodique critique <i>xi</i> = 1	Régime pseudo périodique <i>x</i> < 1
$s(t) = Ke_0 \left[1 - \frac{1}{p_2 - p_1} \left(p_2 e^{p_1 t} - p_1 e^{p_2 t} \right) \right]$	$s(t) = Ke_0 \left[1 - (1 + \omega_0 t)e^{-\omega_0 t} \right]$	$s(t) = Ke_0 \left[1 - \frac{e^{-\xi\omega_0 t}}{\sqrt{1-\xi^2}} \sin\left(\omega_0 \sqrt{1-\xi^2} t + \phi\right) \right]$

On rappelle les solutions analytiques selon les valeurs de ξ

En posant $\xi = \cos(\phi)$ et $\sqrt{1 - \xi^2} = \sin(\phi)$,

Q 5 : Donner l'expression du problème de Cauchy lié au problème du cours. Il s'agira de définir y(t) et F(y(t), t). **Q 6 :** Donner la suite d'instructions permettant d'implémenter la méthode, de la résoudre puis d'obtenir le tracé ci-contre (avec $e_0 = 1$, K = 1 $\omega = 2rad/s$ et $\xi = 0, 5$.)

b) Réponse à une rampe d'un second ordre

Dans ce cas, l'entrée est une rampe :

$$e(t) = a t u(t)$$

Q 7 : Donner l'expression du problème de Cauchy lié au problème du cours. Il s'agira de définir y(t) et F(y(t), t). **Q** 8 : Donner la suite d'instructions permettant d'implémenter la méthode, de la résoudre puis d'obtenir le tracé ci-contre (avec a = 1.5, K = 1 $\omega = 2rad/s$ et $\xi = 0, 1$.)

3 Méthode de Runge-Kutta

Voici ci-dessous le principe de la méthode Runge-Kutta Pour évaluer y'(c), on calcule

$$\frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

où k_1 , k_2 , k_3 et k_4 sont des évaluations des pentes :

 k_1 pente en y_n

- k_2 pente évaluée en $t_n + \frac{h}{2}$ en utilisant k_1 pour estimer $y(t_n + \frac{h}{2})$
- k_3 pente évaluée en $t_n+\frac{h}{2}$ en utilisant k_2 pour estimer $y(t_n+\frac{h}{2})$
- k_4 pente évaluée en $t_n + h$ en utilisant k_3 pour estimer $y(t_n + h)$.

On peut alors montrer que l'erreur locale est en $O(h^5)$. Il s'agit d'une méthode d'ordre de convergence 4.

$$\begin{aligned} k_1 &= F(y_n, t_n) \\ k_2 &= F(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2}) \\ k_3 &= F(y_n + \frac{h}{2}k_2, t_n + \frac{h}{2}) \\ k_4 &= F(y_n + hk_3, t_n + h) \\ y_{n+1} &= y_n + h\left(\frac{k_1 + 2k_2 + 2k_3 + k_4}{6}\right) \end{aligned}$$

Elle est facile à programmer et donc très populaire.

Q 9: Donner le fonction rk(F, a:int, b:int, y0:array, h:float) permettant de renvoyer l'approximation numérique de la solution du problème de Cauchy défini par F sur [a, b] avec pour conditions initiales y_0 et pour pas de discrétisation temporelle h.

Q 10 : Mettre en oeuvre la méthode pour obtenir les solutions approchées et les comparer avec la méthode d'Euler dans les cas des réponses de systèmes du deuxième ordre.

Exercice 2 : Robot 6 axes pour l'usinage robotisée de moules

1 Présentation

Un robot industriel de la Stäubli est utilisé pour réalisé les perçage d'une grande précision pour les évents de de Moules pour le fabriquant Audi.

Sur le centre d'usinage de 8 m de long et de 7 m de large, on peut usiner des moules en acier ou en fonte grise. Les dimensions des moules peuvent aller jusqu'à $4500mm \times 2500mm \times 1000mm$ et peuvent peser jusqu'à 20 000 kg.

Un robot de précision Stäubli contrôle toutes les activités dans la cellule. Il dispose d'une broche d'usinage de 37kW. Le robot six axes présente une charge maximale de 100 kg et un rayon d'action de 2194*mm*. Afin de pouvoir accéder à toutes les positions d'usinage, le robot a été monté sur un rail motorisé.

2 Modélisation

Pour identifier le comportement global du robot, un test avant réglage de la commande de l'axe linéaire a été réalisé. Le signal d'entrée est un échelon de tension d'amplitude +1,5 V débutant à l'instant t=0,5 s. La réponse est la position du chariot sur l'axe linéaire.

Q 11 : Indiquer l'ordre du modèle auquel peut-être identifié l'axe. Justifier. Q 12 : Proposer un modèle de comportement de cet axe.

Exercice 3 : Etudes des actionneurs de gouverne du chasseur rafale

Source : Banque PT SIA 2010

1 Analyser l'actionneur

Bien que le développement des actionneurs électromécaniques (EMA) soit en plein essor dans les avions commerciaux, ils sont encore peu présents dans les avions de chasse, où les actionneurs électro-hydrauliques (EHA) sont encore les seuls utilisés. En effet, malgré leur force, vitesse et accélération, les EMA ne sont pas adaptés à la chasse car ils ont encore une masse embarquée trop importante vis-à-vis du nombre d'actionneurs présents sur l'avion.

FIGURE 1 – Rafale en vol

En effet, sur un avion commercial, la différence de poids entre le réseau électrique et le réseau hydraulique permet de compenser le poids des actionneurs mais ce n'est pas le cas sur un avion de chasse comme le Rafale. De plus, les accélérations répétées peuvent conduire à du grippage dans les pièces mécaniques des EMA.

2 Cahier des charges

Le Rafale a été développé par Dassault est encore aujourd'hui le plus maniable des avions pour la quantité d'armement embarqué. Sa maniabilité vient notamment du pilotage des gouvernes de vol qui est réalisé à l'aide d'actionneurs électro-hydrauliques.

Un élevon est une gouverne placée sur chaque bord de fuite d'une aile delta conjuguant l'action de gouverne de tangage (volet de profondeur) à celle de roulis (aileron). Le terme élevon est la contraction de elevator (gouverne de profondeur) et aileron.

Le diagramme partiel des exigences qui présente les valeurs des performances temporelles que doit réaliser l'actionneur est donné sur la figure 2.

Objectif 1 :

Dans le but de vérifier les performances de rapidité et de précision décrites dans le diagramme des exigences, le modèle comportemental de l'actionneur va permettre de simuler la réponse temporelle et d'analyser ses performances.

Dans cette étude, nous modéliserons la gouverne comme une simple masse et le fuselage de l'avion sera considéré comme fixe.

3 Modélisation du comportement de l'actionneur

- Le comportement de l'actionneur peut être modélisé par :
- son comportement mécanique de la gouverne :
 - $\sigma(t) = p_1(t) p_2(t)$: la différence de pression ou la pression utile dans le vérin (en *Pa*);
 - $S_1 = S_2 = S$: surface utile du vérin (en m^2);
 - F(t): effort résistant variable sur la gouverne (en N);
 - M: masse de la gouverne (en kg);

FIGURE 2 – Diagramme des exigences partiel.

FIGURE 3 – Modélisation de l'actionneur.

- f_v : coefficient de frottement visqueux (en $N \cdot m^{-1} \cdot s$)
- Équation de la dynamique de la gouverne :

$$M \cdot \frac{d^2 y(t)}{dt^2} = S \cdot \sigma(t) - F(t) - f_v \cdot \frac{dy(t)}{dt}.$$
(1)

- son comportement hydraulique :
 - $q_1(t)$ le débit d'alimentation du vérin (en $m^3 \cdot s^{-1}$);
 - *K* le coefficient d'incompressibilité du fluide (en $N \cdot m^{-3} \cdot s^{-1}$);
 - Équation de conservation du débit :

$$q_1(t) = S \cdot \frac{dy(t)}{dt} + \frac{S^2}{K} \frac{d\sigma(t)}{dt}$$
(2)

On noter $\Sigma(p)$ la transformé de Laplace de $\sigma(t)$ et les conditions initiales seront supposées nulles.

Q 13 : Transformer les équations 1 et 2 dans le domaine de Laplace.

Q 14 : Montrer que l'on peut modéliser le comportement de l'actionneur par le schéma bloc ci-dessous. On déterminera alors les paramètres K_f , K_q , a et b en fonction des grandeurs définies ci-dessus.

4 Modélisation de l'asservissement

Chaque actionneur du type « *mesure en position intégrée* » (détecteur inductif intégré dans la tige du vérin) est piloté par un servodistributeur. On peut modéliser le comportement de l'actionneur comme un vérin à partir du modèle de structure de la figure 3 et du paramétrage qui lui est associé.

L'ensemble formé par le tiroir, la tige du piston du vérin et la gouverne, est appelé « équipage mobile ». D'après la question précédente sa position notée y(t) est fonction du débit d'huile, noté $q_1(t)$, à l'entrée de la chambre d'admission du vérin et de l'effort variable sur la gouverne est noté F(t).

On se place dans l'hypothèse des petits déplacements autour d'un point de fonctionnement (position particulière d'équilibre). Le système peut alors être considéré comme linéaire, continu et invariant.

 $u_e(t)$ est la tension de commande variable du servodistributeur.

Q 15 : Pour étudier l'influence du débit, on néglige la contribution de l'effort F(t). Donner la fonction de transfert déplacement/débit définie par : $G(p) = \frac{Y(p)}{Q_1(p)}$.

On admettra que ce résultat est généralisable pour toute position de la tige de vérin.

On continuera également de **négliger l'effort** F(t) (F(t) = 0). Le servodistributeur délivre un débit d'huile $q_1(t)$ proportionnel à sa tension de commande $u_e(t)$ tel que : $q_1(t) = K_e \cdot u_e(t)$ avec $K_e = 2 \times 10^{-4} \text{ m}^3 \text{ s}^{-1} \text{ V}^{-1}$. Le détecteur de position délivre une tension $u_s(t)$ proportionnelle à la position y(t) du tiroir telle que : $u_S(t) = K_c \cdot y(t)$ avec $K_c = 10^3 \text{ Vm}^{-1}$.

Q 16 : En déduire la fonction de transfert en boucle ouverte du système tiroir-vérin-distribution dont la transmittance est : $F_{BO}(p) = \frac{U_s(p)}{U_e(p)}$ sous forme littérale.

Pour boucler le système :

- le signal de la commande du distributeur proportionnel $u_e(t)$ est élaboré à partir :
 - d'un élément permettant de comparer $u_s(t)$ à la tension de consigne $u_c(t)$,
 - d'un amplificateur de gain A;
- le signal de tension de consigne $u_c(t)$ est élaboré à partir de la consigne de position $y_c(t)$ et d'un potentiomètre modélisable par un gain pur identique à K_c .

Q 17 : Compléter le schéma-blocs permettant de définir le système tiroir – vérin – distribution, son contrôle et sa commande.

Q 18 : Déterminer la fonction de transfert en boucle fermée sous sa forme canonique : $H_{BF}(p) = \frac{Y(p)}{Y_c(p)}$ en fonction des différents coefficients littéraux caractérisant le système.

5 Vérifier les performances

Dans la réalité l'actionneur électro-hydraulique se comporte comme un second ordre et la fonction de transfert peut se mettre sous la forme :

$$H_{BF0}(p) = \frac{Y(p)}{Y_c(p)} = \frac{K_0}{1 + \frac{2 \cdot z_0}{\omega_0} p + \frac{p^2}{(\omega_0)^2}},$$

Q 19 : La figure 4 donne la réponse à un échelon de 100 mm. Identifier les valeurs des constantes K_0 , z_0 et ω_0 .

FIGURE 4 – Réponse de l'actionneur à un échelon de 100 mm.

O 20 : À l'aide des figures 4 et 5, vérifier les performances attendues du cahier des charges.

Q 21 : Sur les critères qui sont respectés, quelle est la marge disponible vis-à-vis du cahier des charges?

Afin de ne pas avoir de dépassement, on corrige la valeur de l'amortissement de manière à avoir $z_0 = 1$. Q 22 : Montrer que la fonction de transfert peut se mettre sous la forme $\frac{K_0}{(1+T_0p)^2}$ puis donner l'expression litté-

rale de T_0 .

Q 23 : À partir de la décomposition en éléments simples et de la correspondance entre fonction temporelle usuelle et transformée de Laplace, montrer que l'expression théorique de la réponse de l'actionneur pour une entrée en échelon Y_0 est $y(t) = Y_0 \cdot K_0 \left(1 - e^{-\omega_0 \cdot t} - \omega_0 \cdot t e^{-\omega_0 \cdot t}\right)$. On rappelle que la transformée de Laplace de $\frac{t}{T^2} e^{-t/T}$ **est** $\frac{1}{(Tp+1)^2}$.

6 Retour par rapport à l'objectif initial (détermination des écarts)

Q 24 : Tracer l'allure de la réponse obtenue à la question précédente. Calculer à l'aide de l'expression obtenue la valeur de la position pour un temps de 1.2 ms et conclure sur les performances vis-à-vis du cahier des charges.

Q 25 : Reste-t-il une marge vis à vis du cahier des charges? Quels sont les paramètres sur lesquels il est possible d'intervenir pour la diminuer et améliorer les performances globales de l'avion?

FIGURE 5 – Abaques

f(t)	$F(p) = \mathcal{L}[f(t)]$	f(t)	$F(p) = \mathcal{L}[f(t)]$
<i>u</i> (<i>t</i>)	$\frac{1}{p}$	$\sin(\omega t) u(t)$	$\frac{\omega}{p^2 + \omega^2}$
<i>K u(t)</i>	$\frac{K}{p}$	$\cos(\omega t) u(t)$	$\frac{p}{p^2 + \omega^2}$
<i>K t u</i> (<i>t</i>)	$\frac{K}{p^2}$	$\sinh(\omega t) u(t)$	$\frac{\omega}{p^2 - \omega^2}$
$e^{-at}u(t)$	$\frac{1}{p+a}$	$\cosh(\omega t) u(t)$	$\frac{p}{p^2 - \omega^2}$
$t^n u(t)$	$\frac{n!}{p^{n+1}}$	$e^{-at}\sin(\omega t)u(t)$	$\frac{\omega}{(p+a)^2 + \omega^2}$
$e^{at}t^nu(t)$	$\frac{n!}{(p-a)^{n+1}}$	$e^{-at}\cos(\omega t)u(t)$	$\frac{p+a}{(p+a)^2+\omega^2}$
$\delta(t)$	1	$K \delta(t)$	K

TABLE 1 – Tableau des transformées de Laplace usuelles