DM 1

Exercice 1:.

Q 1 Calculer les intégrales $\int_0^1 \frac{1}{x^2 + 2x + 1} dx$, $\int_0^1 \frac{1}{x^2 + 2x + 5} dx$ et $\int_1^2 \frac{1}{x^2 + 2x} dx$.

Q 2 Calculer les intégrales $\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{\cos^2(x) + 1} dx$, $\int_0^{\frac{\pi}{2}} \frac{\sin(x)\cos(x)}{(\cos^2(x) + 1)^2} dx$.

I Exercice 2:

On pose, pour $n \in \mathbb{N}$, $u_n = \arctan\left(\frac{1}{n^2 + 3n + 3}\right)$.

Q 3 Montrer que la série $\sum u_n$ converge.

Soit x et y deux réels strictement positifs.

Q 4 On suppose que a, b et a + b sont des réel n'appartenant pas à $\left\{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}$. Exprimer $\tan(a+b)$ à l'aide de $\tan(a)$ et $\tan(b)$.

Q 5 Montrer que $\arctan(x) - \arctan(y) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$

Q 6 En déduire que $\arctan(x) - \arctan(y) = \arctan\left(\frac{x-y}{1+xy}\right)$

Q 7 A l'aide de la question précédente, exprimer la série $\sum u_n$ comme série téléscopique et en déduire la valeur de $\sum_{n=0}^{+\infty} u_n$.

Problème:

Le but du problème est de déterminer des fonctions f vérifiant une équation faisant intervenir $f \circ f$.

On suppose que I est un intervalle et on note id_I la fonction identité de I: $\begin{cases} I \to I \\ x \mapsto x \end{cases}$

On pourra utiliser sans démonstration le résultat suivant (réciproque d'un théorème vu en première année):

Théorème 1 Soit I et J deux intervalles de \mathbb{R} et f une application continue de I dans J. Si f est bijective alors f est strictement monotone.

Des solutions de l'équation $f\circ f=id$ pour une fonction de variable réelle à valeurs dans $\mathbb R$

Q 8 Soit f une fonction de I dans I distincte de id_I vérifiant $f \circ f = id$. Montrer qu'il existe $(u, v) \in I^2$ vérifiant u < v et f(u) > f(v).

Q 9 Déterminer les fonctions croissantes de I dans I vérifiant $f \circ f = id_I$.

Q 10 Pour $x \in \mathbb{R}$, on pose $f(x) = x + (-1)^{\lfloor x \rfloor}$. Déterminer $f \circ f$.

Q 11 Pour $x \in [0,1]$, on pose $f(x) = \sqrt{1-x^2}$. Déterminer $f \circ f$.

On suppose dans la suite que I = [0, 1]

Q 12 Déterminer les fonctions affines définies sur I vérifiant $f \circ f = id_I$.

Q 13 Soit φ une bijection de I dans I. On suppose que $f \circ f = id_I$ et on pose $g = \varphi^{-1} \circ f \circ \varphi$. Déterminer $g \circ g$.

Q 14 On suppose que I = [0,1]. Déduire des deux questions précédentes de nouveaux exemples de fonctions $f: I \to I$ vérifiant $f \circ f = id_I$.

Q 15 A quelle condition sur le graphe d'une fonction $f: I \to I$ vérifie-t-elle $f \circ f = id_I$. Pour I = [0,1], tracer le graphe d'une telle fonction (essayez de faire un graphe qui ne correspond à aucune fonction connue).

Remarque Il existe donc "énormément" de fonctions vérifiant cette condition $f \circ f = id_I$.

Equation $f \circ f = -id_{\mathbb{R}}$ pour une fonction continue de \mathbb{R} dans \mathbb{R} .

Q 16 Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue vérifiant $f \circ f = -id_{\mathbb{R}}$. Justifier que f est strictement monotone.

Q 17 En déduire qu'il n'existe pas de fonction $f: \mathbb{R} \to \mathbb{R}$ continue vérifiant $f \circ f = -id_{\mathbb{R}}$.

Equation $f \circ f(x) = \frac{x}{2} + 3$ pour une fonction de classe C^1 de $\mathbb R$ dans $\mathbb R$

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 vérifiant: $\forall x \in \mathbb{R}, f \circ f(x) = \frac{x}{2} + 3$ (condition (C)).

Q 18 Montrer que $\forall x \in \mathbb{R}, \ \frac{f(x)}{2} + 3 = f\left(\frac{x}{2} + 3\right).$

Q 19 En déduire que $\forall x \in \mathbb{R}, f'(x) = f'(\frac{x}{2} + 3)$

Q 20 Soit $x \in \mathbb{R}$. On pose $\begin{cases} u_0 = x \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2} + 3 \end{cases}$. Rappeler le nom de d'une telle suite.

- Justifier qu'il existe une et une seule valeur de x pour laquelle la suite (u_n) est elle constante (on note x_0 cette valeur).
- Pour tout $n \in \mathbb{N}$, exprimer u_n en fonction de n. En déduire que la suite (u_n) converge et préciser sa limite.

Q 21 Montrer que $\forall x \in \mathbb{R}$, $f'(x) = f'(x_0)$. En déduire que f est une fonction affine.

Q 22 Déterminer les fonctions affines de \mathbb{R} dans \mathbb{R} vérifiant la condition (C).

Q 23 Conclure.

Equation $f \circ f = id_E$ pour une fonction $f : E \to E$ où E est un ensemble fini (facultatif)

Soit $n \in \mathbb{N}^*$, E_n un ensemble fini de cardinal n. On note u_n le nombre d'applications f de E_n dans E_n vérifiant $f \circ f = id_{E_n}$ et v_n le nombre d'applications f de E_n dans E_n vérifiant $f \circ f = id_{E_n}$ n'admettant pas de points fixe (c'est-à-dire pour lesquels $\forall x \in E_n, f(x) \neq x$).

Q 24 Déterminer u_1, u_2, v_1 et v_2 .

Q 25 Soit f de E_{n+2} dans E_{n+2} vérifiant $f \circ f = id_{E_{n+2}}$ n'admettant pas de points fixe. Soit $a \in E_{n+2}$ et b = f(a). Montrer que $E_{n+2} \setminus \{a,b\}$ est stable par f.

Q 26 Montrer que pour tout $n \in \mathbb{N}^*$, $v_{n+2} = (n+1)v_n$. (on pourra considérer un élément a de E_{n+2} et discuter suivant la valeur de b = f(a)).

 \mathbf{Q} 27 En déduire la valeur de v_n lorsque n est impair.

Q 28 Donner une expression de v_{2n} en fonction de n.

Q 29 Montrer que pour tout $n \in \mathbb{N}^*$, $u_{n+2} = u_{n+1} + (n+1)u_n$ (on adaptera le raisonnement de la question 26).

Q 30 Ecrire une fonction python de complexité O(n) qui renvoie la liste $[u_1, u_2, \ldots, u_n]$.

Soit f une application de E_n dans E_n vérifiant $f \circ f = id_{E_n}$. On note I_f l'ensemble des points fixes de f. On a donc $I_f = \{x \in E_n, f(x) = x\}$ et on pose $J_f = E_n \setminus I_f$.

Q 31 Montrer que si $x \in J_f$ alors $f(x) \in J_f$. En déduire que J_f est de cardinal pair.

Q 32 Déduire des questions précédentes (en en particulier de la question 28) que $u_n = \sum_{p=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{2p} \frac{(2p)!}{2^p p!}$ (on pourra considérer $\tilde{f}: \begin{cases} J_f \mapsto J_f \\ x \mapsto f(x) \end{cases}$).

Correction DM 1

Exercice 1:

$$\mathbf{R} \ \mathbf{1} \ On \ a \ \int_0^1 \frac{1}{x^2 + 2x + 1} dx = \int_0^1 \frac{1}{(x+1)^2} dx = \left[\frac{-1}{x+1} \right]_0^1 = \frac{1}{2} \cdot et$$

$$\int_0^1 \frac{1}{x^2 + 2x + 5} dx = \int_0^1 \frac{1}{(x+1)^2 + 4} dx = \frac{1}{4} \int_0^1 \frac{1}{\left(\frac{x+1}{2}\right)^2 + 1} dx = \frac{1}{4} \int_0^1 \frac{1}{u^2 + 1} 2du = \frac{1}{2} \arctan 2 - \frac{1}{8} \pi \ et$$

$$\int_1^2 \frac{1}{x^2 + 2x} dx = \int_1^2 \frac{1}{2} \left(\frac{1}{x} - \frac{1}{x+2} \right) dx = \frac{1}{2} \ln 3 - \frac{1}{2} \ln 2.$$

R 2 Le changement de varible $u = \cos(x)$ donne

$$\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{\cos^2(x) + 1} dx = \int_1^0 \frac{-1}{u^2 + 1} du = \frac{1}{4}\pi = et$$

$$\int_0^{\frac{\pi}{2}} \frac{\sin(x)\cos(x)}{\left(\cos^2(x) + 1\right)^2} dx = \int_1^0 \frac{-u}{\left(u^2 + 1\right)^2} du = \int_0^1 \frac{u}{\left(u^2 + 1\right)^2} du = \left[\frac{-\frac{1}{2}}{\left(u^2 + 1\right)^2}\right]_0^1 = \frac{1}{4}.$$

Exercice 2:

R 3 On $a u_n = \arctan\left(\frac{1}{n^2 + 3n + 3}\right) et \lim_{n \to +\infty} \frac{1}{n^2 + 3n + 3} = 0$ et $\arctan(x) \sim_{x \to 0} x$ donc $u_n \sim_{n \to +\infty} \frac{1}{n^2 + 3n + 3}$ donc $u_n \sim_{n \to +\infty} \frac{1}{n^2}$. La série à terme positifs $\sum \frac{1}{n^2}$ converge donc la série $\sum u_n$ converge.

Soit x et y deux réels strictement positifs.

 $\mathbf{R} \ \mathbf{4} \ Les \ r\'eels \ a,b \ et \ a+b \ n\'appartiennent \ pas \ \grave{a} \ \left\{\frac{\pi}{2}+k\pi, \ k\in\mathbb{Z}\right\} \ donc \ ont \ un \ cosinus \ non \ nul.$ $On \ a \ \tan\left(a+b\right) = \frac{\sin\left(a+b\right)}{\cos\left(a+b\right)} = \frac{\sin\left(a\right)\cos\left(b\right)+\cos\left(a\right)\sin\left(b\right)}{\cos\left(a\right)\cos\left(b\right)-\sin\left(a\right)\sin\left(b\right)} \ et \ en \ divisant \ le \ num\'erateur \ et \ le \ d\'enominateur$ $par \cos\left(a\right)\cos\left(b\right), \ \tan\left(a+b\right) = \frac{\tan\left(a\right)+\tan\left(b\right)}{1-\tan\left(a\right)\tan\left(b\right)}.$

 $\mathbf{R} \ \mathbf{5} \ On \ a \ x > 0 \Rightarrow \arctan\left(x\right) \in \left]0, \frac{\pi}{2}\right[\ donc \ 0 < \arctan\left(x\right) < \frac{\pi}{2} \ et \ -\frac{\pi}{2} < -\arctan\left(y\right) < 0 \ donc \ arctan\left(x\right) - \arctan\left(y\right) \in \left]\frac{\pi}{2}, \frac{\pi}{2}\right[.$

 $\textbf{R 6} \ \textit{Posons} \ \alpha = \arctan\left(x\right) - \arctan\left(y\right) \ \textit{et} \ \beta = \arctan\left(\frac{x-y}{1+xy}\right).$ $\textit{Par définition de la fonction arctangente,} \ \beta \in \left] \frac{\pi}{2}, \frac{\pi}{2} \right[\ \textit{et} \ \tan\left(\beta\right) = \frac{x-y}{1+xy}. \ \textit{D'après les questions précédentes,}$ $\alpha \in \left] \frac{\pi}{2}, \frac{\pi}{2} \right[\ \textit{et} \ \tan\left(\alpha\right) = \frac{\tan\left(\arctan\left(x\right)\right) - \tan\left(\arctan\left(y\right)\right)}{1+\tan\left(\arctan\left(x\right)\right)\tan\left(\arctan\left(y\right)\right)} = \frac{x-y}{1+xy} \ \textit{(car tan est impaire)}. \ \textit{La fonction tangente}$ $\textit{est injective car strictement croissante sur } \right] \frac{\pi}{2}, \frac{\pi}{2} \left[\ \textit{donc} \ \alpha = \beta. \right]$

R 7 La relation précédente avec x = n + 2 et y = n + 1 donne $\arctan(n+2) - \arctan(n+1) = \arctan\left(\frac{1}{1 + (n+2)(n+1)}\right) = u_n$.

On en déduit, par télescopage, que $S_n = \sum_{i=0}^n u_i = \arctan(n+2) - \arctan(1)$. Or $\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$ et $\arctan(1) = \frac{\pi}{4}$ donc $\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n = \frac{\pi}{4}$.

Problème:

Des solutions de l'équation $f \circ f = id$ pour une fonction de variable réelle à valeurs dans \mathbb{R}

R 8 Soit f une fonction de I dans I et vérifiant $f \circ f = id_I$. On a $f \neq id_I$ donc il existe $u \in I$ tel que $f(u) \neq u$. Posons v = f(u). On a f(v) = f(f(u)) = u. Si u < v, on a f(u) = v > u = f(v). Si u > v, il suffit d'intervertir les rôles de u et v pour conclure de même.

R 9 On remarque que si $f = id_I$, alors $f \circ f = id_I$ et f est croissante. Si $f \neq id_I$ vérifie $f \circ f = id_I$ alors, d'après la question précédente, f n'est pas croissante. donc $f = id_I$ est l'unique fonction croissante qui vérifie $f \circ f = id_I$.

 $\mathbf{R} \ \mathbf{10} \ (-1)^{\lfloor x \rfloor} \in \{-1,1\} \ donc \ \left\lfloor x + (-1)^{\lfloor x \rfloor} \right\rfloor \ et \ \lfloor x \rfloor \ sont \ de \ parité \ différente \ donc \ (-1)^{\left\lfloor x + (-1)^{\left\lfloor x \right\rfloor} \right\rfloor} = - \ (-1)^{\left\lfloor x \rfloor}.$ $D'où \ f \circ f \ (x) = x + (-1)^{\left\lfloor x \right\rfloor} + (-1)^{\left\lfloor x + (-1)^{\left\lfloor x \right\rfloor} \right\rfloor} = x. \ On \ f \circ f = id_{\mathbb{R}}.$

R 11 Pour $x \in [0,1]$, on a $f \circ f(x) = \sqrt{1 - f(x)^2} = \sqrt{1 - \sqrt{1 - x^2}^2} = \sqrt{x^2} = x \ car \ x \ge 0 \ donc \ f \circ f = id_{[0,1]}$.

 $\mathbf{R} \ \mathbf{12} \ \textit{Soit} \ (a,b) \in \mathbb{R}^2 \ \textit{et} \ f : \left\{ \begin{array}{l} I \to I \\ x \mapsto ax + b \end{array} \right. \ \textit{Si} \ f \circ f = \textit{id}_I \ \textit{alors} \ f \ \textit{est} \ \textit{une bijection de} \ I \ \textit{dans} \ I. \ \textit{Une fonction affine est monotone et continue donc} \ f \ ([0,1]) = [f \ (0) \ , f \ (1)] \ \textit{ou} \ f \ ([0,1]) = [f \ (1) \ , f \ (0)] \ \textit{donc} \ (f \ (0) = 0 \ \textit{et} \ f \ (1) = 1) \ \textit{ou} \ (f \ (1) = 0 \ \textit{et} \ f \ (1) = 0). \ \textit{On en déduit que} \ \left\{ \begin{array}{l} b = 0 \\ a + b = 1 \end{array} \right. \ \textit{On en déduit que} \ f : x \mapsto x \ \textit{ou} \ f : x \mapsto 1 - x.$

Réciproquement ces deux fonctions sont affines de I dans I et vérifient $f \circ f = id_I$.

R 13 Soit φ une bijection de I dans I. On suppose que $f \circ f = id_I$ et on pose $g = \varphi^{-1} \circ f \circ \varphi$. Déterminer $g \circ g = (\varphi^{-1} \circ f \circ \varphi) \circ (\varphi^{-1} \circ f \circ \varphi) = \varphi^{-1} \circ f \circ \varphi = \varphi^{-1} \circ \varphi = id_I$.

R 14 Si $\alpha > 0$, Les fonctions $\varphi_{\alpha} : x \mapsto x^{\alpha}$ sont des bijections de I dans I. = [0,1]. En prenant $f = x \mapsto 1-x$ et en appliquant la question précédente, on déduit que les fonctions $f_{\alpha} = \varphi^{-1} \circ f \circ \varphi : x \mapsto (1-x^{\alpha})^{\frac{1}{\alpha}}$ sont des fonctions de $I \to I$ vérifiant $f_{\alpha} \circ f_{\alpha} = id_{I}$.

R 15 Une fonction $f: I \to I$ vérifie $f \circ f = id_I$ si et seulement si c'est une bijection de I dans I vérifiant $f = f^{-1}$. Le graphe de la réciproque étant le symétrique orthogonal par rapport à la première bissectrice du graphe de la fonction, on en déduit que $f = f^{-1}$ si et seulement si le graphe de f est symétrique par rapport à la première bissectrice.

Pour obtenir un tracé "quelconque", tracer une "moitié" de graphe (par exemple au dessus de la bissectrice) et compléter ce graphe par symétrie.

Remarque Il existe donc "énormément" de fonctions vérifiant cette condition $f \circ f = id_I$.

Equation $f \circ f = -id_{\mathbb{R}}$ pour une fonction continue de \mathbb{R} dans \mathbb{R} .

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue vérifiant $f \circ f = -id_{\mathbb{R}}$.

R 16 Pour tout réel x, $f \circ f(x) = -x$ donc $(-f) \circ f(x) = x$ donc $(-f) \circ f = id_{\mathbb{R}}$ et $f \circ (-f) = f \circ -id \circ f = f \circ (f \circ f) \circ f = (f \circ f) \circ (f \circ f) = (-id_{\mathbb{R}}) \circ (-id_{\mathbb{R}}) = id_{\mathbb{R}}$ donc f est une bijection de \mathbb{R} dans \mathbb{R} continue (de réciproque -f) donc (résultat admis), f est strictement monotone.

R 17 Si f est strictement monotone, alors $f \circ f$ est strictement croissante donc $f \circ f \neq -id_{\mathbb{R}}$. On déduit de la première question qu'il n'existe pas de fonction $f : \mathbb{R} \to \mathbb{R}$ continue vérifiant $f \circ f = -id_{\mathbb{R}}$.

Equation $f \circ f(x) = \frac{x}{2} + 3$ pour une fonction de \mathbb{R} dans \mathbb{R}

R 18 Pour $x \in \mathbb{R}$, on a $f \circ f \circ f(x) = f \circ f(f(x)) = \frac{f(x)}{2} + 3$ et $f \circ f \circ f(x) = f(f \circ f(x)) = f(\frac{x}{2} + 3)$. On en déduit que $\forall x \in \mathbb{R}, \frac{f(x)}{2} + 3 = f(\frac{x}{2} + 3).$

 ${f R}$ 19 La fonction f étant de classe C^1 , on en déduit, en dérivant l'égalité précédente que $\forall x \in \mathbb{R}, \ \frac{f'(x)}{2} = \frac{1}{2}f'(\frac{x}{2} + 3) \ donc \ que \ f'(x) = f'(\frac{x}{2} + 3).$

R 20 La suite définie par $\begin{cases} u_0 = x \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2} + 3 \end{cases}$ est une suite arithmético-géométrique.

- $u_0 = u_1 \Leftrightarrow x = \frac{x}{2} + 3 \Leftrightarrow x = 6$. Par récurrence, si $u_0 = 6$, alors $\forall n, u_n = 6$.
- Posons $x_0 = 6$ et $v_n = u_n x_0$. On a $\begin{cases} u_{n+1} = \frac{u_n}{2} + 3 \\ x_0 = \frac{x_0}{2} + 3 \end{cases}$ donc en soustrayant, $u_{n+1} x_0 = \frac{u_n x_0}{2}$ donc la suite (v_n) est géométrique et $u_n - 6 = v_n = \left(\frac{1}{2}\right)^n v_0 = \left(\frac{1}{2}\right)^n (u_0 - 6)$. On a donc $u_n = 6 + \left(\frac{1}{2}\right)^n (x - 6)$. On en déduit que $\lim_{n\to+\infty} u_n = 6$.

R 21 On $a \ \forall t \in \mathbb{R}$, $f'(t) = f'\left(\frac{t}{2} + 3\right) \ donc \ \forall n \in \mathbb{N}$, $f'(u_n) = f'(u_{n+1}) \ et \ donc \ \forall n \in \mathbb{N}$, $f'(u_n) = f'(u_0) = f'(x)$. La fonction f' est continue et $\lim_{n \to +\infty} u_n = 6 \ donc \lim_{n \to +\infty} f'(u_n) = f'(6)$. On en déduit que f'(x) = f'(6). La fonction f' est constante donc, par intégration, f est une fonction affine.

R 22 On suppose que f est une fonction affine. Soit $(a,b) \in \mathbb{R}^2$ tels que $\forall x \in \mathbb{R}$, f(x) = ax + b. La fonction f est de classe C^1 .

De plus $f \circ f(x) = f(ax+b) = a(ax+b) + b = a^2x + ab + b$ donc f vérifie (C) si et seulement si $\forall x \in \mathbb{R}$, $a^{2}x + ab + b = \frac{x}{2} + 3$, ce qui équivant à $\begin{cases} a^{2} = \frac{1}{2} \\ ab + b = 3 \end{cases}$ soit à $a \in \begin{cases} \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \end{cases}$ et $b = \frac{3}{a+1}$.

Or $\frac{3}{1+\frac{\sqrt{2}}{2}} = \frac{6}{2+\sqrt{2}} = 3(2-\sqrt{2})$ et $\frac{3}{1-\frac{\sqrt{2}}{2}} = \frac{6}{2-\sqrt{2}} = 3(2+\sqrt{2})$.

R 23 Il y a donc exactement deux solutions: $x \mapsto \frac{\sqrt{2}}{2}x + 3(2 - \sqrt{2})$ et $x \mapsto -\frac{\sqrt{2}}{2}x + 3(2 + \sqrt{2})$.

Equation $f\circ f=id_E$ pour une fonction $f:E\to E$ où E est un ensemble fini

R 24 Si $E_1 = \{a\}$, $a \mapsto a$ est l'unique fonction de E_1 dans E_1 . Elle admet un point fixe et vérifie $f \circ f = id$ donc

 $Si\ E_1 = \{a, b\}, \begin{cases} a \mapsto a \\ b \mapsto b \end{cases}$ et $\begin{cases} a \mapsto b \\ b \mapsto a \end{cases}$ sont les seules applications vérifiant $f \circ f = id$ donc $u_2 = 2$ et $v_2 = 1$.

R 25 Soit $f: E_{n+2} \to E_{n+2}$ sans point fixe et vérifiant $f \circ f = id$. Soit $a \in E_{n+2}$. Posons b = f(a). On $a \not b \neq a$ car f est sans points fixes et $f(b) = f \circ f(a) = a$. Or $f \circ f = id$ donc f est bijective donc injective donc si $x \notin \{a, b\}, f(x) \notin \{a, b\}.$

```
R 26 L'application \tilde{f}: \left\{ \begin{array}{c} E_{n+2} \setminus \{a,b\} \mapsto E_{n+2} \setminus \{a,b\} \\ x \mapsto f(x) \end{array} \right. est sans points fixes et vérifie aussi \tilde{f} \circ \tilde{f} = id.
Pour un b fixé, il existe v_n applications \tilde{f}. Or il y a n+1 valeurs possible de b (car b \neq a) donc v_{n+2} = (n+1)v_n.
R 27 On a v_1 = 0 et v_3 = 2v_1 donc v_3 = 0. De même, par récurrence immédiate, \forall n \in \mathbb{N}, v_{2n+1} = 0.
R 28 On a v_{2n} = (2n-1)v_{2n-2} = (2n-1)\times(2n-3)v_{2n-4} = \cdots = (2n-1)\times(2n-3)\times\cdots\times3\times v_2 donc
v_{2n} = (2n-1) \times (2n-3) \times \cdots \times 3.
```

R 29 Soit $a \in E_{2n+2}$. Posons b = f(a).

Premier cas: b = a. L'application $\tilde{f}: \begin{cases} E_{n+2} \setminus \{a\} \mapsto E_{2n+2} \setminus \{a\} \\ x \mapsto f(x) \end{cases}$ vérifie aussi $\tilde{f} \circ \tilde{f} = id$. Il y a u_{n+1} possibilités

 $pour \tilde{f} donc pour f.$

Deuxième cas: $b \neq a$. L'application \tilde{f} : $\begin{cases} E_{n+2} \setminus \{a,b\} \mapsto E_{n+2} \setminus \{a,b\} \\ x \mapsto f(x) \end{cases}$ vérifie aussi $\tilde{f} \circ \tilde{f} = id$.

Pour un b donné, il y a u_n possibilités pour \tilde{f} donc pour f. Il y a n+1 valeurs de b donc il y a $(n+1)u_n$ possibilités pour f.

On en déduit que, $u_{n+2} = u_{n+1} + (n+1) u_n$.

R 30 Version itérative:

def listun(n):

```
if n==1:
        return [1]
    L=[1,2]
    for i in range(2,n+1):
        u=i*L[i-2]+L[i-1]# attention L[i] est ui+1
        L.append(u)
  Version récursive:
def listun(n):
    if n==1:
        return [1]
    if n==2
        return [1,2]
    L=listun(n-1)
    u=(n-2)*L[n-3]+L[n-2] attention L[i] est ui+1
    L.append(u)
    return L
```

R 31 Si $x \in J_f$ et y = f(x), alors $y \neq x$ et f(y) = x donc $y \in J_f$.

Si $J_f \neq \{x,y\}$, et $z \in J_f \setminus \{x,y\}$. En posant t = f(z), on a $t \notin \{x,y\}$ car f est injective, et de même que précédemment, $t \neq z$ et $t \in J_f$.

L'ensemble J_f étant fini, en continuant à adjoindre deux nouveaux éléments à ceux déjà obtenus, on finira par épuiser J_f et on obtiendra que card (J_f) est pair.

R 32 L'application $\tilde{f}: \begin{cases} J_f \mapsto J_f \\ x \mapsto f(x) \end{cases}$ n'admet pas de point fixe par définition de J_f et vérifie $f \circ f = id$.

Pour J_f fixé, si card $(J_f) = 2p$, il y a v_{2p} applications \tilde{f} possibles et donc v_{2p} applications f possibles (car f(x) = xpour $x \notin J_f$). Il y a $\binom{n}{2p}$ manières de choisir l'ensemble J_f donc $\binom{n}{2p}v_{2p}$ applications f vérifiant $f \circ f = id$ et dont l'ensemble J_f est de cardinal 2p.

La valeur de p varie de 0 à $\left\lfloor \frac{n}{2} \right\rfloor$ donc $u_n = \sum_{p=0}^{\left\lfloor \frac{n}{2} \right\rfloor} {n \choose 2p} v_{2p}$.

$$Or \ v_{2p} = (2p-1)(2p-3) \times \dots \times 3 = \frac{(2p)!}{(2p)(2p-2) \times \dots \times 2} = \frac{(2p)!}{2^p p!} \ donc \ u_n = \sum_{p=0}^{\left\lfloor \frac{n}{2} \right\rfloor} {\binom{n}{2p}} \frac{(2p)!}{2^p p!}$$