

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et la concision de la rédaction. Si un candidat est amené à repérer ce qui lui semble être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Lorsqu'un raisonnement utilise le résultat d'une question précédente, il est demandé au candidat d'indiquer précisément le numéro de la question utilisée.

Questions proches du cours

Cours1: Montrer que la série $\sum \frac{1}{\binom{2n}{n}}$ est absolument convergente.

Cours2: Soit f la fonction définie sur $\mathbb{R}\setminus\{-1,1\}$ définie par $f(x)=\frac{1}{1-x^2}$. Justifier que f est de classe C^{∞} et calculer $f^{(n)}(x)$ pour $n\in\mathbb{N}^*$ et $x\in\mathbb{R}\setminus\{-1,1\}$.

Cours 3: Soit a > 0. Déterminer la nature de la série de terme général $u_n = \frac{a^n}{1 + a^{2n}}$.

Cours 4: Etudier la convergence de la série $\sum_{n\geq 1} \frac{\ln(n)}{n\sqrt{n}}$ en la comparant avec une série de Riemann.

Cours 5: Soit f une application linéaire de E dans F et g une application linéaire de F dans G. Montrer que $g \circ f = 0 \Leftrightarrow \text{Im}(f) \subset \text{ker}(g)$.

Cours 6: Montrer que l'image d'une famille libre par une application linéaire injective est libre.

Exercice 1

Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$

Q 1 Justifier que f est de classe C^1 sur \mathbb{R}^* et calculer f'(x) pour $x \neq 0$.

Q 2 Montrer que f est dérivable en 0 et préciser f'(0).

Q 3 Justifier que f est de classe C^1 sur \mathbb{R} .

Q 4 Justifier que f est de classe C^2 sur \mathbb{R}^* et calculer f''(x) pour $x \neq 0$.

Q 5 Montrer que f est de classe C^2 sur \mathbb{R} .

Exercice 2

Q 6 Pour $x \in \mathbb{R}^*$, on pose $\varphi(x) = \arctan(x) + \arctan(\frac{1}{x})$. Justifier que φ est dérivable et calculer $\varphi'(x)$. En déduire une expression simplifiée de $\varphi(x)$.

Q 7 Justifier que la série $\sum \frac{1}{1+n^2}$ est convergente.

On pose, pour $n \ge 1$, $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{1+k^2}$. On se propose de donner un équivalent de R_n en $+\infty$.

Q 8 Montrer que si $p \ge n + 2$ alors $\int_{n+1}^{p+1} \frac{1}{1+t^2} dt \le \sum_{k=n+1}^{p} \frac{1}{1+k^2} \le \int_{n}^{p} \frac{1}{1+t^2} dt$.

Q 9 En déduire que $\frac{\pi}{2}$ – $\arctan(n+1) \le R_n \le \frac{\pi}{2}$ – $\arctan(n)$.

Q 10 Montrer que $R_n \sim_{n \to +\infty} \frac{1}{n}$.

Exercice 3

Soit $\alpha > 0$. On pose $u_n = \sin\left(\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n^{\alpha}}\right)$

Q 11 On suppose $\alpha < \frac{1}{2}$. Déterminer la nature de la série $\sum u_n$.

Q 12 On suppose $\alpha > \frac{1}{2}$. Déterminer la nature de la série $\sum u_n$.

Exercice 4

On pose, pour $n \in \mathbb{N}$, $w_n = \sum_{i=0}^n \frac{1}{i! \times 2^{n-i}}$.

Q 13 Montrer que la série $\sum w_n$ converge absolument et préciser sa somme.

Problème:

Première partie: Etude d'une fonction

On considère un réel x > 0.

Q 14 Montrer que la série $\sum \frac{(-1)^n}{n+x}$ converge.

On pose
$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$$
.

Q 15 Justifier que $0 \le S(x) \le \frac{1}{x}$.

 ${f Q}$ 16 Etablir l'égalité $({\cal E})$:

$$S(x) + S(x+1) = \frac{1}{x}$$

Etude de la fonction S:

Q 17 On considère y > 0. Montrer que $S(y) - S(x) = (x - y) \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+x)(n+y)}$.

 ${f Q}$ 18 En déduire le sens de variation de la fonction S.

Q 19 Soit a > 0. Montrer que la fonction S est lipschitzienne sur $[a, +\infty[$ (c'est-à-dire qu'il existe un réel K tel que pour tout $(x,y) \in [a, +\infty[^2, |S(y) - S(x)| \le K|y - x|)$.

Q 20 En déduire que la fonction S est continue sur $]0, +\infty[$.

Q 21 Montrer que $S(x) \sim_{x\to 0} \frac{1}{x}$.

Q 22 Montrer que $S(x) \sim_{x \to +\infty} \frac{1}{2x}$. On pourra commencer par encadrer S(x) en utilisant l'égalité (\mathcal{E}) .

Deuxième partie: Calcul de S(1), somme de la série harmonique alternée On pose pour $t \in [0,1]$ et $n \in \mathbb{N}$, $g_n(t) = \frac{1}{1+t} - \sum_{k=0}^{n} (-1)^k t^k$.

3

Q 23 Montrer que $|g_n(t)| \le t^{n+1}$.

Q 24 On pose $u_n = \int_0^1 g_n(t) dt$. Montrer que la suite (u_n) converge vers 0.

Q 25 En déduire que $S(1) = \ln(2)$.

Q 26 On pose $S_n(1) = \sum_{i=0}^{n} \frac{(-1)^i}{i+1}$. Donner un entier n_0 à partir duquel $|\ln(2) - S_n(1)| \le 10^{-2}$.

Q 27 Montrer que $S(x) = \frac{1}{x} - \ln(2) + o_{x\to 0}(1)$.

Troisième partie: Réarrangement de la série harmonique alternée, réarrangement d'une série à termes positifs

On pose, pour $n \in \mathbb{N}$, $v_{3n} = \frac{1}{2n+1}$, $v_{3n+1} = \frac{-1}{4n+2}$ et $v_{3n+2} = \frac{-1}{4n+4}$ et $T_n = \sum_{i=0}^n v_i$.

- **Q 28** Montrer que la suite (T_{3n+2}) converge vers $\frac{\ln(2)}{2}$.
- **Q 29** En déduire que la série $\sum v_n$ converge et préciser sa somme.

On considère une suite (a_n) de réels positifs et φ une bijection de \mathbb{N} dans \mathbb{N} . Pour tout $n \in \mathbb{N}$, on pose $b_n = a_{\varphi(n)}$.

- **Q 30** Montrer que si la série $\sum a_n$ converge alors la série $\sum b_n$ converge
- **Q 31** Montrer que la série $\sum a_n$ converge si et seulement si la série $\sum b_n$ converge et que si la série $\sum a_n$ converge alors $\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} b_n$.
- **Q 32** Le résultat de la question précédente reste-t-il vrai si on ne suppose plus que $\forall n \in \mathbb{N}, a_n \geq 0$?

Exercice 5

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^{∞} vérifiant f(0) = 0.

On pose, pour $x \in \mathbb{R}$, $g(x) = \begin{cases} \frac{f(x)}{x} & \text{si } x \neq 0 \\ f'(0) & \text{si } x = 0 \end{cases}$

- **Q 33** Montrer que g est continue sur \mathbb{R} .
- **Q 34** Montrer que g est de classe C^1 sur \mathbb{R} .
- **Q 35** Justifier que g est de classe C^{∞} sur \mathbb{R}^* et que

$$\forall n \in \mathbb{N}^*, \forall x \neq 0, \ g^{(n)}(x) = \frac{n!}{x^{n+1}} \sum_{k=0}^{n} (-1)^{n-k} \frac{x^k}{k!} f^{(k)}(x)$$

- **Q 36** Montrer que g est de classe C^{∞} sur \mathbb{R} .
- **Q 37** Justifier que $\forall n \in \mathbb{N}, \ g^{(n)}(0) = \frac{f^{(n+1)}(0)}{n+1}.$

Correction du DS 1

Exercice 1

R 1 Par théorème sur les orpérations sur les fonctions, f est de classe C^1 sur \mathbb{R}^* et $f'(x) = \frac{x \cos(x) - \sin(x)}{x^2}$.

R 2
$$x \cos(x) - \sin(x) = x (1 + o_{x\to 0}(x)) - (x + o_{x\to 0}(x^2)) = o_{x\to 0}(x^2)$$
 donc $f'(x) = \frac{o_{x\to 0}(x^2)}{x^2} = o_{x\to 0}(1)$ donc $\lim_{x\to 0, x\neq 0} f'(x) = 0$.

De plus, On $a \lim_{x \to 0} \frac{\sin(x)}{x} = 1$ donc f est continue en 0 donc, par le théorème limite de la dérivée, f est dérivable en 0 et $f'(0) = \lim_{x \to 0, x \neq 0} f'(x) = 0$.

R 3 f est de classe C^1 sur \mathbb{R}^* et $f'(0) = \lim_{x \to 0, x \neq 0} f'(x) = 0$ donc f' est continue en 0 donc f est de classe C^1 sur

$$\mathbf{R} \ \mathbf{4} \ f \ est \ C^{2} \ sur \ \mathbb{R}^{*} \ (th \ op) \ et \ f''(x) = \frac{x^{2} \left(-x \sin \left(x\right)\right) - 2x \left(x \cos \left(x\right) - \sin \left(x\right)\right)}{x^{4}} = \frac{-x^{2} \sin \left(x\right) - 2x \cos \left(x\right) + 2 \sin \left(x\right)}{x^{3}}$$

$$\mathbf{R \ 5} \ D'où \ f''(x) = \frac{-x^2 \left(x + o_{x \to 0}(x)\right) - 2x \left(1 - \frac{x^2}{2} + o_{x \to 0}(x^2)\right) + 2 \left(x - \frac{x^3}{6} + o_{x \to 0}(x^3)\right)}{x^3}$$

$$f''(x) == \frac{x^3 \left(-1 + 1 - \frac{1}{3}\right) + o_{x \to 0}(x^3)}{x^3} \sim_{x \to 0} \frac{-\frac{1}{3}x^3}{x^3} donc \lim_{x \to 0, x \neq 0} f''(x) = -\frac{1}{3}.$$

Comme f' est continue en 0, le théorème limite de la dérivée donne $f''(0) = -\frac{1}{3}$ (et donc f'' est continue en 0) donc f est de classe C^2 sur \mathbb{R} .

Exercice 2

R 6 Soit
$$\varphi(x) = \arctan(x) + \arctan(\frac{1}{x})$$
: φ est dérivable sur \mathbb{R}^* , $\varphi'(x) = \frac{1}{1+x^2} + \frac{-1}{x^2} \frac{1}{1+(\frac{1}{x})^2} = 0$.

La fonction
$$\varphi$$
 est donc constante sur $]-\infty,0[$ et constante sur $]0,+\infty[$.
Or $\varphi(1)=\frac{\pi}{2}$ et $\varphi(1)=-\frac{\pi}{2}$ donc si $x>0$ alors $\varphi(x)=\frac{\pi}{2}$ et si $x<0$ alors $\varphi(x)=-\frac{\pi}{2}$.

R 7 On a $\frac{1}{1+n^2} \sim_{n \to +\infty} \frac{1}{n^2}$ et la SATP $\sum \frac{1}{n^2}$ converge donc la série $\sum \frac{1}{1+n^2}$ est convergente.

$$\mathbf{R} \ \mathbf{8} \ \textit{Soit} \ k \geq 1 \ \textit{et} \ t \in [k-1,k]. \ \textit{On} \ a \ 1 + (k-1)^2 \leq 1 + t^2 \leq 1 + k^2 \ \textit{donc} \ \frac{1}{1+k^2} \leq \frac{1}{1+t^2} \leq \frac{1}{1+(k-1)^2} \ \textit{d'où}$$

$$\frac{1}{1+k^2} \left(k - (k-1)\right) \leq \int_{k-1}^k \frac{1}{1+t^2} dt \leq \frac{1}{1+(k-1)^2} \left(k - (k-1)\right) \ \textit{soit} \ \frac{1}{1+k^2} \leq \int_{k-1}^k \frac{1}{1+t^2} dt \leq \frac{1}{1+(k-1)^2}.$$

En remplaçant
$$k$$
 par $k+1$ dans la deuxième inégalité, on obtient
$$\int_{k}^{k+1} \frac{1}{1+t^2} dt \leq \frac{1}{1+k^2} \ donc \ \int_{k}^{k+1} \frac{1}{1+t^2} dt \leq \frac{1}{1+k^2} \leq \int_{k-1}^{k} \frac{1}{1+t^2} dt \ donc$$

$$\sum_{k=n+1}^{p} \int_{k}^{k+1} \frac{1}{1+t^2} dt \le \sum_{k=n+1}^{p} \frac{1}{1+k^2} \le \sum_{k=n+1}^{p} \int_{k-1}^{k} \frac{1}{1+t^2} dt \ d'où \int_{n+1}^{p+1} \frac{1}{1+t^2} dt \le \sum_{k=n+1}^{p} \frac{1}{1+k^2} \le \int_{n}^{p} \frac{1}{1+t^2} dt.$$

R 9 L'encadrement précédent équivaut à $\arctan(p+1) - \arctan(n+1) \le R_n \le \arctan(p) - \arctan(n)$ et $R_n = \lim_{p \to +\infty} \sum_{k=n+1}^p \frac{1}{1+k^2}$ et $\lim_{p \to +\infty} \arctan(p+1) = \lim_{p \to +\infty} \arctan(p) = \frac{\pi}{2}$ donc, en passant à la limite, $\frac{\pi}{2} - \arctan(n+1) \le R_n \le \frac{\pi}{2} - \arctan(n)$.

R 10 La première question de l'exercice permet d'en déduire que $\arctan\left(\frac{1}{n+1}\right) \le R_n \le \arctan\left(\frac{1}{n}\right)$. Or $\arctan\left(x\right) \sim_{x\to 0} x$ donc $\arctan\left(\frac{1}{n+1}\right) \sim_{n\to +\infty} \frac{1}{n+1} \sim_{n\to +\infty} \frac{1}{n}$ et $\arctan\left(\frac{1}{n}\right) \sim_{n\to +\infty} \frac{1}{n}$ donc $R_n \sim_{n\to +\infty} \frac{1}{n}$.

Exercice 3

R 11 Si
$$\alpha < \frac{1}{2}$$
 alors $\frac{1}{\sqrt{n}} = o_{n \to +\infty} \left(\frac{1}{n^{\alpha}}\right)$ donc $\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n^{\alpha}} \sim_{n \to +\infty} \frac{1}{n^{\alpha}}$ et $\sin(x) \sim_{x \to 0} x$ donc $u_n \sim_{n \to +\infty} \frac{1}{n^{\alpha}} > 0$. La SATP $\sum \frac{1}{n^{\alpha}}$ diverge donc $\sum u_n$ diverge.

$$\mathbf{R} \ \mathbf{12} \ Si \ \alpha > \frac{1}{2}, \ on \ a \sin(x) = x + O_{x \to 0}(x^3) \ et \lim_{n \to +\infty} \frac{1}{n} = 0 \ donc \ u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n^{\alpha}} + O_{x \to 0}\left(\left(\frac{1}{\sqrt{n}}\right)^3\right) \ car$$

$$\frac{1}{n^{\alpha}} = o_{n \to +\infty}\left(\frac{1}{\sqrt{n}}\right).$$

$$La \ série \ \sum \frac{(-1)^n}{\sqrt{n}} \ converge \ 'CSSA) \ et \ la \ série \ \sum O_{x \to 0}\left(\frac{1}{n^{\frac{3}{2}}}\right) \ (comparaison \ avec \ Riemann)$$

La série $\sum \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$ donc la série $\sum u_n$ converge ssi $\alpha > 1$.

Exercice 4

R 13 Posons
$$u_n = \frac{1}{n!}$$
 et $v_n = \frac{1}{2^n}$, on a $w_n = \sum_{i=0}^n u_i v_{n-i}$.
La série $\sum u_n$ converge absolument et a pour somme e^1 (série exponentielle)
La série $\sum v_n$ converge absolument et a pour somme $\frac{1}{1 - \frac{1}{2}} = 2$ (série géométrique)

donc (th sur le produit de Cauchy) la série $\sum w_n$ converge et $\sum_{n=0}^{+\infty} w_n = e^1 \times 2$.

Problème

R 14 Posons $a_n = \frac{(-1)^n}{n+x}$. On $a(-1)^n a_n = \frac{1}{n+x} > 0$ donc la série est alternée.

De plus $|a_n| = \frac{1}{n+x} \ donc \lim_{n \to +\infty} |a_n| = 0.$

De plus $n \le n+1$ donc $0 < n+x \le n+1+x$ donc $|a_{n+1}| \le |a_n|$. La suite $(|a_n|)$ est décroissante donc d'après C.S.S.A, la série $\sum a_n$ converge.

R 15 Toujours d'après CSSA, la somme S(x) est du signe de u_0 et vérifie $|S(x)| \le |a_0|$. Or $a_0 = \frac{1}{x} > 0$ donc $0 \le S(x) \le \frac{1}{x}$.

R 16 Si
$$x > 0$$
, $S(x) + S(x+1) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1+x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x} + \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n+x} = \frac{1}{x}$.

R 17 On
$$a S(y) - S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+y} - \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+y} - \frac{(-1)^n}{n+x} = \sum_{n=0}^{+\infty} \frac{(-1)^n (n+x-n-y)}{(n+x)(n+y)}$$

$$donc S(y) - S(x) = (x-y) \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+x)(n+y)}.$$

R 18 On montre de même que la série $\sum \frac{(-1)^n}{(n+x)(n+y)}$ est spéciale alternée donc $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+x)(n+y)}$ est du signe de son premier terme $\frac{1}{xy} > 0$.

Si~0 < x < y, alors x - y < 0~donc~S(y) - S(x) < 0~d'après la question précédente donc la fonction <math>S est décroissante.

R 19 *D'après ce qui précède*,
$$|S(y) - S(x)| = \left| (x - y) \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+x)(n+y)} \right|$$
.
Pour $x \ge a$ et $y \ge a$, par le CSSA, $\left| \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+x)(n+y)} \right| \le \left| \frac{1}{(0+x)(0+y)} \right| \le \frac{1}{a^2} donc$
 $|S(y) - S(x)| \le \frac{1}{a^2} |(x-y)|$.

R 20 La fonction S est lipschitzienne sur $[a, +\infty[$ donc continue sur $[a, +\infty[$ avec a > 0 quelconque donc S est continue sur $]0, +\infty[$

R 21 La fonction
$$S$$
 est continue en 1 donc $\lim_{x\to 0} S(x+1) = S(1)$ et $\lim_{x\to 0} \frac{1}{x} + \infty$ donc $S(x+1) = o_{x\to 0} \left(\frac{1}{x}\right)$. Or $S(x) = \frac{1}{x} - S(x+1)$ donc $S(x) = \frac{1}{x} + o_{x\to 0} \left(\frac{1}{x}\right) \sim_{x\to 0} \frac{1}{x}$.

 $\mathbf{R} \ \mathbf{22} \ \ On \ sait \ que \ pour \ x > 0 \ \ on \ a \ S\left(x\right) + S\left(x+1\right) = \frac{1}{x} \ et \ la \ fonction \ S \ \ est \ décroissante \ donc \ S\left(x\right) > S\left(x+1\right)$ $donc \ S\left(x\right) + S\left(x+1\right) \leq 2S\left(x\right) \ donc \ S\left(x\right) \geq \frac{1}{2x}. \ \ Pour \ x > 1, \ S\left(x-1\right) + S\left(x\right) = \frac{1}{x-1} \ \ et \ S\left(x\right) \leq S\left(x-1\right) \ donc$ $S\left(x-1\right) + S\left(x\right) \geq 2S\left(x\right) \ donc \ S\left(x\right) \leq \frac{1}{2\left(x-1\right)} \ donc \ \frac{1}{2x} \leq S\left(x\right) \leq \frac{1}{2\left(x-1\right)} \ d'où \ 1 \leq 2xS\left(x\right) \leq \frac{2x}{2\left(x-1\right)}$ $donc \lim_{x \to +\infty} 2xS\left(x\right) = 1 \ \ et \ donc \ S\left(x\right) \sim_{x \to +\infty} \frac{1}{2x} \ \ en \ +\infty.$

R 23 On
$$a g_n(t) = \frac{1}{1+t} - \sum_{k=0}^{n} (-1)^k t^k = g_n(t) = \frac{1}{1+t} - \sum_{k=0}^{n} (-t)^k = \frac{1}{1+t} - \frac{1-(-t)^{n+1}}{1+t}$$

$$donc |g_n(t)| = \frac{t^{n+1}}{1+t} \le t^{n+1} car t \ge 0.$$

R 24 On
$$a |u_n| = \left| \int_0^1 g_n(t) dt \right| \le \int_0^1 |g_n(t)| dt \le \int_0^1 t^{n+1} dt = \left[\frac{t^{n+2}}{n+2} \right]_0^1 = \frac{1}{n+2} d'où \lim_{n \to +\infty} u_n = 0.$$

R 25 Par ailleurs
$$u_n = \int_0^1 \frac{1}{1+t} dt - \sum_{k=0}^n (-1)^k \int_0^1 t^k dt = \ln(2) - \sum_{k=0}^n \frac{(-1)^k}{k+1}$$
. Or $\lim_{n \to +\infty} \sum_{k=0}^n \frac{(-1)^k}{k+1} = S(1)$ et $\lim_{n \to +\infty} u_n = 0$ donc $S(1) = \ln(2)$.

R 26 La série $\sum \frac{(-1)^k}{l_{k+1}}$ est spéciale alternée (déjà vu) donc $|\ln(2) - S_n(1)| \le |a_{n+1}|$ (notation de la première question pour x = 1) donc $\left| \ln (2) - S_n (1) \right| = \frac{1}{n+2}$ $Si \ n \ge 98 \ alors \ |\ln(2) - S_n(1)| < 10^{-2}.$

R 27 On
$$a S(x) = \frac{1}{x} - S(x+1)$$
 et $\lim_{x\to 0} S(x+1) = S(1)$ donc $S(x+1) = S(1) + o_{x\to 0}(1)$ donc $S(x) = \frac{1}{x} - \ln(2) + o_{x\to 0}(1)$.

$$\begin{array}{l} \mathbf{R} \ \mathbf{28} \ \textit{Posons} \ u_n = v_{3n} + v_{3n+1} + v_{3n+2}. \\ \textit{On} \ a \ u_n = \frac{1}{2n+1} - \frac{1}{4n+2} - \frac{1}{4n+4} = \frac{1}{4n+2} - \frac{1}{4n+4} = \frac{1}{2} \left(\frac{1}{2n+1} - \frac{1}{2n+2} \right). \\ \textit{On} \ a \ T_{3n+2} = \sum_{i=0}^{3n+2} v_{3n} = \sum_{i=0}^{n} a_i = \frac{1}{2} \sum_{i=0}^{n} \left(\frac{1}{2i+1} - \frac{1}{2i+2} \right) = \frac{1}{2} \sum_{i=0}^{2n+1} \frac{(-1)^i}{i+1} = \frac{1}{2} S_{2n+1} (1) \rightarrow_{n \rightarrow +\infty} \frac{1}{2} \ln{(2)}. \end{array}$$

R 29 On a
$$T_{3n} = T_{3n+2} - (v_{3n+1} + v_{3n+2})$$
 et $\lim_{n \to +\infty} v_n = 0$ donc $\lim_{n \to +\infty} T_{3n} = \frac{1}{2} \ln(2)$ et de même $\lim_{n \to +\infty} T_{3n+1} = \frac{1}{2} \ln(2)$ donc la suite (T_n) converge vers $\frac{\ln(2)}{2}$ (résultat analoque à celui pour la suite des termes d'indices pairs et impairs) donc la série $\sum v_n$ converge et a pour somme $\frac{\ln(2)}{2}$

R 30 Supposons que
$$\sum a_n$$
 converge et posons $\sigma_n = \sum_{i=0}^n a_i$ et $\sigma'_n = \sum_{i=0}^n b_i = \sum_{i=0}^n a_{\varphi(i)}$ Si $N = \max \{ \varphi(i), i \in [[0, n]] \}$.
On a $\sigma'_n \leq \sigma_N \leq \sum_{i=0}^{+\infty} a_i$ car $a_n \geq 0$.

La suite (σ'_n) est donc majorée donc $\sum b_n$ converge (et en passant à la limite, $\sum_{n=0}^{+\infty} b_n \leq \sum_{n=0}^{+\infty} a_n)$.

R 31 On a
$$a_n = b_{\varphi^{-1}(n)}$$
 donc $si \sum b_n$ converge alors $\sum a_n$ converge et $\sum_{n=0}^{+\infty} a_n \le \sum_{n=0}^{+\infty} b_n$.
On en déduit que $\sum a_n$ converge $ssi \sum b_n$ converge et $\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} b_n$.

R 32 On a $v_{3n} = u_{2n}$, $v_{3n+1} = u_{4n+1}$ et $v_{3n+2} = u_{4n+3}$. Posons pour $n \in \mathbb{N}$, $\varphi(3n) = 2n$, $\varphi(3n+1) = 4n+1$ et $\varphi(3n+2) = 4n+3$. φ est bijective car atteint tous les pairs et tous les impairs exactement une fois.

On a $v_n = u_{\varphi(n)}$ et $\sum_{n=0}^{+\infty} v_n = \frac{1}{2} \sum_{n=0}^{+\infty} u_n$ donc le résultat précédent ne subsiste pas si la série n'est pas à terme positifs.

Exercice 5

R 33 On $a g(x) = \frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0} \rightarrow_{x \to 0, x \neq 0} f'(0) = g(0)$ donc g est continue en 0. Or g est continue sur \mathbb{R}^* (th opérations) donc g est continue sur \mathbb{R} .

R 34 La fonction g est C^1 sur \mathbb{R}^* (th opérations). Si $x \neq 0$, alors $g'(x) = \frac{xf'(x) - f(x)}{x^2}$.

Or $f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + o_{x\to 0}(x^2)$ et $f'(x) = f'(0) + f''(0)x + o_{x\to 0}(x)$ (Taylor-Young) donc $xf'(x) - f(x) = \frac{1}{2}f''(0)x^2 + o_{x\to 0}(x^2)$ et $g'(x) = \frac{\frac{1}{2}f''(0)x^2 + o_{x\to 0}(x^2)}{x^2} = \frac{1}{2}f''(0) + o_{x\to 0}(1)$ donc $\lim_{x\to 0, x\neq 0} g'(x) = \frac{1}{2}f''(0)$.

Or g est continue en 0 donc d'après le théorème limite de la dérivée, g est dérivable en 0 et $g'(0) = \lim_{x \to 0, x \neq 0} g'(x) = \frac{1}{2}f''(0)$, ce qui entraîne la continuité de de g' en 0 donc g est C^1 sur \mathbb{R} .

R 35 On a, pour $x \neq 0$, $g(x) = f(x) \times x^{-1}$. Posons $h(x) = x^{-1}$. On montrer par récurrence sur k que $h^{(k)}(x) = (-1)^k \times k! \times x^{-k-1}$ donc d'après la formule de Leibniz,

$$g^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) h^{(n-k)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) \times (-1)^{n-k} \times (n-k)! \times x^{-(n-k)-1}$$
$$= \frac{1}{x^{n+1}} \sum_{k=0}^{n} \binom{n}{k} x^k f^{(k)}(x) (-1)^k \times (n-k)! = \frac{n!}{x^{n+1}} \sum_{k=0}^{n} (-1)^{n-k} \frac{x^k}{k!} f^{(k)}(x)$$

R 36 f est de classe C^{∞} d''onc d'après la formule de Taylor-Young appliquée à $f^{(k)}$ à l'ordre n-k+1 et 0, $f^{(k)}\left(x\right) = \sum_{i=0}^{n-k+1} \frac{f^{(k+i)}\left(0\right)}{i!} x^{i} + o_{x \to 0}\left(x^{n-k+1}\right) donc$

$$\sum_{k=0}^{n} (-1)^{k} \frac{x^{k}}{k!} f^{(k)}(x) = \sum_{k=0}^{n} \left[(-1)^{n-k} \frac{x^{k}}{k!} \sum_{i=0}^{n-k+1} \frac{f^{(k+i)}(0)}{i!} x^{i} + o_{x \to 0} \left(x^{n-k+1} \right) \right]$$

$$= \sum_{k=0}^{n} \left[\sum_{i=0}^{n-k+1} (-1)^{n-k} \frac{x^{k+i}}{k!i!} f^{(k+i)}(0) \right] + o_{x \to 0} \left(x^{n+1} \right)$$

$$= (-1)^{n} \sum_{k=0}^{n} \left[\sum_{j=k}^{n+1} (-1)^{k} \frac{x^{j}}{k! (j-k)!} f^{(j)}(0) \right] + o_{x \to 0} \left(x^{n+1} \right)$$

$$= (-1)^{n} \sum_{j=0}^{n} \left[x^{j} f^{(j)}(0) \sum_{k=0}^{j} \frac{(-1)^{k}}{k! (j-k)!} \right]$$

$$+ x^{n+1} f^{(n+1)}(0) (-1)^{n} \sum_{k=0}^{n} \frac{(-1)^{k}}{k! ((n+1)-k)!} + o_{x \to 0} \left(x^{n+1} \right)$$

 $Or \ si \ j \ge 1, \ alors \sum_{k=0}^{j} \frac{(-1)^k}{k! (j-k)!} = j! \sum_{k=0}^{j} (-1)^k {j \choose k} = j! (1+(-1))^j = 0 \ donc$ $\sum_{k=0}^{n} (-1)^k \frac{x^k}{k!} f^{(k)}(x) = x^{n+1} f^{(n+1)}(0) \sum_{k=0}^{n} \frac{(-1)^k}{k! ((n+1)-k)!} + o_{x\to 0}(x^{n+1}) \ car \ pour \ j = 0, \ f^{(j)}(0) = f(0) = 0 \ donc$ $g^{(n)}(x) = (-1)^n n! \frac{x^{n+1} f^{(n+1)}(0) \sum_{k=0}^{n} \frac{(-1)^k}{k! (j-k)!} + o_{x\to 0}(x^{n+1})}{x^{n+1}} = (-1)^n n! f^{(n+1)}(0) \sum_{k=0}^{n} \frac{(-1)^k}{k! (j-k)!} + o_{x\to 0}(1)$

donc
$$\lim_{x\to 0, x\neq 0} g^{(n)}(x) = (-1)^n n! f^{(n+1)}(0) \sum_{k=0}^n \frac{(-1)^k}{k! ((n+1)-k)!}$$

Montrons par récurrrence sur n que g est de classe C^n sur \mathbb{R} :

- C'est vrai pour n = 0 (continuité de q).
- Soit $n \geq 1$. Supposons g de classe C^{n-1} sur \mathbb{R} . Montrons que g est C^n sur \mathbb{R} . La fonction g est C^n sur \mathbb{R}^* (th opérations) et
- $g^{(n-1)}$ est continue en 0
- $g^{(n-1)}$ est dérivable sur \mathbb{R}^*
- $-\left(g^{(n-1)}\right)'=g^{(n)}$ admet une limite réelle en 0

donc (th limite de la dérivée, $g^{(n-1)}$ est dérivable en 0 et $g^{(n)}(0) = \lim_{x \to 0, x \neq 0} g^{(n)}(x)$, ce qui entraîne que $g^{(n)}$ est continue en 0 donc que g est de classe C^n .

$$\mathbf{R} \ \mathbf{37} \ On \ a \ donc \ g^{(n)} (0) = (-1)^n \ n! f^{(n+1)} (0) \sum_{k=0}^n \frac{(-1)^k}{k! \left((n+1)-k\right)!} = (-1)^n \frac{f^{(n+1)} (0)}{n+1} \left(\sum_{k=0}^{n+1} {n+1 \choose k} (-1)^k - (-1)^{n+1}\right).$$

$$Or \sum_{k=0}^{n+1} {n+1 \choose k} (-1)^k = (1+(-1))^{n+1} = 0 \ donc \ g^{(n)} (0) = \frac{f^{(n+1)} (0)}{n+1}.$$