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TP IA : Algorithme KNN & Machine Learning : 

Identification automatique de panneaux 
 

1. Contexte 
 

Nous allons développer un algorithme capable de reconnaitre une image automatiquement à partir de 

l’apprentissage d’une base d’images sources. Pour cela, nous allons utiliser l’algorithme KNN, dit de 

recherche des « k plus proches voisins » en utilisant la norme euclidienne. 

 

Nos images recherchées seront supposées prétraitées afin qu’elles ressemblent à cela : 

 

 
 

Le pré-traitement numérique aura donc réalisé les étapes suivantes : 

- Transformation projective en couleur afin d’avoir une image « vue de face » et cadrée 

 
Source : Page 51 de l’ouvrage intitulé « Détection et reconnaissance de la signalisation verticale par analyse d’image »  en lien ici. 

 

- Redimensionnement des images avec 100 lignes et 100 colonnes, soit 10 000 pixels RGB 

- Enregistrement du résultat au format BMP 

 

Les images sources permettant l’apprentissage auront subi un traitement supplémentaire de mise en 

blanc du fond en dehors du panneau, et nous nous limiterons à des panneaux circulaires. 

  

https://www.ifsttar.fr/fileadmin/user_upload/editions/lcpc/ERLPC/ERLPC-CR-LCPC-CR53.pdf
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2. Téléchargement du dossier élèves 
 

Téléchargez et décompressez le « dossier eleve » sur cahier de prépa. Vous aurez les images sources, 

les images recherchées, et un code Python à compléter. 

 

3. Mise en place de l’algorithme KNN 
 

Nous allons travailler avec des n-uplets (listes de n termes) qui seront associées à chaque image. On 

suppose que le nombre de termes n de chaque n-uplets est identique dans tout le TP. 

 

On rappelle que la distance euclidienne entre deux n-uplets 𝑢 = (𝑢0, 𝑢1, … , 𝑢𝑛−1) et 𝑣 =

(𝑣0, 𝑣1, … , 𝑣𝑛−1) est le résultat du calcul suivant : 

𝐷 = √∑(𝑣𝑖 − 𝑢𝑖)
2

𝑛−1

𝑖=0

 

Question 1:  Créer une fonction Distance_uv(u,v)  calculant la distance euclidienne 

entre les deux n-uplets sous forme de listes u et v 

Vérifier : 

 

 

 

 

Question 2:  Créer une fonction Distance(u,Lv) renvoyant une liste des distances 

euclidiennes entre u et tous les n -uplets v de la liste Lv ainsi que l’indice  associé sous 

la forme [Distance entre u et v,  indice de v dans Lv]  

Vérifier : 

 

 

 

 

 

 

 

On donne la fonction Proches(u,Lv,k) qui renvoie une liste des k plus proches voisins de u dans la liste 

Lv au sens de la norme euclidienne, soit les k listes [dst,ind] 

Remarques : 

- On supposera que k est plus petit que le nombre de n-uplets de Lv 

- L.sort() permet de trier les éléments de L par rapport à la première composante de tous ses 

éléments (les distances ici) 

  

A la suite du code précédent, vérifier : 
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4. Lecture des images 
 

On donne le code suivant : 

importmatplotlib.pyplotasplt 

plt.close('all') 
 
defAffiche(image): 

plt.figure() 

plt.imshow(image) 

plt.axis('off') 

plt.show() 

plt.pause(0.00001) 

 

A partir d’une image au format array d’entiers codés sur 8 bits, la fonction Affiche affiche cette image 

sur une figure. 

 

On rappelle que l’ouverture au format array d’une image se réalise avec la commande : 
plt.imread(Chemin) 

Attention, les chemins dans Python s’écrivent : Sources\\1\\0.bmp (dossier sources puis dossier 1 puis 

image 0). 

 

Question 3:  Créer une fonction Lecture(Chemin) qui renvoie l’array  associé à l’image 

de chemin contenu dans la variable Chemin  

 

5. Fonctions d’analyse des images 
 

On utilisera la méthode suivante : pour chaque image, on crée une liste L_RGB des valeurs de R, G et 

B de chacun de ses pixels. Ainsi, avec des images ayant toujours la même dimension de 100x100 pixels, 

on obtient une liste de 30 000 valeurs pour chacune. Comme chaque n-uplet doit avoir la même taille, 

vous comprenez pourquoi toutes les images ont le même nombre de pixels. 

 

Question 4:  Créer une fonction Analyse(Image) qui, à partir d’une image  sous forme 

d’array, renvoie la liste L_RGB associée  – Attention, transformer les R, G et B en 

flottants, sinon il y aura overflow avec les u int8 lors des calculs de distances  (pour ce 

faire, on pourra utiliser  :   « R = float(R) »).  

 

Question 5:  Créer une fonction Analyse_Globale(L_Chemin) qui, à partir d’une liste  

des chemins des images à analyser, renvoie la liste des listes L_RGB de chacune des 

images concernées 

Remarque : on pourra faire en sorte que cette fonction affiche l’état d’avancement du traitement des 

images, par exemple : 
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6. Création de la base des données 
 

Vous avez à votre disposition un dossier nommé « Sources » dans lequel apparaissent 8 dossiers 

numérotés de 0 à 7. Chacun de ces dossiers contient 5 images sources du même panneau numérotées 

de 0 à 4, qui vont servir à l’apprentissage : 

 

Sources 

 

 

 

Soient les listes : 

 

Dossiers =[0,1,2,3,4,5,6,7] 

Nb_Images_Dossiers=[5,5,5,5,5,5,5,5] 

 

La liste Dossiers liste les numéros des dossiers présents dans le répertoire Sources, et la liste 

Nb_Images_Dossiers répertorie le nombre d’images contenues dans chacun de ces dossiers. 

 

Chaque image contenue dans le dossier source possède : 

- Un chemin 

- Un numéro de dossier 

- Un numéro d’image 

On souhaite créer les trois listes Liste_Chemin, Liste_Dossier et Liste_Num, qui pour un même indice 

et donc, pour une même image, contiennent ces trois informations. Pour la suite, on appellera « Indice 

d’une image » son indice dans ces trois listes. 

 

Question 6:  Mettre en place un code utilisant Dossiers et Nb_Images_Dossiers  créant 

les listes Liste_Chemin, Liste_Dossier et Liste_Num  

 

Vérifiez : 

 

 

 

 

 

Question 7:  Écrire le code nécessaire à la création de la liste de listes «  Donnees », 

contenant les listes L_RGB de toutes les images sources  
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7. Reconnaissance automatique 
Vous avez à votre disposition un dossier nommé « Recherche »  contenant des images à rechercher 

automatiquement à l’aide de l’algorithme mis en place. Elles sont toutes issues d’une photo en 

situation réelle et le premier numéro de leurs noms correspond au dossier auquel elles devraient 

appartenir. 

Recherche 

 
 

Les images sources ayant un fond blanc, notre algorithme s’adapte automatiquement à n’importe quel 

fond. En effet, une image recherchée ayant un fond quelconque sera à la même « distance » que toutes 

les images sources sur la partie extérieur, l’algorithme sélectionnera alors celle qui se rapproche le plus 

dans la comparaison du contenu intérieur du panneau. 

 

Question 8:  Créer un code qui permet d’ouvrir, d’afficher et d’analyser (création de 

sa liste L_RGB) l’une des images du dossier Recherche  à choisir 

 

Question 9:  Créer un code qui détermine les k=5 plus proches voisins de l’image 

recherchée et crée les listesResultat_Ind(indices des images résultats), 

Resultat_Dossiers(dossiers correspondants) et Resultat_Num (numéros des images 

dans les dossiers) et qui affiche dans la console dossiers et numéros des images  

trouvées 

 

Question 10:   Créer une fonction Max_Occurences(L) qui renvoie le terme 

apparaissant le plus dans L, et le premier s’il y a des exæquo  

Vérifiez : 

 

 

Question 11:  Créer un code permettant de déterminer le dossier résultat, qui l’affiche 

dans la console et affiche l’une des images de ce dossier  

Vérifiez la réussite de l’identification de toutes les images à rechercher. 
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8. Matrice de confusion 
 

Pour évaluer le succès de l’algorithme KNN, on utilise une matrice de confusion. Dans notre 

application, nous avons deux types de données : 

- Les types de panneaux appris 

- Les types de panneaux recherchés 

Ainsi, nous avons 8 types de panneaux appris et nous avons recherché les mêmes 8 types de panneaux. 

La matrice est définie ainsi : 

- Chaque ligne correspond à un type de panneau recherché 

- Chaque colonne représente le type de panneau trouvé 

En nous adaptant aux données de ce TP, cela donne : 

- Ligne l : premier chiffre du nom de l’image recherchée 

- Colonne c : numéro du dossier trouvé 

Alors, le terme de la matrice en 𝑀(𝑙, 𝑐) avec 𝑐 = 𝑙 est le nombre 

d’images sources trouvées comme images cibles. Autrement dit, si 

l’algorithme trouve toutes les images correctement dans notre 

exemple, on aura la matrice ci-contre. 

 

Question 12:  Indiquer ce que voudrait dire 𝑴(𝟏, 𝟎) = 𝟏 

Question 13:  Créer la liste LR des numéros des images à rechercher sous forme de str  

 
Question 14:  Mettre en place le code créant la liste des chemins LCR des images 

recherchées 

 
Question 15:  Créer la liste Donnees_R des données des images recherchées en 

utilisant Analyse_Globale  

Question 16:  Mettre en place une fonction Resolution(DR,k) prenant en argument les 

données d’une image recherchée DR et le nombre de voisins k utilisés, et renvoyant le 

numéro de dossier trouvé 

Vérifier : 

 

 

 

 

Question 17:  Créer la fonction Etude(k) réalisant la matrice de confusion de notre 

algorithme pour une valeur de k donnée  

Remarque : les listes LR et Dossiers sont utilisées de manière globale 

Question 18:  Déterminer la matrice de confusion de notre algorithme pour k allant de 

1 à 5 et conclure  

𝑀 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]
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9. Utilisation de sklearn 
 

Il existe une bibliothèque qui permet de réaliser la résolution knn rapidement, elle n’est pas attendue 

dans le programme d’informatique mais introduite dans le programme de SI. Vous avez le code ci-

dessous dans le dossier élèves : 

 

 

# Données 

 

x = Donnees 
y = Liste_Dossier 
DR = Donnees_R[0] 
k = 5 
 

# Apprentissage 

 

from sklearn.model_selection import train_test_split 

from sklearn.neighbors import KNeighborsClassifier 

knn = KNeighborsClassifier(k) 
knn.fit(x,y) 

Score = knn.score(x_test,y_test) 

print("Score:",Score) 

 

# Reconnaissance 

 

Sol = knn.predict([DR])[0] 

print(Sol) 
 
# Matrice de confusion 

 

from sklearn.metrics import confusion_matrix 

y_true = [] 

y_pred = [] 

for i in range(N): 

    y_true.append(######) 

    y_pred.append(######) 

Mat = confusion_matrix(y_true,y_pred) 

print(Mat) 
 

 

Il faut définir : 

- La liste x des données x 

- La liste y des résultats attendus de chaque donnée x 

- La liste DR des données de l’image recherchée 

- Pour la matrice de confusion, les listes y_true et y_pred des solutions réelles et des solutions 

obtenues pour la reconnaissance de toutes les images dans Donnees_R 

 

Question 19:  Utiliser ce code pour visualiser la prédiction sur les images recherchées 

et la matrice de confusion pour k=5  

 

Source : D. Defauchy 


