CONCOURS COMMUN MINES-PONTS - FILIÈRE PC

Deuxième épreuve de Mathématiques - Concours 2024 Proposition de corrigé

Problème inverse pour les matrices de distance euclidienne

1 Matrices de Hadamard

Par caractérisation des matrices orthogonales, une matrice de Hadamard H d'ordre n est une matrice carrée dont tous les coefficients sont égaux à 1 ou -1 et telle que ses lignes, comme ses colonnes, sont deux à deux orthogonales, et forcément de norme euclidienne $\sqrt{n}:\frac{1}{\sqrt{n}}H$ est orthogonale.

1> Les deux matrices (1) et (-1) sont des matrices de Hadamard d'ordre 1.
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
 ainsi que

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
sont orthogonales :
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
et
$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
sont des
$$\boxed{\text{matrices de Hadamard d'ordre 2}}.$$

- $2\triangleright$ Soit H une matrice de Hadamard. Les colonnes C_1 , ..., C_n de $\frac{1}{\sqrt{n}}H$, comme ses lignes L_1 , ..., L_n , forment une base orthonormée de \mathbb{R}^n : toute matrice obtenue en multipliant une ligne ou une colonne par -1 ou en échangeant deux lignes ou deux colonnes de $\frac{1}{\sqrt{n}}H$ ne change pas cette condition, comme cela ne change pas que les nouveaux coefficients de cette matrice transformée depuis H a ses coefficients dans $\{-1,1\}$ donc c'est encore une matrice de Hadamard.
- 3⊳ Soit $H = (h_{i,j})$ une matrice de Hadamard d'ordre n. D'après la question précédente, multiplier successivement, pour j de 1 à n, sa $j^{\text{ème}}$ colonne par $h_{1,j}$ de $\{-1,1\}$, cette nouvelle matrice est encore une matrice de Hadamard d'ordre n dont les coefficients de la première ligne sont tous égaux aux $(h_{1,j})^2$ donc à 1.
 - Si $n \ge 2$, la deuxième ligne d'une telle matrice est orthogonale à la première ligne donc elle a autant de 1 et de -1 donc le nombre de colonne, n est pair.
- Soit H est une matrice de Hadamard d'ordre n supérieur ou égal à 4. D'après la deuxième question, il existe une matrice de Hadamard d'ordre n dont tous les coefficients de la première ligne sont uniquement composée de 1; n est pair et la deuxième ligne, comme les suivantes, est composée de n/2 coefficients égaux à 1 et de n/2 coefficients égaux à -1. Quitte à échanger les colonnes pour placer ces 1 sur les n/2 premières colonnes, on peut créer une nouvelle matrice de Hadamard d'ordre n dont tous les coefficients de la première ligne sont uniquement composés de 1 et sa deuxième ligne composée de n/2 coefficients égaux à 1 puis n/2 coefficients égaux à -1.

Si $n \ge 3$, la troisième ligne d'une telle matrice est orthogonale à la première ligne et à la deuxième ligne donc, en particulier, elle a autant de 1 et de -1 dans les n/2 premiers coefficients, autant de 1 et de -1 dans les n/2 derniers coefficients donc n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n est un multiple de n/2 est lui-même pair : n/2 est lui-mêm

2 Quelques résultats sur les endomorphismes symétriques

On note les valeurs propres classées par ordre croissant de f. Pour $k \in [1, n]$, on introduit l'ensemble π_k des sous-espaces vectoriels de \mathbb{R}^n de dimension k. On admettra ici que les min et max considérés existent bien (cela découle de la continuité des expressions considérées).

- $5 \triangleright f$ est un endomorphisme symétrique de \mathbb{R}^n donc, par application du Théorème Spectral, il existe une base (e_1, \ldots, e_n) orthonormée de \mathbb{R}^n formée de vecteurs propres de f. On choisit ici une indexation qui respecte l'ordre croissant des valeurs propres.
- 6 Soient $k \in [1, n]$ et S_k un sous-espace vectoriel de \mathbb{R}^n de dimension k. $T_k = \text{Vect}(e_k, \dots, e_n)$ est de dimension n k + 1, puisque cette famille est libre, donc d'après la formule de Grassman, on a :

$$\dim\left(S_k\cap T_k\right)=\dim\left(S_k\right)+\dim\left(T_k\right)-\dim\left(S_k\cup T_k\right)\geq k+(n-k+1)-n=1\Longrightarrow S_k\cap T_k\neq\{0\}\ .$$

 $7 \triangleright \text{ Soit } x \in S_k \cap T_k, \text{ non nul}; \text{ il existe } \alpha_k, \dots, \alpha_n \text{ réels tels que}:$

$$x = \sum_{j=k}^{n} \alpha_{j} e_{j} \quad \text{et} \quad (x, f(x)) = \left(\sum_{j=k}^{n} \alpha_{j} e_{j}, \sum_{i=k}^{n} \alpha_{i} \lambda_{i} e_{i}\right) = \sum_{i=k}^{n} \alpha_{i}^{2} \lambda_{i} \geq \sum_{i=k}^{n} \alpha_{i}^{2} \lambda_{k} = \lambda_{k} \|x\|^{2}.$$

$$\implies \lambda_{k} \leq \left(\frac{x}{\|x\|}, f\left(\frac{x}{\|x\|}\right)\right) \leq \max_{y \in S_{k}, \|y\| = 1} (y, f(y)).$$

8 Soit $k \in [1, n]$. $S_k = \text{Vect}(e_1, \dots, e_k) \in \pi_k$ et, pour tout $x \in S_k$ non nul; il existe $\alpha_1, \dots, \alpha_k$ réels tels que:

$$x = \sum_{j=1}^{k} \alpha_{j} e_{j} \quad \text{et} \quad (x, f(x)) = \sum_{j=1}^{k} \alpha_{j}^{2} \lambda_{j} \leq \sum_{j=1}^{k} \alpha_{j}^{2} \lambda_{k} = \lambda_{k} \|x\|^{2} \Longrightarrow \lambda_{k} \geq \left(\frac{x}{\|x\|}, f\left(\frac{x}{\|x\|}\right)\right).$$

$$\Longrightarrow \lambda_{k} \geq \max_{y \in S_{k}, \|y\|=1} (y, f(y)) \geq \min_{S \in \pi_{k}} \left(\max_{z \in S, \|z\|=1} (z, f(z))\right).$$

Donc, par double inégalité, on a :

$$\lambda_k = \min_{S \in \pi_k} \left(\max_{x \in S, \|x\| = 1} \left(x, f(x) \right) \right).$$

9 \(\text{Soit } M \) une matrice symétrique positive de $\mathcal{M}_n(\mathbb{R})$. D'après le Théorème Spectral, il existe P de $O_n(\mathbb{R})$ telle que : $P^T M P$ est la matrice diagonale diag $(\lambda_1, \dots, \lambda_n)$ de valeurs positives. Si on pose $B = P \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}\right) P^T$, alors $M = B^T \cdot B$.

On suppose à présent que M, matrice symétrique, admet une unique valeur propre strictement positive λ d'espace propre de dimension 1 et de vecteur propre unitaire u. $A = \lambda u \cdot u^T - M$ est alors, par combinaison linéaire, une matrice symétrique réelle telle que :

$$A \cdot u = \lambda \|u\| \ u - \lambda u = 0 \quad \text{et} \quad \left(\forall v \in E_{\lambda}^{\perp} = \bigoplus_{\mu \neq \lambda} E_{\mu} \right), \ v^T \cdot A \cdot v = -v^T \cdot M \cdot v \ge 0.$$

donc, d'après la première partie de la question, il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A = B^T \cdot B$ et donc $M = \lambda u \cdot u^T - B^T \cdot B$.

3 Caractérisation des MDE

10⊳

$$P = I_n - \frac{1}{n} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \dots & 1 \end{pmatrix} = \begin{pmatrix} 1 - 1/n & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 1 - 1/n \end{pmatrix}.$$

P est symétrique $(P^T = I_n^T - \frac{1}{n} \left(\mathbf{e}^T \right)^T \cdot \mathbf{e}^T = P),$

$$P^{2} = I_{n} - \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{T} - \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{T} + \frac{1}{n^{2}} \mathbf{e} \cdot \mathbf{e}^{T} \cdot \mathbf{e} \cdot \mathbf{e}^{T} = I_{n} - \frac{2}{n} \mathbf{e} \cdot \mathbf{e}^{T} + \frac{1}{n^{2}} \|e\|^{2} \mathbf{e} \cdot \mathbf{e}^{T} = P$$

$$P \cdot \mathbf{e} = \mathbf{e} - \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^T \cdot \mathbf{e} = 0$$
 et $(\forall x \in \mathbf{e}^\perp) P \cdot x = x - \frac{1}{n} (\mathbf{e}^T \cdot x) \mathbf{e} = x$

donc l'endomorphisme de \mathbb{R}^n canoniquement associé à P est la projection orthogonale sur $\mathrm{Vect}\left(\mathbf{e}\right)^{\perp}$.

11 ▷ Soit $D \in \Delta_n$. Avec les notations proposées :

$$D = (d_{i,j}) = \left(\sum_{k=1}^{n} (x_{i,k} - x_{j,k})^{2}\right) = \left(\|x_{i}\|^{2} + \|x_{j}\|^{2} - 2x_{i}^{T} \cdot x_{j}\right).$$

$$C \cdot \mathbf{e}^{T} = \begin{pmatrix} \|x_{1}\|^{2} & \dots & \|x_{1}\|^{2} \\ \vdots & & \vdots \\ \|x_{i}\|^{2} & \dots & \|x_{i}\|^{2} \\ \vdots & & \vdots \\ \|x_{n}\|^{2} & \dots & \|x_{n}\|^{2} \end{pmatrix} , \quad \mathbf{e} \cdot C^{T} = \begin{pmatrix} \|x_{1}\|^{2} & \dots & \|x_{j}\|^{2} & \dots & \|x_{n}\|^{2} \\ \vdots & & \vdots & & \vdots \\ \|x_{1}\|^{2} & \dots & \|x_{j}\|^{2} & \dots & \|x_{n}\|^{2} \end{pmatrix} .$$

et
$$M_A^T \cdot M_A = (x_i^T \cdot x_j)$$
 donc $D = C \cdot \mathbf{e}^T + \mathbf{e} \cdot C^T - 2 M_A^T \cdot M_A$.

Si on suppose, de plus, que $D \in \Delta_n$, on a :

$$(T(D))^T = -\frac{1}{2} P^T D^T P^T = T(D), T(D) \cdot \mathbf{e} = -\frac{1}{2} P D P \cdot \mathbf{e} = -\frac{1}{2} P D \cdot 0 = 0$$

d'après la question précédente, et pour tout $v \in \text{Vect}(\mathbf{e})^{\perp}$, $P \cdot v = v \text{ donc } v^T T(D) |v| = ||M_A v||^2 \ge 0$:

$$v^{T} T(D) v = -\frac{1}{2} v^{T} P^{T} D P v = -\frac{1}{2} v^{T} D v = -\frac{1}{2} \left(v^{T} C \mathbf{e}^{T} v + v^{T} \mathbf{e} C^{T} v - 2 v^{T} M_{A}^{T} \cdot M_{A} v \right).$$

Ainsi, T(D) est positive et $T(D) \in \Omega_n$:

$$(\forall x \in \mathbb{R}^n) \left(\exists (u, v) \in \text{Vect}(\mathbf{e}) \times \text{Vect}(\mathbf{e})^{\perp} \right) x^T T(D) \ x = x^T T(D) \ u + x^T T(D) \ v$$
$$= u^T T(D) \ v + v^T T(D) \ v = (T(D) \ u)^T \ v + v^T T(D) \ v = ||M_A v||^2 \ge 0.$$

Remarque : on peut directement utiliser la stabilité de Vect (\mathbf{e}) et donc de son orthogonal Vect (\mathbf{e}) par T(D) puisqu'elle est symétrique.

Pour toute
$$A = (a_{i,j}) \in \Omega_n$$
, $K(A) = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} \dots & a_{j,j} & \dots \end{pmatrix} + \begin{pmatrix} a_{1,1} \\ \vdots \\ a_{n,n} \end{pmatrix} \begin{pmatrix} 1 & \dots & 1 \end{pmatrix} - 2A$

donc $K(A) = (a_{i,i} + a_{j,j} - 2 a_{i,j})$; comme A est symétrique positive, d'après la question 9, il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A = B^T \cdot B$ donc, pour tout $(i,j) \in [\![1,n]\!]^2$, $a_{i,j} = \sum_{k=1}^n \left(B^T\right)_{i,k} B_{k,j}$, soit le produit scalaire des vecteurs lignes BL_i et BL_j de $B: K(A) = \left(\|BL_i\|^2 + \|BL_j\|^2 - 2 (BL_i, BL_j)\right)$, c'est-à-dire $K(A) = \left(\|BL_i - BL_j\|^2\right)$. Ainsi, on a $K(A) \in \Delta_n$.

13 D'après la question 10, $P \cdot \mathbf{e} = 0$ et $\mathbf{e}^T \cdot P^T = \mathbf{e}^T \cdot P = 0^T$. Pour tout $A \in \Omega_n$, $K(A) \in \Delta_n$ donc $T \circ K(A) \in \Omega_n$ et, puisque $A \cdot \mathbf{e} = 0$ et $\mathbf{e}^T \cdot A^T = \mathbf{e}^T \cdot A = 0^T$, on a :

$$-\frac{1}{2}\,P\,\left(\mathbf{e}\,\mathbf{a}^T+\mathbf{a}\,\mathbf{e}^T-2\,A\right)\,P=P\,A\,P=A\,P-\frac{1}{n}\,\mathbf{e}\,\mathbf{e}^T\,A\,P=A-\frac{1}{n}\,\mathbf{e}\,\mathbf{e}^T\,A=A\,.$$

Ainsi, on a : $T \circ K = \mathrm{Id}_{\Omega_n}$.

- $14 \triangleright$ Soit D une matrice symétrique d'ordre n à coefficients positifs ou nuls et de diagonale nulle.
 - Si $D \in \Delta_n$, alors $T(D) \in \Omega_n$ donc $\left[-\frac{1}{2} P \cdot D \cdot P \text{ est positive} \right]$ d'après la question 11.
 - Réciproquement, si $-\frac{1}{2}PDP$ est positive, le fait que $P \cdot \mathbf{e} = 0$ entraine que $T(D) \in \Omega_n$ et donc que $D = K \circ T(D) \in \Delta_n$.
- 15 ▷ Soit M une matrice symétrique d'ordre n à coefficients positifs ou nuls et de diagonale nulle, ayant une unique valeur propre strictement positive d'espace propre de dimension 1 et de vecteur propre \mathbf{e} (donc forcément non nulle). D'après la question 9, il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $M = \lambda \mathbf{e} \cdot \mathbf{e}^T B^T \cdot B$.

$$-\frac{1}{2}PMP = -\frac{1}{2}P\lambda \mathbf{e} \mathbf{e}^{T}P + \frac{1}{2}PB^{T} \cdot BP = -\frac{1}{2}P\lambda \mathbf{e} \mathbf{e}^{T}P + \frac{1}{2}PB^{T} \cdot BP = \frac{1}{2}(BP)^{T}(BP) \text{ donc,}$$
 pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R}), X^{T}T(M) X = \frac{1}{2}\|BPX\|^{2} \ge 0 : T(M) \text{ est positive} \text{ et } M \text{ est MDE}$ d'après la question précédente.

4 Spectre des MDE

- 16 > Soit M est MDE d'ordre n. Les distances sur la diagonale sont nulles donc $\operatorname{Tr}(M) = 0$. Or M est symétrique réelle, donc diagonalisable de valeurs propres $\lambda_1, \ldots \lambda_n$, pour respecter les notations de l'énoncé; la trace étant un invariant de similitude, on a donc : $\operatorname{Tr}(M) = \sum_{i=1}^{n} \lambda_i = 0$.
- 17 > Soit D une MDE d'ordre n non nulle; D est alors une matrice symétrique d'ordre n à coefficients positifs ou nuls et de diagonale nulle. Soit $x \in \text{Vect}(\mathbf{e})^{\perp}$; $P \cdot x = x$, donc, d'après la question 14 :

$$\boldsymbol{x}^T \cdot \boldsymbol{D} \cdot \boldsymbol{x} = \left(\boldsymbol{P} \cdot \boldsymbol{x}\right)^T \cdot \boldsymbol{D} \cdot \left(\boldsymbol{P} \cdot \boldsymbol{x}\right) = -2\,\boldsymbol{x}^T \cdot T\left(\boldsymbol{D}\right) \cdot \boldsymbol{x} \leq 0\,.$$

18 \triangleright Soit D une MDE d'ordre n non nulle. Soient $\lambda_1, \ldots, \lambda_n$ ses valeurs propres, ordonnées dans l'ordre croissant.

On pose $S_{n-1} = (\text{Vect }(\mathbf{e}))^{\perp} \in \pi_{n-1}$; d'après la question précédente, pour tout $x \in S_{n-1}$, $x^T \cdot D \cdot x \leq 0$ donc, d'après le théorème de Courant-Fischer : $\lambda_{n-1} \leq \max_{x \in S_{n-1}, ||x|| = 1} \left(x^T \cdot D \cdot x \right) \leq 0$.

Enfin, D est non nulle donc l'une de ses valeurs propres au moins est non nulle. Puisque $\sum_{i=1}^{n} \lambda_i = 0$,

 $\lambda_n = -\sum_{i=1}^{n-1} \lambda_i > 0$ (somme de positifs non nulle) : λ_n est l'unique valeur propre strictement positive de D.

5 Problème inverse pour les MDE

Soit H une matrice de Hadamard d'ordre n et de première ligne constante égale à 1. Soient $\lambda_1, \ldots, \lambda_n$ des réels tels que : $\lambda_1 > 0 \ge \lambda_2 \ge \ldots \ge \lambda_n$ et $\sum_{i=1}^n \lambda_i = 0$ (il n'est peut-être pas judicieux d'avoir changer l'ordre des valeurs propres!). On note U la matrice $\frac{1}{\sqrt{n}}H$, Λ la matrice diagonale dont les coefficients diagonaux sont les λ_i et $D = U^T \cdot \Lambda \cdot U$.

 $19 \triangleright D^T = U^T \cdot \Lambda^T \cdot \left(U^T\right)^T = U^T \cdot \Lambda \cdot U = D$ donc \boxed{D} est symétrique. De plus, $U \in \mathcal{O}_n(\mathbb{R})$ donc U est inversible d'inverse U^T donc D est semblable à Λ donc \boxed{D} a pour valeurs propres $\lambda_1, \ldots, \lambda_n$, avec $\boxed{\lambda_1}$ d'espace propre de dimension 1 puisque c'est une valeur propre simple.

Enfin, pour tous i et j de [1, n], le coefficient $d_{i,j}$ de D est :

$$d_{i,j} = \sum_{k=1}^{n} \left(U^{T} \right)_{i,k} \left(\Lambda \cdot U \right)_{k,j} = \sum_{k=1}^{n} u_{k,i} \lambda_{k} u_{k,j} = \frac{1}{n} \sum_{k=1}^{n} \lambda_{k} h_{k,i} h_{k,j} = \frac{1}{n} \lambda_{1} h_{1,i} h_{1,j} + \frac{1}{n} \sum_{k=2}^{n} \lambda_{k} h_{k,i} h_{k,j}$$

$$\implies d_{i,j} \ge \frac{1}{n} \lambda_1 + \frac{1}{n} \left(\sum_{k=2}^n \lambda_k \right) = 0$$

puisque Λ est une matrice diagonale. On remarque que $d_{i,i} = \frac{1}{n} \sum_{k=1}^{n} \lambda_k h_{1,i}^2 = \frac{1}{n} \sum_{i=1}^{n} \lambda_i = 0$, pour tout i de $[\![1,n]\!]$. Ainsi, D est à coefficients positifs et à diagonale nulle.

20 > On remarque que $\frac{1}{\sqrt{n}} \mathbf{e}^T$ est la première ligne de U, orthogonale à toutes les autres, donc :

$$D\mathbf{e} = U^T \Lambda U\mathbf{e} = U^T \Lambda \begin{pmatrix} \sqrt{n} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = U^T \begin{pmatrix} \lambda_1 \sqrt{n} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \lambda_1 \mathbf{e}$$

donc \mathbf{e} est vecteur propre de λ_1 et D est MDE d'après la question 15.

21 \(\text{Pour } n = 4, H = \begin{pmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & -1 & -1 \ 1 & -1 & 1 & -1 \ -1 & 1 & 1 & -1 \end{pmatrix} \) est une matrice de Hadamard d'ordre 4. On pose $\lambda_1 = 5$,

 $\lambda_2 = -1$, $\lambda_3 = \lambda_4 = -2$. En accord avec la construction de cette dernière partie, la matrice suivante est une matrice de distance euclidienne d'ordre 4 telle que son spectre soit $\{5, -1, -2, -2\}$:

FIN DU PROBLÈME