Semaines 13 et 14

Attention 1 (pour les colleurs)

- Pas de th de convergence dominée dans la partie intégration.
- Les étudiants sont habitués à manipuler le vocabulaire de l'absolue converge plutôt que l'intégrabilité pour l'instant.

Contenu:

- Variables aléatoires discrètes: couples de VA, indépendance, espérance, variance, covariance. Inégalité de Markov et inégalité de Bienaymée-Cebychev. Loi des faible des grands nombres
- Fonctions génératrices d'une VA entière.
- intégration sur un intervalle quelconque: fonctions continues par morceaux sur un intervalle quelconque. définition de l'intégrale, intégrales de Riemann, comparaisons à un fonction intégrable, intégration par parties, changement de variable C^1 strictement monotone.

Questions de cours: questions avec (*) uniquement pour les meilleurs.

- 1. Espérance de XY lorsque X et Y sont indépendantes, formule du transfert: énoncés seuls.
- 2. (*) Soit X est variable aléatoire à valeurs dans \mathbb{N} . SiX est variable aléatoire à valeurs dans \mathbb{N} d'espérance finie alors $E(X) = \sum_{n=1}^{+\infty} P(X \ge n)$.
- 3. Si X^2 est d'espérance finie, alors X est d'espérance finie, $(X E(X))^2$ est d'espérance finie et $E((X E(X))^2) = E(X^2) E(X)^2$
- 4. Soit $(a,b) \in \mathbb{R}^2$. Si X^2 est d'espérance finie alors $(aX+b)^2$ aussi et $V(aX+b)=a^2V(X)$
- 5. Si $X \sim \mathcal{G}(p)$ alors X admet une variance $V(X) = \frac{q}{p^2}$.
- 6. Si $X \sim \mathcal{P}(\lambda)$ alors X admet une variance $V(X) = \lambda$.
- 7. Si $X \geq 0$ est d'espérance finie alors pour tout $\alpha > 0$ $P\left(X \geq \alpha\right) \leq \frac{E\left(X\right)}{\alpha}$.
- 8. Si X^{2} est d'espérance finie alors pour tout $\varepsilon > 0$ $P(|X E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^{2}}$.
- 9. On effectue n lancers d'une pièce de monnaie équilibrée. Soit X le nombre de fois où on obtient Pile. $\frac{X}{n}$ désigne donc la fréquence d'apparition de Pile. Déterminer n pour qu'on puisse affirmer que cette fréquence est strictement comprise entre 0.45 et 0.55 avec une probabilité d'au moins 0.9.
- 10. Inégalité de Cauchy-Schwarz (énoncé seul). Si X>0 et X et $\frac{1}{X}$ sont d'espérances finies, alors $\frac{1}{E\left(X\right)}\leq E\left(\frac{1}{X}\right)$.
- 11. définition de la covariance, bilinéarité de la covariance.
- 12. En utilisant la bilinéarité généralisée, exprimer $V(X_1 + \cdots + X_n)$ à l'aide des variances des X_i et de covariances de (X_i, X_j) .
- 13. Expression de $V(X_1 + \cdots + X_n)$ lorsque les X_1, \ldots, X_n sont indépendantes.
- 14. Deux variables aléatoires à valeurs dans N ayant même fonction génératrice ont même loi.
- 15. Soit $p \in]0,1[$ et q = 1 p. Si $X \sim \mathcal{G}(p)$, alors $R_X = \frac{1}{q}$ et $\forall t \in]-\frac{1}{q},\frac{1}{q}[$, $G_X(t) = \frac{pt}{1 qt}$.
- 16. Soit $\lambda \in \mathbb{R}$. Si $X \sim \mathcal{P}(\lambda)$, alors $R_X = +\infty$ et $\forall t \in \mathbb{R}$, $G_X(t) = e^{\lambda(t-1)}$.
- 17. (*) Si X et Y sont indépendantes $G_{X+Y} = G_X G_Y$ (deux démonstrations).
- 18. Extension de la relation précédente à n variables aléatoires indépendantes. En déduire la fonction génératrice de X si $X \sim B(n, p)$.

- 19. Soit $(\lambda, \mu) \in \mathbb{R}^2$. Si $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$ sont indépendantes alors $X + Y \sim \mathcal{P}(\lambda + \mu)$: démonstration avec les fonctions génératrices.
- 20. Si $R_X > 1$, $G'_X(1) = E(X)$. Expression de V(X) à l'aide de G_X . (le résultat reste vrai si $R_X = 1$ et G_X est dérivable (deux fois dérivable en 1).
- 21. Enoncé et démonstration de la loi faible des grands nombres.
- 22. On pose, pour $n \in \mathbb{N}^*$, $S_n = \sum_{i=0}^{n-1} \frac{n}{n^2 + i^2}$. Etudier la convergence de la suite (S_n) .
- 23. Citer les critères de comparaison permettant de montrer qu'une fonction est intégrale.
- 24. Pour $\alpha > 0$, convergence des intégrales $\int_0^1 \frac{1}{t^{\alpha}} dt$.
- 25. $\int_0^1 \ln(t) dt$ converge par le calcul.
- 26. Montrer que $t\mapsto \ln{(t)}$ est intégrable par comparaison avec une intégrale de Riemann.
- 27. Etudier la convergence de l'intégrale généralisée $\int_0^{+\infty} \frac{1-e^{-t}}{t^{\frac{3}{2}}} dt$
- 28. Convergence de $\int_{-\infty}^{+\infty}e^{-t^2}dt$ et $\int_{-\infty}^{+\infty}e^{-t^2}dt=2\int_0^{+\infty}e^{-t^2}dt$
- 29. Si a < b, convergence de $\int_a^b \frac{1}{(t-a)^{\alpha}} dt$ et de $\int_a^b \frac{1}{(b-t)^{\alpha}} dt$ par un changement de variable.
- 30. Convergence de $\int_1^{+\infty} \frac{1}{t^a (t+1)^b} dt$.
- 31. Convergence de $\int_0^1 \frac{\ln(t)}{(1-t)^{\frac{3}{2}}} dt$.
- 32. Montrer que l'intégrale $\int_0^{+\infty} \frac{e^{-t}}{2\sqrt{t}} dt$ converge et est égale à $\int_0^{+\infty} e^{-u^2} du$.
- 33. montrer que l'intégrale $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ converge.
- 34. (*) En utilisant l'inégalité $|\sin(t)| \ge \sin^2(t)$, montrer que l'intégrale $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ n'est pas absolument convergente.
- 35. Montrer que si f admet une limite l en $+\infty$ et $\int_0^{+\infty} f(t) dt$ converge, alors l=0.
- 36. Montrer que $\int_1^{+\infty} \cos(t^2) dt$ converge. Commenter cet exemple.