DM 18 pour le 12 mars 2025

Exercice 1: Extension aux bornes du développement en série entière de arctangente

Q 1 Montrer que la fonction $x \mapsto \arctan(x)$ est développable en série entière sur]-1,1[.

On pose, pour
$$n \in \mathbb{N}$$
 et $x \in [-1, 1]$, $u_n(x) = \frac{(-1)^n}{2n+1}x^{2n+1}$.

Q 2 Etudier la convergence uniforme de la série de fonctions $\sum u_n$ sur [-1,1]

Q 3 En déduire que
$$\frac{\pi}{4} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$$
.

Q 4 En déduire une fonction python **approx(epsilon)** d'agument epsilon réel strictement positif qui renvoie une valeur approchée de π à epsilon près.

Remarque La convergence n'est pas très rapide (en $\frac{1}{n}$) donc cette méthode n'est pas très efficace pour calculer les décimales de π .

Exercice 2: Exemples d'application du théorème de dérivation terme à terme version C^{∞}

La difficulté pour dériver terme à teme indéfiniment la somme d'une série de fonctions (hormis le cas des séries entières sur]-R,R[réside dans le calcul des dérivées successives

Premier exemple (avec des fonctions à valeurs complexes)

On pose, pour
$$x \in \mathbb{R}$$
 et $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $u_n(x) = \frac{e^{i\frac{x}{n+1}}}{n^2+1}$.

Q 5 Montrer que la série de fonctions $\sum u_n$ converge simplement sur \mathbb{R} .

On pose, pour
$$x \in \mathbb{R}$$
, $S(x) = \sum_{n=0}^{+\infty} u_n(x)$.

Q 6 Justifier que S est définie et continue sur \mathbb{R} .

Q 7 Soit $k \in \mathbb{N}^*$ Montrer pour tout $n \in \mathbb{N}$, u_n est de classe C^k et déterminer, pour $x \in \mathbb{R}$, $u_n^{(k)}(x)$.

Q 8 En déduire que S est de classe C^{∞} sur \mathbb{R} .

Deuxième exemple

On pose, pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, $u_n(x) = \frac{1}{n^2 + r^2}$

Q 9 Montrer que la série de fonctions $\sum u_n$ converge simplement sur \mathbb{R} .

On pose, pour $x \in \mathbb{R}$, $S(x) = \sum_{n=1}^{+\infty} u_n(x)$. Soit $k \in \mathbb{N}^*$.

- **Q 10** Justifier que u_n est de classe C^{∞} . Déterminer u'_n et u''_n .
- **Q 11** Montrer qu'il existe des polynômes P_1, \ldots, P_k polynômes tels que $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ u_n^{(k)}(x) = \sum_{i=1}^k \frac{P_i(x)}{(n^2 + x^2)^{i+1}}.$

Q 12 Soit $(a,b) \in \mathbb{R}^2$ vérifiant a < b. En déduire que la série de fonctions $\sum u_n^{(k)}$ converge normalement sur [a,b].

Q 13 En déduire que S est de classe C^{∞} sur \mathbb{R} .

Dans la suite, on cherche à établir la convergence normale de la série de fonctions $\sum u_n^{(k)}$ sur \mathbb{R} en améliorant la précision des calculs précédent.

Q 14 Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{N}^*$.

Justifier qu'il existe $(a_n, b_n) \in \mathbb{R}^2$ tels que $\forall x \in \mathbb{R}, \ \frac{1}{n^2 + x^2} = \frac{a_n}{n + ix} + \frac{b_n}{n - ix}$. En déduire un calcul de $u_n^{(k)}(x)$.

- **Q 15** Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{N}^*$. Montrer que $\left| u_n^{(k)}(x) \right| \leq \frac{k!}{n^{k+2}}$
- **Q 16** En déduire que la série de fonctions $\sum u_n^{(k)}$ converge normalement sur \mathbb{R} .

Troisième exemple

On pose,
$$n \in \mathbb{N}^*$$
 et $x \in]0; +\infty[$, $u_n(x) = \frac{e^{-nx}}{n+x}$ et $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

- **Q 17** Soit $k \in \mathbb{N}^*$ et a > 0. Montrer que la série de fonctions $\sum u_n^{(k)}$ converge normalement sur $[a, +\infty[$.
- **Q 18** En déduire que S est de classe C^{∞} sur $]0; +\infty[$.

Exercice 3: Exemple d'application linéaire continue en dimension infinie (facultatif)

Soit \mathcal{L}^1 l'espace vectoriel (sur $\mathbb{K} = \mathbb{C}$) des fonctions $f: \left\{ \begin{array}{l} [0, +\infty[\to \mathbb{C} \\ t \mapsto f(t) \end{array} \right.$ continues et intégrables.et \mathcal{B} l'espace vectoriel (sur $\mathbb{K} = \mathbb{C}$) des fonctions $q: \mathbb{R} \to \mathbb{C}$ bornées

(on ne demande pas de montrer que ces ensembles sont bien des espaces vectoriels). Pour $f \in \mathcal{L}^1$, on pose $\|f\|_1 = \int_0^{+\infty} |f(t)| \, dt$ et pour $g \in \mathcal{C}$, on pose $\|g\| = \sup_{x \in \mathbb{R}} |g(x)|$. On admet que $\|\|_1$ et $\|\|$ sont des normes respectivement de \mathcal{L}^1 et \mathcal{B} .

Q 19 Montrer que si $f \in \mathcal{L}^1$ et $x \in \mathbb{R}$, l'intégrale $\int_0^{+\infty} f(t) e^{ixt} dt$ converge.

Pour $f \in \mathcal{L}^1$ et $x \in \mathbb{R}$, on note $\varphi(f)(x) = \int_0^{+\infty} f(t) e^{ixt} dt$. D'après ce qui précède, $\varphi(f)$ est une fonction de \mathbb{R} dans \mathbb{C} .

Attention 1 *Ne pas confondre les notations* φ , $\varphi(f)$ *et* $\varphi(f)(x)$.

Q 20 Montrer que si $f \in \mathcal{L}^1$ alors $\varphi(f) \in \mathcal{B}$.

On peut donc définir l'application $\varphi: \left\{ \begin{array}{l} \mathcal{L}^1 \to \mathcal{B} \\ f \mapsto \varphi(f) \end{array} \right.$

Q 21 Montrer que φ est linéaire.

Q 22 Justifier que si $f \in \mathcal{L}^1$ alors $\|\varphi(f)\| \leq \|f\|_1$. En déduire que l'application φ est continue.

Exercice 4: Densité de l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ (facultatif)

Soit $n \in \mathbb{N}^*$ et $\mathcal{E}_n(\mathbb{C})$ l'ensemble des matrices $\mathcal{M}_n(\mathbb{C})$ diagonalisables.

Q 23 Soit $T = (t_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ une matrice triangulaire supérieure.

$$Pour \ p \in \mathbb{N}^*, \ on \ pose \ D_p = \begin{pmatrix} \frac{1}{p} & 0 & & 0 \\ 0 & \frac{2}{p} & & \\ & & \ddots & 0 \\ 0 & & 0 & \frac{n}{p} \end{pmatrix} \ et \ T_p = T + D_p$$

On pose $T_p = (t_{i,j}(p))$

- 1. Montrer que pour tout $(i, j) \in [[1, n]]^2$ tel que $i \neq j$, il existe $p_{i,j} \in \mathbb{N}^*$ tel que $\forall p \geq p_{i,j} \ t_{i,i}(p) \neq t_{j,j}(p)$ (on pourra distinguer deux cas).
- 2. En déduire que T est un point adhérent à $\mathcal{E}_n(\mathbb{C})$.
- **Q 24** En déduire que $\mathcal{E}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 1: Extension aux bornes du développement en série entière de arctangente

Il s'agit de la même démarche que l'exercice d'extension du DSE de $\ln(1+x)$. Sy référer pour plus de détails

R 1 la fonction $x \mapsto \arctan(x)$ est dérivable de dérivée $x \mapsto \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{+\infty} (-x^2)^n$ pour $x \in]-1,1[$.

Par intégration terme à terme du DSE sur]-1,1[, $\arctan(x) - \arctan(0) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}x^{2n+1}$.

R 2 *Soit* $x \in [-1, 1]$.

On peut appliquer CSSA (détails laissé au lecteur) à $\sum u_n(x)$ (inutilie d'enlever les x < 0 ici car x^{2n+1} est de signe constant si x < 0).

On en déduit $|R_n(x)| \le |u_{n+1}(x)| = \left| = \frac{x^{2n+3}}{2n+3} \right| \le \frac{1}{2n+3}$.

On a donc $||R_n||_{\infty} \le \frac{1}{2n+3} \to_{n\to+\infty} 0$ donc la série de fonctions $\sum u_n$ converge uniformément sur [-1,1].

Q 25 Pour $x \in [-1, 1]$, posons $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$.

D'après la question précédente (u_n étant continue) la fonction S est continue sur [-1,1].

On a donc $\lim_{x \to 1, x <} S(x) = S(1)$ donc $\lim_{x \to 1, x <} \arctan(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$ soit $\frac{\pi}{4} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

Q 26 On
$$a |R_n(1)| = \left| \frac{\pi}{4} = \sum_{i=0}^n \frac{(-1)^i}{2i+1} \right| \le \frac{1}{2n+3}.$$

def approx(epsilon):
S=1,n=0
sg=1
while 2n+3<1/epsilon:
 n=+1
 sg=-sg</pre>

S + = sg * 1/(2n+1)

return S

Exercice 2: Exemples d'application du théorème de dérivation terme à terme version C^{∞}

La difficulté pour dériver terme à teme indéfiniment la somme d'une série de fonctions (hormis le cas des séries entières sur]-R,R[réside dans le calcul des dérivées successives

Premier exemple (avec des fonctions à valeurs complexes)

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $u_n(x) = \frac{e^{i\frac{x}{n+1}}}{n^2 + 1}$.

R 3 $|u_n(x)| = \frac{1}{n^2 + 1} \le \frac{1}{n^2}$ donc $\sum u_n(x)$ converge absolument donc la série de fonctions $\sum u_n$ converge simplement sur \mathbb{R} .

On pose, pour
$$x \in \mathbb{R}$$
, $S(x) = \sum_{n=0}^{+\infty} u_n(x)$.

 $\mathbf{R} \mathbf{4} \|u\|_{\infty} \leq \frac{1}{n^2} donc \sum \|u_n\|_{\infty} converge donc la série de fonctions \sum u_n converge normalement donc uniformément sur <math>\mathbb{R}$. et $\forall n, u_n$ est continue donc S est définie (déjà vu) et continue sur \mathbb{R} .

R 5 $x \mapsto e^{ix}$ est C^{∞} donc $\forall n, u_n$ est de classe C^k et par récurrence immédiate, .

$$\mathbf{R} \ \mathbf{6} \ \left| u_n^{(k)}(x) \right| = \left| \left(\frac{1}{n+1} \right)^k \frac{1}{n^2 + 1} \right| = \frac{1}{(n^2 + 1)(n+1)^k} \ donc \ \left\| u_n^{(k)} \right\|_{\infty} = \frac{1}{(n^2 + 1)(n+1)^k} \sim_{n \to +\infty} \frac{1}{n^{k+2}}.$$

 $donc \sum \|u_n^{(k)}\|_{\infty}$ converge donc la série de fonctions $\sum u_n^{(k)}$ converge normalement (donc uniformément) sur \mathbb{R} .

R 7 (H_1) : Pour tout n u_n est de classe C^{∞} sur \mathbb{R} .

 (H_2) : la série de fonctions $\sum u_n$ converge simplement sur $\mathbb R$

 $(H_3): \forall k \in \mathbb{N}^*, \ la \ série \ de \ fonctions \sum u_n^{(k)} \ converge \ uniformément \ sur \ \mathbb{R}.$

On en déduit que S est de classe C^{∞} sur \mathbb{R} et $S^{(k)}(x) = \sum_{n=0}^{+\infty} u_n^{(k)}(x)$.

Deuxième exemple

On pose, pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, $u_n(x) = \frac{1}{n^2 + x^2}$

R 8 Soit $x \in \mathbb{R}$ fixé. On a $u_n(x) \sim_{n \to +\infty} \frac{1}{n^2}$ donc la série numérique $\sum u_n(x)$ converge donc la série de fonctions $\sum u_n$ converge simplement sur \mathbb{R} .

On pose, pour $x \in \mathbb{R}$, $S(x) = \sum_{n=1}^{+\infty} u_n(x)$. Soit $k \in \mathbb{N}^*$.

R 9 u_n est de classe C^{∞} car inverse de fonction C^{∞} . Calcul de u'_n et u''_n fait en exercice: $u'_n(x) = \frac{-2x}{(n^2+x^2)^2}$ et $u''_n(x) = 8\frac{x^2}{(n^2+x^2)^3} - \frac{2}{(n^2+x^2)^2}$.

R 10 Le résultat demandé est vrai pour k = 1 et k = 2.

Soit $k \geq 1$.

Supposons qu'il existe des polynômes P_1, \ldots, P_k polynômes tels que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ u_n^{(k)}(x) = \sum_{i=1}^k \frac{P_i(x)}{(n^2 + x^2)^{i+1}} = \sum_{i=1}^k P_i(x) (n^2 + x^2)^{-(i+1)}.$$

On a alors $u_n^{(k+1)}(x) = \sum_{i=1}^k \frac{P_i(x)}{(n^2 + x^2)^{i+1}} = \sum_{i=1}^k -2(i+1) \times 2x \times P_i(x) (n^2 + x^2)^{-(i+2)} + P_i'(x) (n^2 + x^2)^{-(i+1)} donc$

(changement d'indice et regroupement)

$$u_{n}^{(k+1)}(x) = \underbrace{-2(k+1) \times 2x \times P_{k}(x)}_{Q_{k+1}(x)} (n^{2} + x^{2})^{-(k+2)} + \sum_{i=2}^{k} \underbrace{(-2(i) \times 2x \times P_{i-1}(x) + P'_{i}(x))}_{Q_{i}(x)} (n^{2} + x^{2})^{-(i+1)} + \underbrace{P'_{1}(x)}_{Q_{1}(x)} (n^{2}$$

ce qui donne le résultat pour k+1.

R 11 On a alors $\left|u_n^{(k+1)}(x)\right| = \left|\sum_{i=1}^k \frac{P_i(x)}{(n^2 + x^2)^{i+1}} u_n^{(k+1)}(x)\right| \le \sum_{i=1}^k \frac{\left|P_i(x)\right|}{n^{2(i+1)}}.$

Les polynômes P_1, \ldots, P_k sont des fonctions sur [a,b] donc bornées sur [a,b]. Il existe M_i tel que $\forall x \in [a,b]$, $|P_i(x)| \leq M_i$ donc

 $\forall x \in [a, b], \ \left| u_n^{(k+1)}(x) \right| \le \sum_{i=1}^k \frac{M_i}{n^{2(i+1)}} = \alpha_n.$

On a donc $\left\|u_n^{(k)}\right\|_{\infty}^{[a,b]} \le \alpha_n$ et $\alpha_n = O_{n \to +\infty}\left(\frac{1}{n^4}\right)$ donc la série de fonctions $\sum u_n^{(k)}$ converge normalement [a,b].

R 12 Les hypothèses (H_1) , (H_2) et (H_3) sont réalisées sur [a,b] donc S est de classe C^{∞} sur [a,b] avec [a,b]segment quelconque de \mathbb{R} donc S est de classe C^{∞} sur \mathbb{R} (et on peut dériver terme à terme).

R 13 On
$$a \ \forall x \in \mathbb{R}, \ \frac{1}{n^2 + x^2} = \frac{1}{2n} \left(\frac{1}{n + ix} + \frac{1}{n - ix} \right).$$

R 14 Posons
$$v_n(x) = \frac{1}{n+ix} = (n+ix)^{-1}$$
 et $w_n(x) = \frac{1}{n-ix}$

On montre par récurrence que $v_n^{(k)}(x) = (-1)(-2)\dots(-k)i^k(n+ix)^{-1-k} = \frac{(-1)^k i^k k!}{(n+ix)^{1+k}}$

$$(idem \ pour \ w_n^{(k)}(x) = \frac{(-1)^k (-i) k!}{(n-ix)^{1+k}}) \ donc \ u_n^{(k)}(x) = \frac{1}{2n} \left(\frac{(-1)^k i^k k!}{(n+ix)^{1+k}} + \frac{(-1)^k (-i) k!}{(n-ix)^{1+k}} \right)$$

R 15 Soit
$$n \in \mathbb{N}^*$$
 et $k \in \mathbb{N}^*$. Montrer que $\left| u_n^{(k)}(x) \right| \leq \frac{1}{2n} \left(\left| \frac{(-1)^k i^k k!}{(n+ix)^{1+k}} \right| + \left| \frac{(-1)^k (-i) k!}{(n-ix)^{1+k}} \right| \right) \leq \frac{k!}{n^{k+2}}$ car $|(n+ix)| \geq n$.

R 16 $\left\|u_n^{(k)}\right\|_{\infty} \leq \frac{k!}{n^{k+2}}$ et k+2>1 donc la série de fonctions $\sum u_n^{(k)}$ converge normalement sur \mathbb{R} .

Troisième exemple

On pose,
$$n \in \mathbb{N}^*$$
 et $x \in \mathbb{R}_+$, $u_n(x) = \frac{e^{-nx}}{n+x}$ et $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

R 17 Posons
$$f(x) = e^{-nx}$$
 et $g(x) = \frac{1}{n+x}$.

Les fonction f et g sont C^{∞} sur $]0, +\infty$ Soit $k \in \mathbb{N}^*$.

D'après la formule de Leibniz,
$$u_n^{(k)}(x) = \sum_{i=0}^k \binom{k}{i} f^{(k-i)}(x) g^{(i)}(x) = \sum_{i=0}^k \binom{k}{i} (-1)^{k-i} n^{k-i} e^{-nx} \frac{(-1^i) i!}{(n+x)^{i+1}}$$
.

On a donc, si
$$x \ge a$$
, $\left| u_n^{(k)}(x) \right| \le \sum_{i=0}^k {k \choose i} e^{-na} \frac{n^{k-i}i!}{n^{i+1}} \le n^k e^{-na} \underbrace{\left(\sum_{i=0}^k {k \choose i} i! \right)}_{C \ indépendant \ de \ n} = \alpha_n \ donc \ \left\| u_n^{(k)} \right\|_{\infty}^{[a,+\infty[} \le \alpha_n = 0]$

Or $n^k e^{-na} = o_{n \to +\infty} \left(\frac{1}{n^2}\right) donc \sum \alpha_n converge donc la série de fonctions \sum u_n^{(k)} converge normalement sur <math>\mathbb{R}_+$.

R 18 (H₂) est vérifiée (CV simple: $si \ x > 0$, $u_n = o_{n \to +\infty}(e^{-nx})$) Les hypothèses (H_1) , (H_2) et (H_3) sont réalisées sur $[a, +\infty[$ donc S est de classe C^{∞} sur $[a, +\infty[$ avec a > 0quelconque donc S est de classe C^{∞} sur $]0, +\infty[$.

Exemple d'application linéaire continue en dimension Exercice 3: infinie

Soit \mathcal{L}^1 l'ensemble des fonctions $f: \begin{cases} [0, +\infty[\to \mathbb{C} \\ t \mapsto f(t) \end{cases}$ continues et intégrables.et \mathcal{B} l'ensemble des fonctions g: $\mathbb{R} \to \mathbb{C}$ bornées.

Pour $f \in \mathcal{L}^1$, on pose $||f||_1 = \int_0^{+\infty} f(t) dt$ et pour $g \in \mathcal{C}$, on pose $||g|| = \sup_{x \in \mathbb{R}} |g(x)|$. On admet que $||||_1$ et |||| sont des normes respectivement de \mathcal{L}^1 et \mathcal{B} .

Pour $f \in \mathcal{L}^1$ et $x \in \mathbb{R}$, on note $\varphi(f)(x) = \int_0^{+\infty} f(t) e^{ixt} dt$.

R 19 Soit $x \in \mathbb{R}$ fixé. On a $|f(t)e^{ixt}| = |f(t)|$ et f intégrable sur $[0, +\infty[$ donc $t \mapsto f(t)e^{ixt}$ est intégrable sur $[0, +\infty[$ donc l'intégrale $\int_0^{+\infty} f(t)e^{ixt}dt$ converge.

R 20 De plus $\int_0^{+\infty} f(t) e^{ixt} dt$ converge absolument donc $|\varphi(f)(x)| = \left| \int_0^{+\infty} f(t) e^{ixt} dt \right| \le \int_0^{+\infty} |f(t)| dt$ indépendant de x. La fonction $\varphi(f)$ est bornée donc $\varphi(f) \in \mathcal{B}$.

R 21 Soit λ , μ complexes et f et g dans \mathcal{L}^1 .

Montrons que $\varphi(\lambda f + \mu g) = \lambda \varphi(f) + \mu \varphi(g)$ soit $\forall x \in \mathbb{R}$, $\varphi(\lambda f + \mu g)(x) = \lambda \varphi(f)(x) + \mu \varphi(g)(x)$. On a $\varphi(\lambda f + \mu g)(x) = \int_0^{+\infty} (\lambda f + \mu g)(t) e^{ixt} dt = \lambda \int_0^{+\infty} f(t) e^{ixt} dt + \mu \int_0^{+\infty} g(t) e^{ixt} dt$ (linéarité des intégrales convergentes).

R 22 Si $f \in \mathcal{L}^1$ alors on a vu que $\forall x \in \mathbb{R} |\varphi(f)(x)| \leq \int_0^{+\infty} |f(t)| dt = ||f||_1$. On a donc $||\varphi(f)|| = \sup_{x \in \mathbb{R}} |\varphi(f)(x)| \leq ||f||_1$. On en déduit que $||\varphi(f) - \varphi(f)|| = ||\varphi(f - g)|| \leq ||f - g||_1$ donc φ est 1 lipschitzienne donc est continue.

Exercice 4: Densité de l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ (facultatif)

R 23
$$t_{i,i}(p) = t_{i,i} + \frac{i}{p}$$

- 1. premier cas: $t_{i,i} = t_{j,j}$. On $a \frac{i}{p} \neq \frac{j}{p} \ donc \ \forall p \in \mathbb{N}^*, \ t_{i,i}(p) \neq t_{j,j}(p)$ $deuxi\`eme \ cas: \ t_{i,i} \neq t_{j,j}. \ Posons \ \varepsilon = |t_{i,i} t_{j,j}|$ $On \ a \lim_{p \to +\infty} t_{i,i}(p) = t_{i,i} \ donc \ il \ existe \ un \ rang \ p_1 \ \grave{a} \ partir \ duquel \ |t_{i,i} t_{i,i}(p)| < \frac{\varepsilon}{2} \ de \ m\'eme \ un \ rang \ p_2 \ \grave{a}$ $partir \ duquel \ |t_{j,j} t_{j,j}(p)| < \frac{\varepsilon}{2}$ $Pour \ p \geq p_{i,j} = \max(p_1, p_2), \ si \ on \ avait \ t_{i,i}(p) = t_{j,j}(p), \ on \ en \ d\'eduirait \ |t_{i,i} t_{j,j}| < \varepsilon \ absurde \ donc \ t_{i,i}(p) \neq t_{j,j}(p).$
- 2. La suite (D_p) converge vers la matrice nulle donc La suite (T_p) converge vers T. si $p \ge \max_{(i,j) \in [1,n]^2, i \ne j} p_{i,j} = p_p$ alors si $i \ne j$ alors $t_{i,i}(p) \ne t_{j,j}(p)$ et $sp(T_p) = \{t_{i,i}(p)\}$ car T est triangulaire donc T_p admet n valeurs propres distinctes donc est diagonalisable. La suite $(T_p)_{p \ge pp}$ est une suite de $\mathcal{E}_n(\mathbb{C})$ qui converge vers T donc T est un point adhérent à $\mathcal{E}_n(\mathbb{C})$.

R 24 Soit $M \in \mathcal{M}_n(\mathbb{C})$. Le polynôme caractéristique de M est scindé donc M est trigonalisable. Il existe T triangulaire sup et P inversible telle que $M = PTP^{-1}$. D'après la question précédente, il existe une suite (T_p) de $\mathcal{E}_n(\mathbb{C})$ qui converge vers T Posons $M_p = PT_pP^{-1}$. On a $\lim_{n \to +\infty} MPTP^{-1}$ (continuité du produit matriciel) et M_p diagonalisable car semblable à T_p donc $\mathcal{E}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.